• This record comes from PubMed

Effect of Multiply Twinned Ag(0) Nanoparticles on Photocatalytic Properties of TiO2 Nanosheets and TiO2 Nanostructured Thin Films

. 2022 Feb 23 ; 12 (5) : . [epub] 20220223

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
18-15613S Czech Science Foundation

Ag-decorated TiO2 nanostructured materials are promising photocatalysts. We used non-standard cryo-lyophilization and ArF laser ablation methods to produce TiO2 nanosheets and TiO2 nanostructured thin films decorated with Ag nanoparticles. Both methods have a common advantage in that they provide a single multiply twinned Ag(0) characterized by {111} twin boundaries. Advanced microscopy techniques and electron diffraction patterns revealed the formation of multiply twinned Ag(0) structures at elevated temperatures (500 °C and 800 °C). The photocatalytic activity was demonstrated by the efficient degradation of 4-chlorophenol and Total Organic Carbon removal using Ag-TiO2 nanosheets, because the multiply twinned Ag(0) served as an immobilized photocatalytically active center. Ag-TiO2 nanostructured thin films decorated with multiply twinned Ag(0) achieved improved photoelectrochemical water splitting due to the additional induction of a plasmonic effect. The photocatalytic properties of TiO2 nanosheets and TiO2 nanostructured thin films were correlated with the presence of defect-twinned structures formed from Ag(0) nanoparticles with a narrow size distribution, tuned to between 10 and 20 nm. This work opens up new possibilities for understanding the defects generated in Ag-TiO2 nanostructured materials and paves the way for connecting their morphology with their photocatalytic activity.

See more in PubMed

WHO . Ambient Air Pollution: A Global Assessment of Exposure and Burden of Disease. WHO; Geneva, Switzerland: 2016.

Chong M., Jin B., Chow C., Saint C. Recent developments in photocatalytic water treatment technology: A review. Water Res. 2010;44:2997–3027. doi: 10.1016/j.watres.2010.02.039. PubMed DOI

Boukherrroub R., Ogale S.B., Robertson N. Nanostructured Photocatalysts: From Materials to Applications in Solar Fuels and Environmental Remediation. 1st ed. Elsevier; Amsterdam, The Netherlands: 2020. DOI

Potocnik J. Commission recommendation of 18 October 2011 on the definition of nanomaterial. Off. J. Eur. Communities Legis. 2011;L275:38–40. doi: 10.3000/19770677.L_2011.275.eng. DOI

Jeevanandam J., Barhoum A., Chan Y.S., Dufresne A., Danquah M.K. Review on nanoparticles and nanostructured materials: History, sources, toxicity and regulations. Beilstein J. Nanotechnol. 2018;9:1050–1074. doi: 10.3762/bjnano.9.98. PubMed DOI PMC

Sagadevan S. Semiconductor Nanomaterials, Methods and Applications: A Review. Nanosci. Nanotechnol. 2013;3:62–74. doi: 10.5923/j.nn.20130303.06. DOI

Kowalska E., Remita H., Colbeau-Justin C., Hupka J., Belloni J. Modification of Titanium Dioxide with Platinum Ions and Clusters, Application in Photocatalysis. J. Phys. Chem. C. 2008;112:1124–1131. doi: 10.1021/jp077466p. DOI

Alaoui O.T., Herissan A., Le Quoc C., Zekri M., Sorgues S., Remita H., Colbeau-Justin C. Elaboration Charge-Carrier Lifetimes and Activity of Pd-TiO2 Obtained by Gamma Radiolysis. J. Photochem. Photobiol. A. 2012;242:34–43. doi: 10.1016/j.jphotochem.2012.05.030. DOI

Grabowska E., Zaleska A., Sorgues S., Kunst M., Etcheberry A., Colbeau-Justin C., Remita H. Modification of Titanium(IV) Dioxide with Small Silver Nanoparticles: Application in Photocatalysis. J. Phys. Chem. C. 2013;117:1955–1962. doi: 10.1021/jp3112183. DOI

Štengl V., Bakardjieva S., Murafa N. Preparation and photocatalytic activity of rare-earth doped TiO2 nanoparticles. Mater. Chem. Phys. 2009;114:217–226. doi: 10.1016/j.matchemphys.2008.09.025. DOI

Chakhtouna H., Benzeid H., Zari N., Qaiss A., Bouhfid R. Recent progress on Ag/TiO2 photocatalysts: Photocatalytic and bactericidal behaviors. Environ. Sci. Pollut. Res. Int. 2021;2:1–29. doi: 10.1007/s11356-021-14996-y. PubMed DOI PMC

Zhao B., Chen Y.-W. Ag/TiO2 sol prepared by sol-gel methods and its photocatalytic activity. J. Phys. Chem. Solid. 2011;72:1312–1318. doi: 10.1016/j.jpcs.2011.07.025. DOI

Belet A., Wolf C., Mahy J.G., Poelman D., Vreuls C., Gillard N., Lambert D. Sol-gel syntheses of photocatalysts for the removal of pharmaceutical products in water. Nanomaterials. 2019;9:126. doi: 10.3390/nano9010126. PubMed DOI PMC

Liu R., Wu H.S., Lee C.Y., Hung Y. Synthesis and bactericidal ability of TiO2 and Ag-TiO2 prepared by coprecipitation method. Int. J. Photoenergy. 2012;2012:640487. doi: 10.1155/2012/640487. DOI

Tang M., Xia Y., Yang D., Liu J., Zhu X., Tang R. Effects of Hydrothermal Time on Structure and Photocatalytic Property of Titanium Dioxide for Degradation of Rhodamine B and Tetracycline Hydrochloride. Materials. 2021;14:5674. doi: 10.3390/ma14195674. PubMed DOI PMC

Hariharan D., Thangamuniyandi P., Christy A.J., Vasantharaja R., Selvakumar P., Sagadeven S., Pugazhendhi A., Nehru L.C. Enhanced photocatalysis and anticancer activity of green hydrothermal synthesized Ag@TiO2 nanoparticles. J. Photochem. Photobiol. B Biol. 2020;202:111636. doi: 10.1016/j.jphotobiol.2019.111636. PubMed DOI

Sandoval A., Aguilar A., Louis C., Traverse A., Zanella R. Bimetalic Au-Ag/TiO2 catalyst prepared by deposition-precipitation: High activity and stability in CO oxidation. J Catal. 2011;281:40–49. doi: 10.1016/j.jcat.2011.04.003. DOI

Chi Chan S., Barteau M.A. Preparation of Highly Uniform Ag/TiO2 and Au/TiO2 Supported Nanoparticle Catalysts by Photodeposition. Langmuir. 2005;21:5588–5595. doi: 10.1021/la046887k. PubMed DOI

Li W., Lu K., Walz J.Y. Freeze Casting of Porous Materials: Review of Critical Factors in Microstructure Evolution. Int. Mater. Rev. 2012;57:37–60. doi: 10.1179/1743280411Y.0000000011. DOI

Chino Y., Dunand D.C. Directionally freeze-cast titanium foam with aligned, elongated pores. Acta Mater. 2008;56:105–113. doi: 10.1016/j.actamat.2007.09.002. DOI

Méndez-Medrano M.G., Kowalska E., Lehoux A., Herissan A., Ohtani B., Bahena D., Briois V., Colbeau-Justin C., Rodríguez-López J.L., Remita H. Surface Modification of TiO2 with Ag Nanoparticles and CuO Nanoclusters for Application in Photocatalysis. J. Phys. Chem. C. 2016;120:5143–5154. doi: 10.1021/acs.jpcc.5b10703. DOI

Jiang B., Hou Z., Tian C., Zhou W., Zhang X., Wu A., Tian G., Pan K., Ren Z., Fu H. A facile and green synthesis route towards twodimensional TiO2@Ag heterojunction structure with enhanced visible-light photocatalytic activity. Cryst. Eng. Comm. 2013;15:5821–5827. doi: 10.1039/c3ce40510a. DOI

Krenek T., Vala L., Kovarik T., Medlin R., Fajgar R., Pola J., Jandova V., Vavrunkova V., Pola M., Kostejn M. Novel perspectives of laser ablation in liquids: The formation of a high-pressure orthorhombic FeS phase and absorption of FeS-derived colloids on a porous surface for solar-light photocatalytic wastewater cleaning. Dalton Trans. 2020;38:13262–13275. doi: 10.1039/D0DT01999B. PubMed DOI

Liu C.H., Hong M.H., Zhou Y., Chen G.X. Synthesis and characterization of Ag deposited TiO2 particles by laser ablation in water. Phys. Scr. 2007;T129:326. doi: 10.1088/0031-8949/2007/T129/072. DOI

Bakardjieva S., Subrt J., Pulisova P., Marikova M., Szatmary L. Photoactivity of Anatase–Rutile TiO2 Nanocrystalline Mixtures Obtained by Heat Treatment of Titanium Peroxide. Gel. Mater. Res. Soc. Symp. Proc. 2011;10:1352. doi: 10.1557/opl.2011.1132. DOI

Šubrt J., Pulišová P., Boháček J., Bezdička P., Pližingrová E., Volfová L., Kupčík J. Highly photoactive 2D titanium dioxide nanostructures prepared from lyophilized aqueous colloids of peroxo-polytitanic acid. Mat. Res. Bull. 2014;49:405–412. doi: 10.1016/j.materresbull.2013.09.028. DOI

Plizingrova E., Klementova M., Bezdicka P., Bohacek J., Barbierikova Z., Dvoranova D., Krysa J., Subrt J., Brezova V. 2D-Titanium dioxide nanosheets modified with Nd, Ag and Au: Preparation, characterization and photocatalytic activity. Catal. Today. 2017;281:165–180. doi: 10.1016/j.cattod.2016.08.013. DOI

Bakardjieva S., Subrt J., Stengl V., Dianez M.J., Sayagues M.J. Photoactivity of anatase–rutile TiO2 nanocrystalline mixtures obtained by heat treatment of homogeneously precipitated anatase. Appl. Catal. B: Environ. 2005;58:193–202. doi: 10.1016/j.apcatb.2004.06.019. DOI

JCPDS PDF-2 Release 2001. ICDD; Newtown Square, PA, USA: 2001.

ICSD Database. FIZ; Karlsruhe, Germany: 2015.

Cullity B.D. Elements of X-ray Diffraction. Addison–Wesley; Reading, MA, USA: 1978. p. 555.

Lábár J.L. Consistent Indexing of a (Set of) SAED Pattern(s) with the ProcessDiffraction Program. Ultramicroscopy. 2005;103:237–249. doi: 10.1016/j.ultramic.2004.12.004. PubMed DOI

Keiderling U., Jafta C. V4: The Small Angle Scattering Instrument (SANS) at BER II. J. Large-Scale Res. Facil. JLSRF. 2016;2:97. doi: 10.17815/jlsrf-2-101. DOI

Al-Ekabi and Serpone N. Kinetic studies in heterogeneous photocatalysis. 1. Photocatalytic degradation of chlorinated phenols in aerated aqueous solution over TiO2 supported on a glass matrix. J. Phys. Chem. 1988;92:5726–5731.

Gratzel M., Serpone N., Pelizzetti E. Photocatalysis, Fundamentals and Applications. Wiley; New York, NY, USA: 1989.

Bakardjieva S., Mares J., Fajgar R., Zenou V.Y., Maleckova M., Chatzisymeon E., Bibova H., Jirkovsky J. The relationship between microstructure and photocatalytic behavior in lanthanum-modified 2DTiO2 nanosheets upon annealing of a freeze-cast precursor. RSC Adv. 2019;9:22988. doi: 10.1039/C9RA03940F. PubMed DOI PMC

Mehta B.K., Chhajlani M., Shrivastava B.D. Green synthesis of silver nanoparticles and their characterization by XRD. J. Phys Conf. Ser. 2017;836:012050. doi: 10.1088/1742-6596/836/1/012050. DOI

Zenou V.Y., Bakardjieva S. Microstructural analysis of undoped and moderately Sc-doped TiO2 anatase nanoparticles using Scherrer equation and Debye function analysis. Mater. Charact. 2018;144:287–296. doi: 10.1016/j.matchar.2018.07.022. DOI

Bakardjieva S., Jakubec I., Koci E., Zhigunov A., Chatzisymeon E., Davididou K. Photocatalytic Degradation of Bisphenol A Induced by Dense Nanocavities, Inside Aligned 2D-TiO2 Nanostructures. Catal. Today. 2019;328:189–201. doi: 10.1016/j.cattod.2018.12.037. DOI

Aadil M., Zulfiqar S., Agboola P.O., Aly Aboud M.F., Shakir I., Farooq Warsi M. Fabrication of graphene supported binary nanohybrid with multiple approaches for electrochemical energy storage applications. Synth. Met. 2021;272:116645. doi: 10.1016/j.synthmet.2020.116645. DOI

Edelson L.H., Glaeser A.M. Role of Particle Substructure in the Sintering of Monosized Titania. J. Am. Ceram. Soc. 1988;71:225–235. doi: 10.1111/j.1151-2916.1988.tb05852.x. DOI

Xia Y., Xiong Y., Lim B., Skrabalak S.E. Shape-controlled synthesis of metal nanocrystals: Simple chemistry meets complex physics. Angew. Chem. Int. Ed. 2009;48:60–103. doi: 10.1002/anie.200802248. PubMed DOI PMC

Yang H., Wang Y., Chen X., Zhao X., Gu L., Huang H., Yan J., Xu C., Li G., Wu J., et al. Plasmonic twinned silver nanoparticles with molecular precision. Nat. Commun. 2016;7:12809. doi: 10.1038/ncomms12809. PubMed DOI PMC

Narayanan S., Cheng G., Zeng Z., Zhu Y., Zhu T. Strain Hardening and Size Effect in Five-fold Twinned Ag Nanowires. Nano Lett. 2015;15:4037–4044. doi: 10.1021/acs.nanolett.5b01015. PubMed DOI

Mukherji S., Bharti S., Shukla G. Synthesis and characterization of size- and shape-controlled silver nanoparticles. Phys. Sci. Rev. 2018;4:20170082.

Palmer D.C. Begbroke. CrystalMaker Software, Ltd.; Oxfordshire, UK: 2014.

Esparza R., Rosas G., Valenzuela E., Gamboa S.A., Pal U., Pérez R. Structural analysis and shape-dependent catalytic activity of Au, Pt and Au/Pt nanoparticles. Rev. Mater. 2008;13:579–586. doi: 10.1590/S1517-70762008000400002. DOI

Rupich S.M., Shevchenko E.V., Bodnarchuk M.I., Lee B., Talapin D.V. Size-Dependent Multiple Twinning in Nanocrystal Superlattices. J. Am. Chem. Soc. 2010;132:289–296. doi: 10.1021/ja9074425. PubMed DOI

Zhang J., Liu G., Sun J. Grain Boundary Segregation in Nanocrysturtured Metallic Materials. IntechOpen; London, UK: 2017. DOI

Han Y., Liu C.-J., Ge Q. Interaction of Pt Clusters with the Anatase TiO2(101) Surface: A First-Principles Study. J. Phys. Chem. B. 2006;110:7463–7472. doi: 10.1021/jp0608574. PubMed DOI

Martínez-Chávez L.A., Rivera-Muñoz E.M., Velázquez-Castillo R.R., Escobar-Alarcón L., Esquivel K. Au-Ag/TiO2 Thin Films Preparation by Laser Ablation and SputteringPlasmas for Its Potential Use as Photoanodes in Electrochemical Advanced Oxidation Processes (EAOP) Catalysts. 2021;11:1406. doi: 10.3390/catal11111406. DOI

Malagutti A.R., Mourao H., Garbin J.R., Ribeiro C. Deposition of TiO2 and Ag:TiO2 thin films by the polymeric precursor method and their application in the photodegradation of textile dyes. Appl. Catal. B Environ. 2009;90:205–212. doi: 10.1016/j.apcatb.2009.03.014. DOI

Sun X., Jiang K., Zhang N., Guo S., Huang X. Crystalline control of {111} bounded Pt3Cu nanocrystals: Multiply-twinned Pt3Cu icosahedra with enhanced electrocatalytic properties. ACS Nano. 2015;9:7634–7640. doi: 10.1021/acsnano.5b02986. PubMed DOI

Serpone N., Al-Ekabi H., Patterson B., Pelizzetti E., Minero C., Pramauro E., Fox M.A., Draper B. Kinetic studies in heterogeneous photocatalysis. 2. TiO2 mediated degradation of 4-chlorophenol alone and in a three-component mixture of 4-chlorophenol, 2,4-dichlorophenol, and 2,4,5-trichlorophenol in air-equilibrated aqueous media. Lungmuir. 1989;5:250.

Al-Sayyed G., D’Oliveira J.C., Pichat P. Semiconductor-sensitized photodegradation of 4-chlorophenol in water. J. Photochem. Photobiol A Chem. 1991;58:99–114. doi: 10.1016/1010-6030(91)87101-Z. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...