Origins of Optical Activity in an Oxo-Helicene: Experimental and Computational Studies
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
33521480
PubMed Central
PMC7841950
DOI
10.1021/acsomega.0c06079
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Helicenes are known to provide extremely strong optical activity. Prediction of the properties of helicenes may facilitate their design and synthesis for analytical or materials sciences. On a model 7,12,17-trioxa[11]helicene molecule, experimental results from multiple spectroscopic techniques are analyzed on the basis of density functional theory (DFT) simulations to test computational methodology and analyze the origins of chirality. Infrared (IR), vibrational circular dichroism (VCD), electronic circular dichroism (ECD), magnetic circular dichroism (MCD), and Raman optical activity (ROA, computations only) spectra are compared. Large dissymmetry factors are predicted both for vibrational (ROA/Raman ∼ VCD/IR ∼ 10-3) and electronic (ECD/Abs ∼10-2) optical activity, which could be verified experimentally except for ROA. Largest VCD signals come from a strong vibrational coupling of the C-H in-plane and out-of-plane bending modes in stacked helicene rings. The sum-over-states (SOS) approach appeared convenient for simulation of MCD spectra. Our results demonstrated that selected computational methods can be successfully used for reliable modeling of spectral and chiroptical properties of large helicenes. In particular, they can be used for guiding rational design of strongly chiral chromophores.
Zobrazit více v PubMed
Gingras M. One hundred years of helicene chemistry. Part 3: applications and properties of carbohelicenes. Chem. Soc. Rev. 2013, 42, 1051–1095. 10.1039/C2CS35134J. PubMed DOI
Shen Y.; Chen C.-F. Helicenes: Synthesis and Applications. Chem. Rev. 2012, 112, 1463–1535. 10.1021/cr200087r. PubMed DOI
Kim C.; Marks T. J.; Facchetti A.; Schiavo M.; Bossi A.; Maiorana S.; Licandro E.; Todescato F.; Toffanin S.; Muccini M.; Graiff C.; Tiripicchio A. Synthesis, characterization, and transistor response of tetrathia-[7]-helicene precursors and derivatives. Org. Electron. 2009, 10, 1511–1520. 10.1016/j.orgel.2009.08.018. DOI
Martin R. H. The Helicenes. Angew. Chem., Int. Ed. Engl. 1974, 13, 649–660. 10.1002/anie.197406491. DOI
Yamada K.-i.; Nakagawa H.; Kawazura H. Thermal Racemization of Thiaheterohelicenes. Bull. Chem. Soc. Jpn. 1986, 59, 2429–2432. 10.1246/bcsj.59.2429. DOI
Severa L.; Adriaenssens L.; Vávra J.; Šaman D.; Císařová I.; Fiedler P.; Teplý F. Highly modular assembly of cationic helical scaffolds: rapid synthesis of diverse helquats via differential quaternization. Tetrahedron 2010, 66, 3537–3552. 10.1016/j.tet.2010.03.007. DOI
Hafedh N.; Aloui F.; Dorcet V.; Barhoumi H. Helically chiral functionalized [6]helicene: Synthesis, optical resolution, and photophysical properties. C. R. Chim. 2018, 21, 652–658. 10.1016/j.crci.2018.04.001. DOI
Tanaka K.; Fukawa N.; Suda T.; Noguchi K. One-Step Construction of Five Successive Rings by Rhodium-Catalyzed Intermolecular Double [2+2+2] Cycloaddition: Enantioenriched [9]Helicene-Like Molecules. Angew. Chem., Int. Ed. 2009, 48, 5470–5473. 10.1002/anie.200901962. PubMed DOI
Rajca A.; Wang H.; Pink M.; Rajca S. Annelated Heptathiophene: A Fragment of a Carbon–Sulfur Helix. Angew. Chem., Int. Ed. 2000, 39, 4481–4483. 10.1002/1521-3773(20001215)39:24<4481::AID-ANIE4481>3.0.CO;2-G. PubMed DOI
Hoffmann R.; Hopf H. Learning from Molecules in Distress. Angew. Chem., Int. Ed. 2008, 47, 4474–4481. 10.1002/anie.200705775. PubMed DOI
Zhang X.; Clennan E. L.; Petek T.; Weber J. Synthesis, computational, and photophysical characterization of diaza-embedded [4]helicenes and pseudo[4]helicenes and their pyridinium and viologen homologues. Tetrahedron 2017, 73, 508–518. 10.1016/j.tet.2016.12.032. DOI
Gingras M.; Félix G.; Peresutti R. One hundred years of helicene chemistry. Part 2: stereoselective syntheses and chiral separations of carbohelicenes. Chem. Soc. Rev. 2013, 42, 1007–1050. 10.1039/C2CS35111K. PubMed DOI
Gingras M. One hundred years of helicene chemistry. Part 1: non-stereoselective syntheses of carbohelicenes. Chem. Soc. Rev. 2013, 42, 968–1006. 10.1039/C2CS35154D. PubMed DOI
Mitsui C.; Soeda J.; Miwa K.; Tsuji H.; Takeya J.; Nakamura E. Naphtho[2,1-b:6,5-b′]difuran: A Versatile Motif Available for Solution-Processed Single-Crystal Organic Field-Effect Transistors with High Hole Mobility. J. Am. Chem. Soc. 2012, 134, 5448–5451. 10.1021/ja2120635. PubMed DOI
Tsuji H.; Mitsui C.; Ilies L.; Sato Y.; Nakamura E. Synthesis and Properties of 2,3,6,7-Tetraarylbenzo[1,2-b:4,5-b‘]difurans as Hole-Transporting Material. J. Am. Chem. Soc. 2007, 129, 11902–11903. 10.1021/ja074365w. PubMed DOI
Wang X.-Y.; Wang X.-C.; Narita A.; Wagner M.; Cao X.-Y.; Feng X.; Müllen K. Synthesis, Structure, and Chiroptical Properties of a Double [7]Heterohelicene. J. Am. Chem. Soc. 2016, 138, 12783–12786. 10.1021/jacs.6b08664. PubMed DOI
Newman M. S.; Darlak R. S.; Tsai L. L. Optical properties of hexahelicene. J. Am. Chem. Soc. 1967, 89, 6191–6193. 10.1021/ja01000a034. DOI
Grimme S.; Harren J.; Sobanski A.; Vögtle F. Structure/Chiroptics Relationships of Planar Chiral and Helical Molecules. Eur. J. Org. Chem. 1998, 1491–1509. 10.1002/(SICI)1099-0690(199808)1998:8<1491::AID-EJOC1491>3.0.CO;2-6. DOI
Grimme S. Calculation of the electronic spectra of large molecules. Rev. Comput. Chem. 2004, 20, 153–218. 10.1002/0471678856. DOI
Botek E.; Champagne B. Circular dichroism of helical structures using semiempirical methods. J. Chem. Phys. 2007, 127, 204101.10.1063/1.2805395. PubMed DOI
Bannwarth C.; Seibert J.; Grimme S. Electronic Circular Dichroism of [16]Helicene With Simplified TD-DFT: Beyond the Single Structure Approach. Chirality 2016, 28, 365–369. 10.1002/chir.22594. PubMed DOI
Magyarfalvi G.; Tarczay G.; Vass E. Vibrational circular dichroism. WIREs Comput. Mol. Sci. 2011, 1, 403–425. 10.1002/wcms.39. DOI
Parchaňský V.; Kapitán J.; Bouř P. Inspecting chiral molecules by Raman optical activity spectroscopy. RSC Adv. 2014, 4, 57125–57136. 10.1039/C4RA10416A. DOI
Abbate S.; Lebon F.; Longhi G.; Fontana F.; Caronna T.; Lightner D. A. Experimental and calculated vibrational and electronic circular dichroism spectra of 2-Br-hexahelicene. Phys. Chem. Chem. Phys. 2009, 11, 9039–9043. 10.1039/b909991c. PubMed DOI
Berova N.; Polavarapu P.; Nakanishi H.; Woody R. W. W.. Comprehensive Chiroptical Spectroscopy: Instrumentation, Methodologies, and Theoretical Simulations; John Wiley & Sons, Inc.: Hoboken, New Jersey, United States, 2011.
Bürgi T.; Urakawa A.; Behzadi B.; Ernst K.-H.; Baiker A. The absolute configuration of heptahelicene: aVCD spectroscopy study. New J. Chem. 2004, 28, 332–334. 10.1039/B312877F. DOI
Mobian P.; Nicolas C.; Francotte E.; Bürgi T.; Lacour J. Synthesis, Resolution, and VCD Analysis of an Enantiopure Diazaoxatricornan Derivative. J. Am. Chem. Soc. 2008, 130, 6507–6514. 10.1021/ja800262j. PubMed DOI
Shen C.; Srebro-Hooper M.; Weymuth T.; Krausbeck F.; Navarrete J. T. L.; Ramírez F. J.; Nieto-Ortega B.; Casado J.; Reiher M.; Autschbach J.; Crassous J. Redox-Active Chiroptical Switching in Mono- and Bis-Iron Ethynylcarbo[6]helicenes Studied by Electronic and Vibrational Circular Dichroism and Resonance Raman Optical Activity. Chem. – Eur. J. 2018, 24, 15067–15079. 10.1002/chem.201803069. PubMed DOI
Nakai Y.; Mori T.; Inoue Y. Circular Dichroism of (Di)methyl- and Diaza[6]helicenes. A Combined Theoretical and Experimental Study. J. Phys. Chem. A 2013, 117, 83–93. 10.1021/jp3104084. PubMed DOI
Shyam Sundar M.; Bedekar A. V. Synthesis and Study of 7,12,17-Trioxa[11]helicene. Org. Lett. 2015, 17, 5808–5811. 10.1021/acs.orglett.5b02948. PubMed DOI
Stephens P. J. Magnetic Circular Dichroism. Annu. Rev. Phys. Chem. 1974, 25, 201–232. 10.1146/annurev.pc.25.100174.001221. DOI
Stephens P. J. Theory of Magnetic Circular Dichroism. J. Chem. Phys. 1970, 52, 3489–3516. 10.1063/1.1673514. DOI
Štěpánek P.; Straka M.; Andrushchenko V.; Bouř P. Fullerene resolution by the magnetic circular dichroism. J. Chem. Phys. 2013, 138, 151103.10.1063/1.4802763. PubMed DOI
Štěpánek P.; Straka M.; Šebestík J.; Bouř P. Magnetic circular dichroism of chlorofullerenes: Experimental and computational study. Chem. Phys. Lett. 2016, 647, 117–121. 10.1016/j.cplett.2016.01.047. DOI
Kaminský J.; Chalupský J.; Štěpánek P.; Křiž J.; Bouř P. Vibrational Structure in Magnetic Circular Dichroism Spectra of Polycyclic Aromatic Hydrocarbons. J. Phys. Chem. A 2017, 121, 9064–9073. 10.1021/acs.jpca.7b10120. PubMed DOI
Furche F.; Ahlrichs R.; Wachsmann C.; Weber E.; Sobanski A.; Vögtle F.; Grimme S. Circular Dichroism of Helicenes Investigated by Time-Dependent Density Functional Theory. J. Am. Chem. Soc. 2000, 122, 1717–1724. 10.1021/ja991960s. DOI
Nakai Y.; Mori T.; Inoue Y. Theoretical and Experimental Studies on Circular Dichroism of Carbo[n]helicenes. J. Phys. Chem. A 2012, 116, 7372–7385. 10.1021/jp304576g. PubMed DOI
Johannessen C.; Blanch E. W.; Villani C.; Abbate S.; Longhi G.; Agarwal N. R.; Tommasini M.; Lightner D. A. Raman and ROA Spectra of (−)- and (+)-2-Br-Hexahelicene: Experimental and DFT Studies of a π-Conjugated Chiral System. J. Phys. Chem. B 2013, 117, 2221–2230. 10.1021/jp312425m. PubMed DOI
Furche F.; Ahlrichs R. Adiabatic time-dependent density functional methods for excited state properties. J. Chem. Phys. 2002, 117, 7433–7447. 10.1063/1.1508368. DOI
Isla H.; Saleh N.; Ou-Yang J.-K.; Dhbaibi K.; Jean M.; Dziurka M.; Favereau L.; Vanthuyne N.; Toupet L.; Jamoussi B.; Srebro-Hooper M.; Crassous J. Bis-4-aza[6]helicene: A Bis-helicenic 2,2′-Bipyridine with Chemically Triggered Chiroptical Switching Activity. J. Org. Chem. 2019, 84, 5383–5393. 10.1021/acs.joc.9b00389. PubMed DOI
Chai J.-D.; Head-Gordon M. Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. Phys. Chem. Chem. Phys. 2008, 10, 6615–6620. 10.1039/b810189b. PubMed DOI
Hudecová J.; Profant V.; Novotná P.; Baumruk V.; Urbanová M.; Bouř P. CH Stretching Region: Computational Modeling of Vibrational Optical Activity. J. Chem. Theory Comput. 2013, 9, 3096–3108. 10.1021/ct400285n. PubMed DOI
Miyasaka M.; Pink M.; Rajca S.; Rajca A. Noncovalent Interactions in the Asymmetric Synthesis of Rigid, Conjugated Helical Structures. Angew. Chem., Int. Ed. 2009, 48, 5954–5957. 10.1002/anie.200901349. PubMed DOI
Freedman T. B.; Cao X.; Rajca A.; Wang H.; Nafie L. A. Determination of Absolute Configuration in Molecules with Chiral Axes by Vibrational Circular Dichroism: A C2-Symmetric Annelated Heptathiophene and a D2-Symmetric Dimer of 1,1‘-Binaphthyl. J. Phys. Chem. A 2003, 107, 7692–7696. 10.1021/jp030307v. DOI
Andrushchenko V.; Benda L.; Páv O.; Dračínský M.; Bouř P. Vibrational Properties of the Phosphate Group Investigated by Molecular Dynamics and Density Functional Theory. J. Phys. Chem. B 2015, 119, 10682–10692. 10.1021/acs.jpcb.5b05124. PubMed DOI
Barron L. D.Molecular Light Scattering and Optical Activity; 2 ed.; Cambridge University Press: Cambridge, 2009.
Nafie L. A.Vibrational Optical Activity: Principles and Applications; John Wiley & Sons, Ltd: Chichester, 2011, 10.1002/9781119976516. DOI
Becke A. D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648–5652. 10.1063/1.464913. DOI
Lee C.; Yang W.; Parr R. G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785–789. 10.1103/PhysRevB.37.785. PubMed DOI
Stephens P. J.; Devlin F. J.; Chabalowski C. F.; Frisch M. J. Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields. J. Phys. Chem. 1994, 98, 11623–11627. 10.1021/j100096a001. DOI
Grimme S. Density functional theory with London dispersion corrections. WIREs Comput. Mol. Sci. 2011, 1, 211–228. 10.1002/wcms.30. DOI
Krishnan R.; Binkley J. S.; Seeger R.; Pople J. A. Self-Consistent Molecular Orbital Methods. XX. A Basis Set for Correlated Wave Functions. J. Chem. Phys. 1980, 72, 650–654. 10.1063/1.438955. DOI
Cancès E.; Mennucci B.; Tomasi J. A New Integral Equation Formalism for the Polarizable Continuum Model: Theoretical Background and Applications to Isotropic and Anisotropic Dielectrics. J. Chem. Phys. 1997, 107, 3032–3041. 10.1063/1.474659. DOI
Mennucci B.; Tomasi J. Continuum Solvation Models: A New Approach to The Problem of Solute’s Charge Distribution and Cavity Boundaries. J. Chem. Phys. 1997, 106, 5151–5158. 10.1063/1.473558. DOI
Tomasi J.; Mennucci B.; Cammi R. Quantum Mechanical Continuum Solvation Models. Chem. Rev. 2005, 105, 2999–3094. 10.1021/cr9904009. PubMed DOI
Grimme S.; Furche F.; Ahlrichs R. An improved method for density functional calculations of the frequency-dependent optical rotation. Chem. Phys. Lett. 2002, 361, 321–328. 10.1016/S0009-2614(02)00975-2. DOI
Frisch M. J.; Trucks G. W.; Schlegel H. B.; Scuseria G. E.; Robb M. A.; Cheeseman J. R.; Montgomery J. A. Jr.; Vreven T.; Kudin K. N.; Burant J. C.; Millam J. M.; Lyengar S. S.; Tomasi J.; Barone V.; Mennucci B.; Cossi M.; Scalmani G.; Rega N.; Petersson G. A.; Nakatsuji H.; Hada M.; Ehara M.; Toyota K.; Fukuda R.; Hasegawa J.; Ishida M.; Nakajima T.; Honda Y.; Kitao O.; Nakai H.; Klene M.; Li X.; Knox J. E.; Hratchian H. P.; Cross J. B.; Bakken V.; Adamo C.; Jaramillo J.; Gomperts R.; Stratmann R. E.; Yazyev O.; Austin A. J.; Cammi R.; Pomelli C.; Ochterski J. W.; Ayala P. Y.; Morokuma K.; Voth G. A.; Salvador P.; Dannenberg J. J.; Zakrzewski V. G.; Dapprich S.; Daniels A. D.; Strain M. C.; Farkas O.; Malick D. K.; Rabuck A. D.; Raghavachari K.; Foresman J. B.; Ortiz J. V.; Cui Q.; Baboul A. G.; Clifford S.; Cioslowski J.; Stefanov B. B.; Liu G.; Liashenko A.; Piskorz P.; Komaromi I.; Martin R. L.; Fox D. J.; Keith T.; Al-Laham M. A.; Peng C. Y.; Nanayakkara A.; Challacombe M.; Gill P. M. W.; Johnson B.; Chen W.; Wong M. W.; Gonzalez C.; Pople J. A.. Gaussian 16; Revision A.03 ed.; Gaussian, Inc.: Wallingford CT, 2016.
Autschbach J.; Seth M.; Ziegler T. Development of a sum-over-states density functional theory for both electric and magnetic static response properties. J. Chem. Phys. 2007, 126, 174103.10.1063/1.2735301. PubMed DOI
Randaccio L.; Furlan M.; Geremia S.; Šlouf M.; Srnova I.; Toffoli D. Similarities and Differences between Cobalamins and Cobaloximes. Accurate Structural Determination of Methylcobalamin and of LiCl- and KCl-Containing Cyanocobalamins by Synchrotron Radiation. Inorg. Chem. 2000, 39, 3403–3413. 10.1021/ic0001199. PubMed DOI
Štěpánek P.; Bouř P. Origin-Independent Sum Over States Simulations of Magnetic and Electronic Circular Dichroism Spectra via the Localized Orbital/Local Origin Method. J. Comput. Chem. 2015, 36, 723–730. 10.1002/jcc.23845. PubMed DOI
Ghidinelli S.; Abbate S.; Mazzeo G.; Paoloni L.; Viola E.; Ercolani C.; Donzello M. P.; Longhi G. Characterization of Tetrakis(Thiadiazole)Porphyrazine Metal Complexes by Magnetic Circular Dichroism and Magnetic Circularly Polarized Luminescence. Chirality 2020, 32, 808–816. 10.1002/chir.23221. PubMed DOI
Covington C. L.; Polavarapu P. L. Similarity in Dissymmetry Factor Spectra: A Quantitative Measure of Comparison between Experimental and Predicted Vibrational Circular Dichroism. J. Phys. Chem. A 2013, 117, 3377–3386. 10.1021/jp401079s. PubMed DOI
Shen J.; Zhu C.; Reiling S.; Vaz R. A novel computational method for comparing vibrational circular dichroism spectra. Spectrochim. Acta, Part A 2010, 76, 418–422. 10.1016/j.saa.2010.04.014. PubMed DOI