Origins of Optical Activity in an Oxo-Helicene: Experimental and Computational Studies

. 2021 Jan 26 ; 6 (3) : 2420-2428. [epub] 20210107

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33521480

Helicenes are known to provide extremely strong optical activity. Prediction of the properties of helicenes may facilitate their design and synthesis for analytical or materials sciences. On a model 7,12,17-trioxa[11]helicene molecule, experimental results from multiple spectroscopic techniques are analyzed on the basis of density functional theory (DFT) simulations to test computational methodology and analyze the origins of chirality. Infrared (IR), vibrational circular dichroism (VCD), electronic circular dichroism (ECD), magnetic circular dichroism (MCD), and Raman optical activity (ROA, computations only) spectra are compared. Large dissymmetry factors are predicted both for vibrational (ROA/Raman ∼ VCD/IR ∼ 10-3) and electronic (ECD/Abs ∼10-2) optical activity, which could be verified experimentally except for ROA. Largest VCD signals come from a strong vibrational coupling of the C-H in-plane and out-of-plane bending modes in stacked helicene rings. The sum-over-states (SOS) approach appeared convenient for simulation of MCD spectra. Our results demonstrated that selected computational methods can be successfully used for reliable modeling of spectral and chiroptical properties of large helicenes. In particular, they can be used for guiding rational design of strongly chiral chromophores.

Zobrazit více v PubMed

Gingras M. One hundred years of helicene chemistry. Part 3: applications and properties of carbohelicenes. Chem. Soc. Rev. 2013, 42, 1051–1095. 10.1039/C2CS35134J. PubMed DOI

Shen Y.; Chen C.-F. Helicenes: Synthesis and Applications. Chem. Rev. 2012, 112, 1463–1535. 10.1021/cr200087r. PubMed DOI

Kim C.; Marks T. J.; Facchetti A.; Schiavo M.; Bossi A.; Maiorana S.; Licandro E.; Todescato F.; Toffanin S.; Muccini M.; Graiff C.; Tiripicchio A. Synthesis, characterization, and transistor response of tetrathia-[7]-helicene precursors and derivatives. Org. Electron. 2009, 10, 1511–1520. 10.1016/j.orgel.2009.08.018. DOI

Martin R. H. The Helicenes. Angew. Chem., Int. Ed. Engl. 1974, 13, 649–660. 10.1002/anie.197406491. DOI

Yamada K.-i.; Nakagawa H.; Kawazura H. Thermal Racemization of Thiaheterohelicenes. Bull. Chem. Soc. Jpn. 1986, 59, 2429–2432. 10.1246/bcsj.59.2429. DOI

Severa L.; Adriaenssens L.; Vávra J.; Šaman D.; Císařová I.; Fiedler P.; Teplý F. Highly modular assembly of cationic helical scaffolds: rapid synthesis of diverse helquats via differential quaternization. Tetrahedron 2010, 66, 3537–3552. 10.1016/j.tet.2010.03.007. DOI

Hafedh N.; Aloui F.; Dorcet V.; Barhoumi H. Helically chiral functionalized [6]helicene: Synthesis, optical resolution, and photophysical properties. C. R. Chim. 2018, 21, 652–658. 10.1016/j.crci.2018.04.001. DOI

Tanaka K.; Fukawa N.; Suda T.; Noguchi K. One-Step Construction of Five Successive Rings by Rhodium-Catalyzed Intermolecular Double [2+2+2] Cycloaddition: Enantioenriched [9]Helicene-Like Molecules. Angew. Chem., Int. Ed. 2009, 48, 5470–5473. 10.1002/anie.200901962. PubMed DOI

Rajca A.; Wang H.; Pink M.; Rajca S. Annelated Heptathiophene: A Fragment of a Carbon–Sulfur Helix. Angew. Chem., Int. Ed. 2000, 39, 4481–4483. 10.1002/1521-3773(20001215)39:24<4481::AID-ANIE4481>3.0.CO;2-G. PubMed DOI

Hoffmann R.; Hopf H. Learning from Molecules in Distress. Angew. Chem., Int. Ed. 2008, 47, 4474–4481. 10.1002/anie.200705775. PubMed DOI

Zhang X.; Clennan E. L.; Petek T.; Weber J. Synthesis, computational, and photophysical characterization of diaza-embedded [4]helicenes and pseudo[4]helicenes and their pyridinium and viologen homologues. Tetrahedron 2017, 73, 508–518. 10.1016/j.tet.2016.12.032. DOI

Gingras M.; Félix G.; Peresutti R. One hundred years of helicene chemistry. Part 2: stereoselective syntheses and chiral separations of carbohelicenes. Chem. Soc. Rev. 2013, 42, 1007–1050. 10.1039/C2CS35111K. PubMed DOI

Gingras M. One hundred years of helicene chemistry. Part 1: non-stereoselective syntheses of carbohelicenes. Chem. Soc. Rev. 2013, 42, 968–1006. 10.1039/C2CS35154D. PubMed DOI

Mitsui C.; Soeda J.; Miwa K.; Tsuji H.; Takeya J.; Nakamura E. Naphtho[2,1-b:6,5-b′]difuran: A Versatile Motif Available for Solution-Processed Single-Crystal Organic Field-Effect Transistors with High Hole Mobility. J. Am. Chem. Soc. 2012, 134, 5448–5451. 10.1021/ja2120635. PubMed DOI

Tsuji H.; Mitsui C.; Ilies L.; Sato Y.; Nakamura E. Synthesis and Properties of 2,3,6,7-Tetraarylbenzo[1,2-b:4,5-b‘]difurans as Hole-Transporting Material. J. Am. Chem. Soc. 2007, 129, 11902–11903. 10.1021/ja074365w. PubMed DOI

Wang X.-Y.; Wang X.-C.; Narita A.; Wagner M.; Cao X.-Y.; Feng X.; Müllen K. Synthesis, Structure, and Chiroptical Properties of a Double [7]Heterohelicene. J. Am. Chem. Soc. 2016, 138, 12783–12786. 10.1021/jacs.6b08664. PubMed DOI

Newman M. S.; Darlak R. S.; Tsai L. L. Optical properties of hexahelicene. J. Am. Chem. Soc. 1967, 89, 6191–6193. 10.1021/ja01000a034. DOI

Grimme S.; Harren J.; Sobanski A.; Vögtle F. Structure/Chiroptics Relationships of Planar Chiral and Helical Molecules. Eur. J. Org. Chem. 1998, 1491–1509. 10.1002/(SICI)1099-0690(199808)1998:8<1491::AID-EJOC1491>3.0.CO;2-6. DOI

Grimme S. Calculation of the electronic spectra of large molecules. Rev. Comput. Chem. 2004, 20, 153–218. 10.1002/0471678856. DOI

Botek E.; Champagne B. Circular dichroism of helical structures using semiempirical methods. J. Chem. Phys. 2007, 127, 204101.10.1063/1.2805395. PubMed DOI

Bannwarth C.; Seibert J.; Grimme S. Electronic Circular Dichroism of [16]Helicene With Simplified TD-DFT: Beyond the Single Structure Approach. Chirality 2016, 28, 365–369. 10.1002/chir.22594. PubMed DOI

Magyarfalvi G.; Tarczay G.; Vass E. Vibrational circular dichroism. WIREs Comput. Mol. Sci. 2011, 1, 403–425. 10.1002/wcms.39. DOI

Parchaňský V.; Kapitán J.; Bouř P. Inspecting chiral molecules by Raman optical activity spectroscopy. RSC Adv. 2014, 4, 57125–57136. 10.1039/C4RA10416A. DOI

Abbate S.; Lebon F.; Longhi G.; Fontana F.; Caronna T.; Lightner D. A. Experimental and calculated vibrational and electronic circular dichroism spectra of 2-Br-hexahelicene. Phys. Chem. Chem. Phys. 2009, 11, 9039–9043. 10.1039/b909991c. PubMed DOI

Berova N.; Polavarapu P.; Nakanishi H.; Woody R. W. W.. Comprehensive Chiroptical Spectroscopy: Instrumentation, Methodologies, and Theoretical Simulations; John Wiley & Sons, Inc.: Hoboken, New Jersey, United States, 2011.

Bürgi T.; Urakawa A.; Behzadi B.; Ernst K.-H.; Baiker A. The absolute configuration of heptahelicene: aVCD spectroscopy study. New J. Chem. 2004, 28, 332–334. 10.1039/B312877F. DOI

Mobian P.; Nicolas C.; Francotte E.; Bürgi T.; Lacour J. Synthesis, Resolution, and VCD Analysis of an Enantiopure Diazaoxatricornan Derivative. J. Am. Chem. Soc. 2008, 130, 6507–6514. 10.1021/ja800262j. PubMed DOI

Shen C.; Srebro-Hooper M.; Weymuth T.; Krausbeck F.; Navarrete J. T. L.; Ramírez F. J.; Nieto-Ortega B.; Casado J.; Reiher M.; Autschbach J.; Crassous J. Redox-Active Chiroptical Switching in Mono- and Bis-Iron Ethynylcarbo[6]helicenes Studied by Electronic and Vibrational Circular Dichroism and Resonance Raman Optical Activity. Chem. – Eur. J. 2018, 24, 15067–15079. 10.1002/chem.201803069. PubMed DOI

Nakai Y.; Mori T.; Inoue Y. Circular Dichroism of (Di)methyl- and Diaza[6]helicenes. A Combined Theoretical and Experimental Study. J. Phys. Chem. A 2013, 117, 83–93. 10.1021/jp3104084. PubMed DOI

Shyam Sundar M.; Bedekar A. V. Synthesis and Study of 7,12,17-Trioxa[11]helicene. Org. Lett. 2015, 17, 5808–5811. 10.1021/acs.orglett.5b02948. PubMed DOI

Stephens P. J. Magnetic Circular Dichroism. Annu. Rev. Phys. Chem. 1974, 25, 201–232. 10.1146/annurev.pc.25.100174.001221. DOI

Stephens P. J. Theory of Magnetic Circular Dichroism. J. Chem. Phys. 1970, 52, 3489–3516. 10.1063/1.1673514. DOI

Štěpánek P.; Straka M.; Andrushchenko V.; Bouř P. Fullerene resolution by the magnetic circular dichroism. J. Chem. Phys. 2013, 138, 151103.10.1063/1.4802763. PubMed DOI

Štěpánek P.; Straka M.; Šebestík J.; Bouř P. Magnetic circular dichroism of chlorofullerenes: Experimental and computational study. Chem. Phys. Lett. 2016, 647, 117–121. 10.1016/j.cplett.2016.01.047. DOI

Kaminský J.; Chalupský J.; Štěpánek P.; Křiž J.; Bouř P. Vibrational Structure in Magnetic Circular Dichroism Spectra of Polycyclic Aromatic Hydrocarbons. J. Phys. Chem. A 2017, 121, 9064–9073. 10.1021/acs.jpca.7b10120. PubMed DOI

Furche F.; Ahlrichs R.; Wachsmann C.; Weber E.; Sobanski A.; Vögtle F.; Grimme S. Circular Dichroism of Helicenes Investigated by Time-Dependent Density Functional Theory. J. Am. Chem. Soc. 2000, 122, 1717–1724. 10.1021/ja991960s. DOI

Nakai Y.; Mori T.; Inoue Y. Theoretical and Experimental Studies on Circular Dichroism of Carbo[n]helicenes. J. Phys. Chem. A 2012, 116, 7372–7385. 10.1021/jp304576g. PubMed DOI

Johannessen C.; Blanch E. W.; Villani C.; Abbate S.; Longhi G.; Agarwal N. R.; Tommasini M.; Lightner D. A. Raman and ROA Spectra of (−)- and (+)-2-Br-Hexahelicene: Experimental and DFT Studies of a π-Conjugated Chiral System. J. Phys. Chem. B 2013, 117, 2221–2230. 10.1021/jp312425m. PubMed DOI

Furche F.; Ahlrichs R. Adiabatic time-dependent density functional methods for excited state properties. J. Chem. Phys. 2002, 117, 7433–7447. 10.1063/1.1508368. DOI

Isla H.; Saleh N.; Ou-Yang J.-K.; Dhbaibi K.; Jean M.; Dziurka M.; Favereau L.; Vanthuyne N.; Toupet L.; Jamoussi B.; Srebro-Hooper M.; Crassous J. Bis-4-aza[6]helicene: A Bis-helicenic 2,2′-Bipyridine with Chemically Triggered Chiroptical Switching Activity. J. Org. Chem. 2019, 84, 5383–5393. 10.1021/acs.joc.9b00389. PubMed DOI

Chai J.-D.; Head-Gordon M. Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. Phys. Chem. Chem. Phys. 2008, 10, 6615–6620. 10.1039/b810189b. PubMed DOI

Hudecová J.; Profant V.; Novotná P.; Baumruk V.; Urbanová M.; Bouř P. CH Stretching Region: Computational Modeling of Vibrational Optical Activity. J. Chem. Theory Comput. 2013, 9, 3096–3108. 10.1021/ct400285n. PubMed DOI

Miyasaka M.; Pink M.; Rajca S.; Rajca A. Noncovalent Interactions in the Asymmetric Synthesis of Rigid, Conjugated Helical Structures. Angew. Chem., Int. Ed. 2009, 48, 5954–5957. 10.1002/anie.200901349. PubMed DOI

Freedman T. B.; Cao X.; Rajca A.; Wang H.; Nafie L. A. Determination of Absolute Configuration in Molecules with Chiral Axes by Vibrational Circular Dichroism: A C2-Symmetric Annelated Heptathiophene and a D2-Symmetric Dimer of 1,1‘-Binaphthyl. J. Phys. Chem. A 2003, 107, 7692–7696. 10.1021/jp030307v. DOI

Andrushchenko V.; Benda L.; Páv O.; Dračínský M.; Bouř P. Vibrational Properties of the Phosphate Group Investigated by Molecular Dynamics and Density Functional Theory. J. Phys. Chem. B 2015, 119, 10682–10692. 10.1021/acs.jpcb.5b05124. PubMed DOI

Barron L. D.Molecular Light Scattering and Optical Activity; 2 ed.; Cambridge University Press: Cambridge, 2009.

Nafie L. A.Vibrational Optical Activity: Principles and Applications; John Wiley & Sons, Ltd: Chichester, 2011, 10.1002/9781119976516. DOI

Becke A. D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648–5652. 10.1063/1.464913. DOI

Lee C.; Yang W.; Parr R. G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785–789. 10.1103/PhysRevB.37.785. PubMed DOI

Stephens P. J.; Devlin F. J.; Chabalowski C. F.; Frisch M. J. Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields. J. Phys. Chem. 1994, 98, 11623–11627. 10.1021/j100096a001. DOI

Grimme S. Density functional theory with London dispersion corrections. WIREs Comput. Mol. Sci. 2011, 1, 211–228. 10.1002/wcms.30. DOI

Krishnan R.; Binkley J. S.; Seeger R.; Pople J. A. Self-Consistent Molecular Orbital Methods. XX. A Basis Set for Correlated Wave Functions. J. Chem. Phys. 1980, 72, 650–654. 10.1063/1.438955. DOI

Cancès E.; Mennucci B.; Tomasi J. A New Integral Equation Formalism for the Polarizable Continuum Model: Theoretical Background and Applications to Isotropic and Anisotropic Dielectrics. J. Chem. Phys. 1997, 107, 3032–3041. 10.1063/1.474659. DOI

Mennucci B.; Tomasi J. Continuum Solvation Models: A New Approach to The Problem of Solute’s Charge Distribution and Cavity Boundaries. J. Chem. Phys. 1997, 106, 5151–5158. 10.1063/1.473558. DOI

Tomasi J.; Mennucci B.; Cammi R. Quantum Mechanical Continuum Solvation Models. Chem. Rev. 2005, 105, 2999–3094. 10.1021/cr9904009. PubMed DOI

Grimme S.; Furche F.; Ahlrichs R. An improved method for density functional calculations of the frequency-dependent optical rotation. Chem. Phys. Lett. 2002, 361, 321–328. 10.1016/S0009-2614(02)00975-2. DOI

Frisch M. J.; Trucks G. W.; Schlegel H. B.; Scuseria G. E.; Robb M. A.; Cheeseman J. R.; Montgomery J. A. Jr.; Vreven T.; Kudin K. N.; Burant J. C.; Millam J. M.; Lyengar S. S.; Tomasi J.; Barone V.; Mennucci B.; Cossi M.; Scalmani G.; Rega N.; Petersson G. A.; Nakatsuji H.; Hada M.; Ehara M.; Toyota K.; Fukuda R.; Hasegawa J.; Ishida M.; Nakajima T.; Honda Y.; Kitao O.; Nakai H.; Klene M.; Li X.; Knox J. E.; Hratchian H. P.; Cross J. B.; Bakken V.; Adamo C.; Jaramillo J.; Gomperts R.; Stratmann R. E.; Yazyev O.; Austin A. J.; Cammi R.; Pomelli C.; Ochterski J. W.; Ayala P. Y.; Morokuma K.; Voth G. A.; Salvador P.; Dannenberg J. J.; Zakrzewski V. G.; Dapprich S.; Daniels A. D.; Strain M. C.; Farkas O.; Malick D. K.; Rabuck A. D.; Raghavachari K.; Foresman J. B.; Ortiz J. V.; Cui Q.; Baboul A. G.; Clifford S.; Cioslowski J.; Stefanov B. B.; Liu G.; Liashenko A.; Piskorz P.; Komaromi I.; Martin R. L.; Fox D. J.; Keith T.; Al-Laham M. A.; Peng C. Y.; Nanayakkara A.; Challacombe M.; Gill P. M. W.; Johnson B.; Chen W.; Wong M. W.; Gonzalez C.; Pople J. A.. Gaussian 16; Revision A.03 ed.; Gaussian, Inc.: Wallingford CT, 2016.

Autschbach J.; Seth M.; Ziegler T. Development of a sum-over-states density functional theory for both electric and magnetic static response properties. J. Chem. Phys. 2007, 126, 174103.10.1063/1.2735301. PubMed DOI

Randaccio L.; Furlan M.; Geremia S.; Šlouf M.; Srnova I.; Toffoli D. Similarities and Differences between Cobalamins and Cobaloximes. Accurate Structural Determination of Methylcobalamin and of LiCl- and KCl-Containing Cyanocobalamins by Synchrotron Radiation. Inorg. Chem. 2000, 39, 3403–3413. 10.1021/ic0001199. PubMed DOI

Štěpánek P.; Bouř P. Origin-Independent Sum Over States Simulations of Magnetic and Electronic Circular Dichroism Spectra via the Localized Orbital/Local Origin Method. J. Comput. Chem. 2015, 36, 723–730. 10.1002/jcc.23845. PubMed DOI

Ghidinelli S.; Abbate S.; Mazzeo G.; Paoloni L.; Viola E.; Ercolani C.; Donzello M. P.; Longhi G. Characterization of Tetrakis(Thiadiazole)Porphyrazine Metal Complexes by Magnetic Circular Dichroism and Magnetic Circularly Polarized Luminescence. Chirality 2020, 32, 808–816. 10.1002/chir.23221. PubMed DOI

Covington C. L.; Polavarapu P. L. Similarity in Dissymmetry Factor Spectra: A Quantitative Measure of Comparison between Experimental and Predicted Vibrational Circular Dichroism. J. Phys. Chem. A 2013, 117, 3377–3386. 10.1021/jp401079s. PubMed DOI

Shen J.; Zhu C.; Reiling S.; Vaz R. A novel computational method for comparing vibrational circular dichroism spectra. Spectrochim. Acta, Part A 2010, 76, 418–422. 10.1016/j.saa.2010.04.014. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...