Spermine: Its Emerging Role in Regulating Drought Stress Responses in Plants
Language English Country Switzerland Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't, Review
PubMed
33525668
PubMed Central
PMC7912026
DOI
10.3390/cells10020261
PII: cells10020261
Knihovny.cz E-resources
- Keywords
- abscisic acid, antioxidant enzymes, drought, polyamines, stomata,
- MeSH
- Adaptation, Physiological drug effects MeSH
- Stress, Physiological drug effects MeSH
- Droughts * MeSH
- Oxidative Stress drug effects MeSH
- Plants drug effects metabolism MeSH
- Spermine biosynthesis pharmacology MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH
- Names of Substances
- Spermine MeSH
In recent years, research on spermine (Spm) has turned up a lot of new information about this essential polyamine, especially as it is able to counteract damage from abiotic stresses. Spm has been shown to protect plants from a variety of environmental insults, but whether it can prevent the adverse effects of drought has not yet been reported. Drought stress increases endogenous Spm in plants and exogenous application of Spm improves the plants' ability to tolerate drought stress. Spm's role in enhancing antioxidant defense mechanisms, glyoxalase systems, methylglyoxal (MG) detoxification, and creating tolerance for drought-induced oxidative stress is well documented in plants. However, the influences of enzyme activity and osmoregulation on Spm biosynthesis and metabolism are variable. Spm interacts with other molecules like nitric oxide (NO) and phytohormones such as abscisic acid, salicylic acid, brassinosteroids, and ethylene, to coordinate the reactions necessary for developing drought tolerance. This review focuses on the role of Spm in plants under severe drought stress. We have proposed models to explain how Spm interacts with existing defense mechanisms in plants to improve drought tolerance.
See more in PubMed
Tsaniklidis G., Pappi P., Tsafouros A., Charova S.N., Nikoloudakis N., Roussos P.A., Paschalidis K.A., Delis C. Polyamine Homeostasis in Tomato Biotic/Abiotic Stress Cross-Tolerance. Gene. 2020;727:144230. doi: 10.1016/j.gene.2019.144230. PubMed DOI
Hussain S.S., Ali M., Ahmad M., Siddique K.H. Polyamines: Natural and engineered abiotic and biotic stress tolerance in plants. Biotechnol. Adv. 2011;29:300–311. doi: 10.1016/j.biotechadv.2011.01.003. PubMed DOI
Sequera-Mutiozabal M., Antoniou C., Tiburcio A.F., Alcázar R., Fotopoulos V. Polyamines: Emerging Hubs Promoting Drought and Salt Stress Tolerance in Plants. Curr. Mol. Bio. Rep. 2017;3:28–36. doi: 10.1007/s40610-017-0052-z. DOI
Zhang X., Shen L., Li F., Meng D., Sheng J. Methyl salicylate-induced arginine catabolism is associated with up-regulation of polyamine and nitric oxide levels and improves chilling tolerance in cherry tomato fruit. J. Agric. Food Chem. 2011;59:9351–9357. PubMed
Tiburcio A.F., Altabella T., Bitrián M., Alcázar R. The roles of polyamines during the lifespan of plants: From development to stress. Planta. 2014;240:1–18. doi: 10.1007/s00425-014-2055-9. PubMed DOI
Feng H.Y., Wang Z.M., Kong F.N., Zhang M.J., Zhou S.L. Roles of carbohydrate supply and ethylene, polyamines in maize kernel set. J. Integ. Plant Biol. 2011;53:388–398. doi: 10.1111/j.1744-7909.2011.01039.x. PubMed DOI
Alet A.I., Sánchez D.H., Cuevas J.C., Marina M., Carrasco P., Altabella T., Tiburcio A.F., Ruiz O.A. New insights into the role of spermine in Arabidopsis thaliana under long-term salt stress. Plant Sci. 2012;182:94–100. doi: 10.1016/j.plantsci.2011.03.013. PubMed DOI
Tavladoraki P., Cona A., Federico R., Tempera G., Viceconte N., Saccoccio S., Battaglia V., Toninello A., Agostinelli E. Polyamine catabolism: Target for antiproliferative therapies in animals and stress tolerance strategies in plants. Amino Acids. 2012;42:411–426. doi: 10.1007/s00726-011-1012-1. PubMed DOI
Hassan N., Ebeed H., Aljaarany A. Exogenous application of spermine and putrescine mitigate adversities of drought stress in wheat by protecting membranes and chloroplast ultra-structure. Physiol. Mol. Biol. Plants. 2020;26:233–245. doi: 10.1007/s12298-019-00744-7. PubMed DOI PMC
Dawood M.F., Abeed A.H. Spermine-priming restrained water relations and biochemical deteriorations prompted by water deficit on two soybean cultivars. Heliyon. 2020;6:e04038. doi: 10.1016/j.heliyon.2020.e04038. PubMed DOI PMC
Liu C.J., Wang H.R., Wang L., Han Y.Y., Hao J.H., Fan S.X. Effects of different types of polyamine on growth, physiological and biochemical nature of lettuce under drought stress. IOP Conf. Ser. Earth Environ. Sci. 2018;185:012010. doi: 10.1088/1755-1315/185/1/012010. DOI
Ebeed H.T., Hassan N.M., Aljarani A.M. Exogenous applications of polyamines modulate drought responses in wheat through osmolytes accumulation, increasing free polyamine levels and regulation of polyamine biosynthetic genes. Plant Physiol. Biochem. 2017;118:438–448. doi: 10.1016/j.plaphy.2017.07.014. PubMed DOI
Li Z., Jing W., Peng Y., Zhang X.Q., Ma X., Huang L.K. Spermine alleviates drought stress in white clover with different resistance by influencing carbohydrate metabolism and dehydrins synthesis. PLoS ONE. 2015;10:e0120708. doi: 10.1371/journal.pone.0120708. PubMed DOI PMC
Taie H.A., El-Yazal M.A.S., Ahmed S.M., Rady M.M. Polyamines modulate growth, antioxidant activity, and genomic DNA in heavy metal–stressed wheat plant. Environ. Sci. Pollut. Res. 2019;1:1–13. doi: 10.1007/s11356-019-05555-7. PubMed DOI
Benavides M.P., Groppa M.D., Recalde L., Verstraeten S.V. Effects of polyamines on cadmium-and copper-mediated alterations in wheat (Triticum aestivum L.) and sunflower (Helianthus annuus L.) seedling membrane fluidity. Arch. Biochem. Biophys. 2018;654:27–39. doi: 10.1016/j.abb.2018.07.008. PubMed DOI
Rady M.M., Hemida K.A. Modulation of cadmium toxicity and enhancing cadmium-tolerance in wheat seedlings by exogenous application of polyamines. Ecotoxicol. Environ. Saf. 2015;119:178–185. PubMed
Fu X.Z., Xing F., Wang N.Q., Peng L.Z., Chun C.P., Cao L., Ling L.L., Jiang C.L. Exogenous spermine pretreatment confers tolerance to combined high-temperature and drought stress in vitro in trifoliate orange seedlings via modulation of antioxidative capacity and expression of stress-related genes. Biotech. Biotechnol. Equip. 2014;28:192–198. doi: 10.1080/13102818.2014.909152. PubMed DOI PMC
Jankovska-Bortkevič E., Gavelienè V., Šveikauskas V., Mockevičiutè R., Jankauskienè J., Todorova D., Sergiev I., Jurkonienè S. Foliar application of polyamines modulates winter oilseed rape responses to increasing cold. Plants. 2020;9:179. doi: 10.3390/plants9020179. PubMed DOI PMC
Nahar K., Hasanuzzaman M., Alam M.M., Rahman A., Mahmud J.A., Suzuki T., Fujita M. Insights into spermine-induced combined high temperature and drought tolerance in mung bean: Osmoregulation and roles of antioxidant and glyoxalase system. Protoplasma. 2017;254:445–460. doi: 10.1007/s00709-016-0965-z. PubMed DOI
Hasan M.M., Alharby H.F., Hajar A.S., Hakeem K.R., Alzahrani Y. The effect of magnetized water on the growth and physiological conditions of Moringa species under drought stress. Pol. J. Environ. Stud. 2019;28:1145–1155.
Hasan M.M., Alharby H.F., Uddin M.N., Ali M.A., Anwar Y., Fang X.W., Hakeem K.R., Alzahrani Y., Hajar A.S. Magnetized water confers drought stress tolerance in Moringa biotype via modulation of growth, gas exchange, lipid peroxidation and antioxidant activity. Pol. J. Environ. Stud. 2020;1:29.
Hasan M.M., Ali M.A., Soliman M.H., Alqarawi A.A., Abd Allah E.F., Fang X.-W. Insights into 28-homobrassinolide (HBR)-mediated redox homeostasis, AsA–GSH cycle, and methylglyoxal detoxification in soybean under drought-induced oxidative stress. J. Plant Inter. 2020;15:371–385. doi: 10.1080/17429145.2020.1832267. DOI
Khan A., Anwar Y., Hasan M., Iqbal A., Ali M., Alharby H.F., Hakeem K.R., Hasanuzzaman M. Attenuation of drought stress in Brassica seedlings with exogenous application of Ca2+ and H2O2. Plants. 2017;6:20. doi: 10.3390/plants6020020. PubMed DOI PMC
Ahammed G.J., Li X., Wan H., Zhou G., Cheng Y. SlWRKY81 reduces drought tolerance by attenuating proline biosynthesis in tomato. Scientia Hortic. 2020:270. doi: 10.1016/j.scienta.2020.109444. DOI
Ahammed G.J., Li X., Mao Q., Wan H., Zhou G., Cheng Y. The SlWRKY81 transcription factor inhibits stomatal closure by attenuating nitric oxide accumulation in the guard cells of tomato under drought. Physiol. Plantarum. 2020 doi: 10.1111/ppl.13243. PubMed DOI
Vanani F.R., Shabani L., Sabzalian M.R., Dehghanian F., Winner L. Comparative physiological and proteomic analysis indicates lower shock response to drought stress conditions in a self-pollinating perennial ryegrass. PLoS ONE. 2020;15:e0234317. doi: 10.1371/journal.pone.0234317. PubMed DOI PMC
Li K., Xing C., Yao Z., Huang X. Pbr MYB 21, a novel MYB protein of Pyrus betulaefolia, functions in drought tolerance and modulates polyamine levels by regulating arginine decarboxylase gene. Plant Biotechnol. J. 2017;15:1186–1203. doi: 10.1111/pbi.12708. PubMed DOI PMC
Adamipour N., Khosh-Khui M., Salehi H., Razi H., Karami A., Moghadam A. Role of genes and metabolites involved in polyamines synthesis pathways and nitric oxide synthase in stomatal closure on Rosa damascena Mill. under drought stress. Plant Physiol. Biochem. 2020;148:53–61. PubMed
Nahar K., Rahman M., Hasanuzzaman M., Alam M.M., Rahman A., Suzuki T., Fujita M. Physiological and biochemical mechanisms of spermine-induced cadmium stress tolerance in mung bean (Vigna radiata L.) seedlings. Environ. Sci. Pollut. Res. 2016;23:21206–21218. doi: 10.1007/s11356-016-7295-8. PubMed DOI
Rai P.K. Heavy metals/metalloids remediation from wastewater using free floating macrophytes of a natural wetland. Environ. Technol. Innovation. 2019;15:100393. doi: 10.1016/j.eti.2019.100393. DOI
Shelp B.J., Bozzo G.G., Trobacher C.P., Zarei A., Deyman K.L., Brikis C.J. Hypothesis/review: Contribution of putrescine to 4-aminobutyrate (GABA) production in response to abiotic stress. Plant Sci. 2012;193:130–135. doi: 10.1016/j.plantsci.2012.06.001. PubMed DOI
Alcázar R., Altabella T., Marco F., Bortolotti C., Reymond M., Koncz C., Carrasco P., Tiburcio A.F. Polyamines: Molecules with regulatory functions in plant abiotic stress tolerance. Planta. 2010;231:1237–1249. PubMed
Sequera-Mutiozabal M., Tiburcio A.F., Alcázar R. Drought Stress Tolerance in Relation to Polyamine Metabolism in Plants. In: Hossain M., Wani S., Bhattacharjee S., Burritt D., Tran L.S., editors. Drought Stress Tolerance in Plants. Volume 1. Springer; Cham, Switzerland: 2016. DOI
Li H., Guo Y., Cui Q., Zhang Z., Yan X., Ahammed G.J., Yang X., Yang J., Wei C., Zhang X. Alkanes (C29 and C31)-Mediated Intracuticular Wax Accumulation Contributes to Melatonin- and ABA-Induced Drought Tolerance in Watermelon. J. Plant Growth Reg. 2020 doi: 10.1007/s00344-020-10099-z. DOI
Mueller N.D., Gerber J.S., Johnston M., Ray D.K., Ramankutty N., Foley J.A. Closing yield gaps through nutrient and water management. Nature. 2012 doi: 10.1038/nature11420. PubMed DOI
Iwuala E., Odjegba V., Sharma V., Alam A. Drought stress modulates expression of aquaporin gene and photosynthetic efficiency in Pennisetum glaucum (L.) R. Br. genotypes. Curr. Plant Biol. 2020;21:100131. doi: 10.1016/j.cpb.2019.100131. DOI
Maurel C., Boursiac Y., Luu D.T., Santoni V.R., Shahzad Z., Verdoucq L. Aquaporins in plants. Physiol. Rev. 2015;95:1321–1358. doi: 10.1152/physrev.00008.2015. PubMed DOI
Li Z., Hou J., Zhang Y., Zeng W., Cheng B., Hassan M.J., Zhang Y., Pu Q., Peng Y. Spermine regulates water balance associated with Ca2+-dependent aquaporins (TrTIP2-1, TrTIP2-2, and TrPIP2-7) expression in plants under water stress. Plant Cell Physiol. 2020;61:1576–1589. doi: 10.1093/pcp/pcaa080. PubMed DOI
Yang J., Zhang J., Liu K., Wang Z., Liu L. Involvement of polyamines in the drought resistance of rice. J. Exp. Bot. 2007;58:1545–1555. doi: 10.1093/jxb/erm032. PubMed DOI
Tiburcio A.F., Alcázar R. Potential Applications of Polyamines in Agriculture and Plant Biotechnology. In: Alcázar R., Tiburcio A., editors. Polyamines. Methods in Molecular Biology. Volume 1694. Humana Press; New York, NY, USA: 2018. PubMed DOI
Misra B.B., Acharya B.R., Granot D., Assmann S.M., Chen S. The guard cell metabolome: Functions in stomatal movement and global food security. Front. Plant Sci. 2015;6:1–13. doi: 10.3389/fpls.2015.00334. PubMed DOI PMC
Agurla S., Gayatri G., Raghavendra A.S. Polyamines increase nitric oxide and reactive oxygen species in guard cells of Arabidopsis thaliana during stomatal closure. Protoplasma. 2018;255:153–162. doi: 10.1007/s00709-017-1139-3. PubMed DOI
Fujita Y., Fujita M., Shinozaki K., Yamaguchi-Shinozaki K. ABA-mediated transcriptional regulation in response to osmotic stress in plants. J. Plant Res. 2011;124:509–525. doi: 10.1007/s10265-011-0412-3. PubMed DOI
Liu Y., Liang H., Lv X., Liu D., Wen X., Liao Y. Effect of polyamines on the grain filling of wheat under drought stress. Plant Physiol. Biochem. 2016;100:113–129. doi: 10.1016/j.plaphy.2016.01.003. PubMed DOI
Sánchez-Rodríguez E., Romero L., Ruiz J. Accumulation of free polyamines enhances the antioxidant response in fruits of grafted tomato plants under water stress. J. Plant Physiol. 2016;190:72–78. PubMed
Juzoń K., Czyczyło-Mysza I., Marcińska I., Dziurka M., Waligórski P., Skrzypek E. Polyamines in yellow lupin (Lupinus luteus L.) tolerance to soil drought. Acta Physiol. Plantarum. 2017;39:202. doi: 10.1007/s11738-017-2500-z. DOI
Shi H., Ye T., Chan Z. Comparative proteomic and physiological analyses reveal the protective effect of exogenous polyamines in the bermudagrass (Cynodon dactylon) response to salt and drought stresses. J. Proteome Res. 2013;12:4951–4964. doi: 10.1021/pr400479k. PubMed DOI
Krishnan S., Merewitz E.B. Polyamine application effects on gibberellic acid content in creeping bentgrass during drought stress. J. Amer. Soc. Hortic. Sci. 2017;142:135–142. doi: 10.21273/JASHS03991-16. DOI
Yamaguchi K., Takahashi Y., Berberich T., Imai A., Takahashi T., Michael A.J., Kusano T. A protective role for the polyamine spermine against drought stress in Arabidopsis. Biochem. Biophy.Res. Commun. 2007;352:486–490. doi: 10.1016/j.bbrc.2006.11.041. PubMed DOI
Arasimowicz-Jelonek M., Floryszak-Wieczorek J., Kubiś J. Interaction between polyamine and nitric oxide signalling in adaptive responses to drought in cucumber. J. Plant Growth Reg. 2009;28:177–186. doi: 10.1007/s00344-009-9086-7. DOI
Yin Z.P., Li S., Ren J., Song X.S. Role of spermidine and spermine in alleviation of drought-induced oxidative stress and photosynthetic inhibition in Chinese dwarf cherry (Cerasus humilis) seedlings. Plant Growth Reg. 2014;74:209–218. doi: 10.1007/s10725-014-9912-1. DOI
Talaat N.B., Shawky B.T. Dual application of 24-epibrassinolide and spermine confers drought stress tolerance in maize (Zea mays L.) by modulating polyamine and protein metabolism. J. Plant Growth Reg. 2016;35:518–533. doi: 10.1007/s00344-015-9557-y. DOI
Talaat N.B., Shawky B.T., Ibrahim A.S. Alleviation of drought-induced oxidative stress in maize (Zea mays L.) plants by dual application of 24-epibrassinolide and spermine. Environ. Exp. Bot. 2015;113:47–58. doi: 10.1016/j.envexpbot.2015.01.006. DOI
Farooq M., Wahid A., Lee D.-J. Exogenously applied polyamines increase drought tolerance of rice by improving leaf water status, photosynthesis and membrane properties. Acta Physiol. Plant. 2009;31:937–945. doi: 10.1007/s11738-009-0307-2. DOI
Shi J., Fu X.-Z., Peng T., Huang X.-S., Fan Q.-J., Liu J.-H. Spermine pre-treatment confers dehydration tolerance of citrus in vitro plants via modulation of antioxidative capacity and stomatal response. Tree Physiol. 2010;30:914–922. doi: 10.1093/treephys/tpq030. PubMed DOI
Hassan F.A., Ali E.F., Alamer K.H. Exogenous application of polyamines alleviates water stress-induced oxidative stress of Rosa damascena Miller var. trigintipetala Dieck. S. Afr. J. Bot. 2018;116:96–102. doi: 10.1016/j.sajb.2018.02.399. DOI
Radhakrishnan R., Lee I.J. Spermine promotes acclimation to osmotic stress by modifying antioxidant, abscisic acid, and jasmonic acid signals in soybean. J. Plant Growth Reg. 2013;32:22–30. doi: 10.1007/s00344-012-9274-8. DOI
Mustafavi S.H., Shekari F., Maleki H.H. Influence of exogenous polyamines on antioxidant defence and essential oil production in valerian (Valeriana offcinalis L.) plants under drought stress. Acta Agric. Slov. 2016;107:81–91. doi: 10.14720/aas.2016.107.1.09. DOI
Montesinos-Pereira D., Barrameda-Medina Y., Romero L., Ruiz J.M., Sánchez-Rodríguez E. Genotype differences in the metabolism of proline and polyamines under moderate drought in tomato plants. Plant Biol. 2014;16:1050–1057. doi: 10.1111/plb.12178. PubMed DOI
Do P.T., Drechsel O., Heyer A.G., Hincha D.K., Zuther E. Changes in free polyamine levels, expression of polyamine biosynthesis genes, and performance of rice cultivars under salt stress: A comparison with responses to drought. Front. Plant Sci. 2014;5:182. doi: 10.3389/fpls.2014.00182. PubMed DOI PMC
Seifi H.S., Shelp B.J. Spermine differentially refines plant defense responses against biotic and abiotic stresses. Front. Plant Sci. 2019;10:117. doi: 10.3389/fpls.2019.00117. PubMed DOI PMC
Ma Y., Zhang J., Li X., Zhang S., Lan H. Effects of environmental stress on seed germination and seedling growth of Salsola ferganica (Chenopodiaceae) Acta Ecol. Sin. 2016;36:456–463. doi: 10.1016/j.chnaes.2016.09.008. DOI
Gill S.S., Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem. 2010;48:909–930. doi: 10.1016/j.plaphy.2010.08.016. PubMed DOI
Caverzan A., Casassola A., Brammer S.P. Abiotic and Biotic Stress in Plants—Recent Advances and Future Perspectives. InTech; London, UK: 2016. Reactive oxygen species and antioxidant enzymes involved in plant tolerance to stress.
Guler N.S., Pehlivan N. Exogenous low-dose hydrogen peroxide enhances drought tolerance of soybean (Glycine max L.) through inducing antioxidant system. Acta Biol. Hung. 2016;67:169–183. doi: 10.1556/018.67.2016.2.5. PubMed DOI
Abedi T., Pakniyat H. Antioxidant enzyme changes in response to drought stress in ten cultivars of oilseed rape (Brassica napus) Czech J. Genet. Plant Breed. 2010;46:27–34. doi: 10.17221/67/2009-CJGPB. DOI
Slabbert M.M., Krüger G.H.J. Antioxidant enzyme activity, proline accumulation, leaf area and cell membrane stability in water stressed Amaranthus leaves. S. Afr. J. Bot. 2014;95:123–128. doi: 10.1016/j.sajb.2014.08.008. DOI
Capell T., Bassie L., Christou P. Modulation of the polyamine biosynthetic pathway in transgenic rice confers tolerance to drought stress. Proc. Nat. Acad. Sci. USA. 2004;101:9909–9914. doi: 10.1073/pnas.0306974101. PubMed DOI PMC
Wimalasekera R., Tebartz F., Scherer G.F. Polyamines, polyamine oxidases and nitric oxide in development, abiotic and biotic stresses. Plant Sci. 2011;181:593–603. doi: 10.1016/j.plantsci.2011.04.002. PubMed DOI
An Z.F., Jing W., Liu Y.L., Zhang W.H. Hydrogen peroxide generated by copper amine oxidase is involved in abscisic acid-induced stomatal closure in Vicia faba. J. Exp. Bot. 2008;59:815–825. doi: 10.1093/jxb/erm370. PubMed DOI
Alcázar R., Cuevas J.C., Patrón M., Altabella T., Tiburcio A.F. Abscisic acid modulates polyamine metabolism under water stress in Arabidopsis thaliana. Physiol. Plant. 2006;128:448–455. doi: 10.1111/j.1399-3054.2006.00780.x. DOI
Marco F., Busó E., Lafuente T., Carrasco P. Spermine confers stress resilience by modulating abscisic acid biosynthesis and stress responses in Arabidopsis plants. Front. Plant Sci. 2019;10:972. doi: 10.3389/fpls.2019.00972. PubMed DOI PMC
Bitrián M., Zarza X., Altabella T., Tiburcio A.F., Alcázar R. Polyamines under abiotic stress: Metabolic crossroads and hormonal crosstalks in plants. Metabolites. 2012;2:516–528. doi: 10.3390/metabo2030516. PubMed DOI PMC
Klingler J.P., Batelli G., Zhu J.-K. ABA receptors: The START of a new paradigm in phytohormone signalling. J. Exp.Bot. 2010;61:3199–3210. doi: 10.1093/jxb/erq151. PubMed DOI PMC
Toumi I., Moschou P.N., Paschalidis K.A., Bouamama B., Salem-Fnayou A.B., Ghorbel A.W., Mliki A., Roubelakis-Angelakis K.A. Abscisic acid signals reorientation of polyamine metabolism to orchestrate stress responses via the polyamine exodus pathway in grapevine. J. Plant Physiol. 2010;167:519–525. doi: 10.1016/j.jplph.2009.10.022. PubMed DOI
Marco F., Alcázar R., Tiburcio A.F., Carrasco P. Interactions between polyamines and abiotic stress pathway responses unraveled by transcriptome analysis of polyamine overproducers. OMICS. 2011;15:775–781. doi: 10.1089/omi.2011.0084. PubMed DOI PMC
Tun N.N., Santa-Catarina C., Begum T., Silveira V., Handro W., Floh E.I.S., Scherer G.F.E. Polyamines induce rapid biosynthesis of nitric oxide (NO) in Arabidopsis thaliana seedlings. Plant Cell Physiol. 2006;47:346–354. doi: 10.1093/pcp/pci252. PubMed DOI
Parra-Lobato M.C., Gomez-Jimenez M.C. Polyamine-induced modulation of genes involved in ethylene biosynthesis and signalling pathways and nitric oxide production during olive mature fruit abscission. J. Exp. Bot. 2011;62:4447–4465. doi: 10.1093/jxb/err124. PubMed DOI PMC
Yamasaki H., Cohen M.F. NO signal at the crossroads: Polyamine-induce nitric oxide synthesis in plants? Trends Plant Sci. 2006;11:522–524. doi: 10.1016/j.tplants.2006.09.009. PubMed DOI
Houben M., Van De Poel B. 1-Aminocyclopropane-1-carboxylic acid oxidase (ACO): The enzyme that makes the plant hormone ethylene. Front. Plant Sci. 2019;10:695. doi: 10.3389/fpls.2019.00695. PubMed DOI PMC
Pan C.Z., Zhang H., Ma Q.M., Fan F.J., Ahammed G.J., Yu J., Shi K. Role of ethylene biosynthesis and signaling in elevated CO2-induced heat stress response in tomato. Planta. 2019;250:563–572. PubMed
Del Duca S., Serafini-Fracassini D., Cai G. Senescence and programmed cell death in plants: Polyamine action mediated by transglutaminase. Front. Plant Sci. 2014;5:120. doi: 10.3389/fpls.2014.00120. PubMed DOI PMC
Alcázar R., Fortes A.M., Tiburcio A.F. Editorial: Polyamines in plant biotechnology, food nutrition and human health. Front. Plant Sci. 2020;11:120. doi: 10.3389/fpls.2020.00120. PubMed DOI PMC
Takahashi Y., Cong R., Sagor G., Niitsu M., Berberich T., Kusano T. Characterization of five polyamine oxidase isoforms in Arabidopsis thaliana. Plant Cell Rep. 2010;29:955–965. doi: 10.1007/s00299-010-0881-1. PubMed DOI
Pal M., Szalai G., Janda T. Speculation: Polyamines are important in abiotic stress signaling. Plant Sci. 2015;237:16–23. doi: 10.1016/j.plantsci.2015.05.003. PubMed DOI
Serna M., Coll Y., Zapata P.J., Botella M.Á., Pretel M.T., Amorós A. A brassinosteroid analogue prevented the effect of salt stress on ethylene synthesis and polyamines in lettuce plants. Sci. Hortic. 2015;185:105–112. doi: 10.1016/j.scienta.2015.01.005. DOI
Wang X.-L., Zhang Y.-X. Regulation of salicylic acid on polyamine synthesize under NaCl stress in leaves of the yali pear. Res. J. Appl. Sci. Eng. Technol. 2012;4:3704–3708.
Iqbal M., Ashraf M., Jamil A., Ur-Rehman S. Does seed priming induce changes in the levels of some endogenous plant hormones in hexaploid wheat plants under salt stress? J. Integr. Plant Biol. 2006;48:181–189. doi: 10.1111/j.1744-7909.2006.00181.x. DOI
Echevarría-Machado I., Ku-González A., Loyola-Vargas V.M., Hernández-Sotomayor S.T. Interaction of spermine with a signal transduction pathway involving phospholipase C, during the growth of Catharanthus roseus transformed roots. Physiol. Plant. 2004;120:140–151. doi: 10.1111/j.0031-9317.2004.0212.x. PubMed DOI
Zarza X., Shabala L., Fujita M., Shabala S., Haring M.A., Tiburcio A.F. Extracellular spermine triggers a rapid intracellular phosphatidic acid response in Arabidopsis, involving PLDδ activation and stimulating ion flux. Front. Plant Sci. 2019;10:601. doi: 10.3389/fpls.2019.00601. PubMed DOI PMC
Raman V.P., Rajam M.V. Polyamine accumulation in transgenic eggplant enhances tolerance to multiple abiotic stresses and fungal resistance. Plant Biotechnol. 2007;24:273–282.
Bassie L., Zhu C., Romagosa I., Christou P., Capell T. Transgenic wheat plants expressing an oat arginine decarboxylase cDNA exhibit increases in polyamine content in vegetative tissue and seeds. Mol. Breed. 2008;22:39–50.
Peremarti A., Bassie L., Christou P., Capell T. Spermine facilitates recovery from drought but does not confer drought tolerance in transgenic rice plants expressing Datura stramonium S-adenosylmethionine decarboxylase. Plant Mol. Biol. 2009;70:253–264. doi: 10.1007/s11103-009-9470-5. PubMed DOI
Momtaz O.A., Hussein E.M., Fahmy E.M., Ahmed S.E. Expression of S-adenosyl methionine decarboxylase gene for polyamine accumulation in Egyptian cotton Giza 88 and Giza 90. GM Crops. 2010;1:257–266. doi: 10.4161/gmcr.1.4.13779. PubMed DOI
Hazarika P., Rajam M.V. Biotic and abiotic stress tolerance in transgenic tomatoes by constitutive expression of S-adenosylmethionine decarboxylase gene. Physiol. Mol. Biol. Plants. 2011;17:115–128. doi: 10.1007/s12298-011-0053-y. PubMed DOI PMC
Yu L., Geng S., Zhao-Hui Z., Xue-Lian Z., Ke-Jun D. Overexpression of SAMDC gene from Salvia miltiorrhiza enhances drought tolerance in transgenic tobacco (Nicotiana tabacum) J. Agric. Biotech. 2017;25:729–738.
Jiang X., Zhan J., Wang Q., Wu X., Chen X., Jia B., Liu P., Liu L., Ye Z., Zhu L., et al. Overexpression of the pear PbSPMS gene in Arabidopsis thaliana increases resistance to abiotic stress. Plant Cell Tissue Organ Cult. 2020;140:389–401. doi: 10.1007/s11240-019-01735-y. DOI
Gonzalez M.E., Marco F., Minguet E.G., Carrasco-Sorli P., Blázquez M.A., Carbonell J., Ruiz O.A., Pieckenstain F.L. Perturbation of spermine synthase gene expression and transcript profiling provide new insights on the role of the tetraamine spermine in Arabidopsis defense against Pseudomonas viridiflava. Plant Physiol. 2011;156:2266–2277. doi: 10.1104/pp.110.171413. PubMed DOI PMC
Liu J.H., Wang W., Wu H., Gong X., Moriguchi T. Polyamines function in stress tolerance: From synthesis to regulation. Front. Plant Sci. 2015;6:827. doi: 10.3389/fpls.2015.00827. PubMed DOI PMC
Alcázar R., Bueno M., Tiburcio A.F. Polyamines: Small Amines with Large Effects on Plant Abiotic Stress Tolerance. Cells. 2020;9:2373. doi: 10.3390/cells9112373. PubMed DOI PMC
Zhao Y., Du H., Wang Z., Huang B. Identification of proteins associated with water-deficit tolerance in C4 perennial grass species, Cynodon dactylon× Cynodon transvaalensis and Cynodon dactylon. Physiol. Plant. 2011;141:40–55. doi: 10.1111/j.1399-3054.2010.01419.x. PubMed DOI