• This record comes from PubMed

Epidemic Territorial Spread of IncP-2-Type VIM-2 Carbapenemase-Encoding Megaplasmids in Nosocomial Pseudomonas aeruginosa Populations

. 2021 Mar 18 ; 65 (4) : . [epub] 20210318

Language English Country United States Media electronic-print

Document type Journal Article, Research Support, Non-U.S. Gov't

In 2003 to 2004, the first five VIM-2 metallo-β-lactamase (MBL)-producing Pseudomonas aeruginosa (MPPA) isolates with an In4-like integron, In461 (aadB-blaVIM-2-aadA6), on conjugative plasmids were identified in three hospitals in Poland. In 2005 to 2015, MPPA expanded much in the country, and as many as 80 isolates in a collection of 454 MPPA (∼18%) had In461, one of the two most common MBL-encoding integrons. The organisms occurred in 49 hospitals in 33 cities of 11/16 main administrative regions. Pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST) classified them into 55 pulsotypes and 35 sequence types (STs), respectively, revealing their remarkable genetic diversity overall, with only a few small clonal clusters. S1 nuclease/hybridization assays and mating of 63 representative isolates showed that ∼85% of these had large In461-carrying plasmids, ∼350 to 550 kb, usually self-transmitting with high efficiency (∼10-1 to 10-2 per donor cell). The plasmids from 19 isolates were sequenced and subjected to structural and single-nucleotide-polymorphism (SNP)-based phylogenetic analysis. These formed a subgroup within a family of IncP-2-type megaplasmids, observed worldwide in pseudomonads from various environments and conferring resistance/tolerance to multiple stress factors, including antibiotics. Their microdiversity in Poland arose mainly from acquisition of different accessory fragments, as well as new resistance genes and multiplication of these. Short-read sequence and/or PCR mapping confirmed the In461-carrying plasmids in the remaining isolates to be the IncP-2 types. The study demonstrated a large-scale epidemic spread of multidrug resistance plasmids in P. aeruginosa populations, creating an epidemiological threat. It contributes to the knowledge on IncP-2 types, which are interesting research objects in resistance epidemiology, environmental microbiology, and biotechnology.

See more in PubMed

D’Agata E. 2015. Pseudomonas aeruginosa and other Pseudomonas species, p 2518–2531. In Bennett JE, Dolin R, Blaser MJ (ed), Mandell, Douglas, and Bennett’s principles and practice of infectious diseases, vol 2. Elsevier Saunders, Philadelphia, PA.

Vincent JL. 2003. Nosocomial infections in adult intensive-care units. Lancet 361:2068–2077. doi:10.1016/S0140-6736(03)13644-6. PubMed DOI

Botelho J, Grosso F, Peixe L. 2019. Antibiotic resistance in Pseudomonas aeruginosa—mechanisms, epidemiology and evolution. Drug Resist Updat 44:100640. doi:10.1016/j.drup.2019.07.002. PubMed DOI

Oliver A, Mulet X, Lopez-Causape C, Juan C. 2015. The increasing threat of Pseudomonas aeruginosa high-risk clones. Drug Resist Updat 21-22:41–59. doi:10.1016/j.drup.2015.08.002. PubMed DOI

Nordmann P, Poirel L. 2014. The difficult-to-control spread of carbapenemase producers among Enterobacteriaceae worldwide. Clin Microbiol Infect 20:821–830. doi:10.1111/1469-0691.12719. PubMed DOI

Walsh TR, Toleman MA, Poirel L, Nordmann P. 2005. Metallo-β-lactamases: the quiet before the storm? Clin Microbiol Rev 18:306–325. doi:10.1128/CMR.18.2.306-325.2005. PubMed DOI PMC

Patzer J, Toleman MA, Deshpande LM, Kamińska W, Dzierzanowska D, Bennett PM, Jones RN, Walsh TR. 2004. Pseudomonas aeruginosa strains harbouring an unusual blaVIM-4 gene cassette isolated from hospitalized children in Poland (1998–2001). J Antimicrob Chemother 53:451–456. doi:10.1093/jac/dkh095. PubMed DOI

Walsh TR, Toleman MA, Hryniewicz W, Bennett PM, Jones RN. 2003. Evolution of an integron carrying blaVIM-2 in Eastern Europe: report from the SENTRY antimicrobial surveillance program. J Antimicrob Chemother 52:116–119. doi:10.1093/jac/dkg299. PubMed DOI

Fiett J, Baraniak A, Mrowka A, Fleischer M, Drulis-Kawa Z, Naumiuk L, Samet A, Hryniewicz W, Gniadkowski M. 2006. Molecular epidemiology of acquired-metallo-β-lactamase-producing bacteria in Poland. Antimicrob Agents Chemother 50:880–886. doi:10.1128/AAC.50.3.880-886.2006. PubMed DOI PMC

Patzer JA, Walsh TR, Weeks J, Dzierzanowska D, Toleman MA. 2009. Emergence and persistence of integron structures harbouring VIM genes in the Children’s Memorial Health Institute, Warsaw, Poland, 1998–2006. J Antimicrob Chemother 63:269–273. doi:10.1093/jac/dkn512. PubMed DOI

Urbanowicz P, Izdebski R, Baraniak A, Żabicka D, Machulska M, Bojarska K, Literacka E, Herda M, Hryniewicz W, Gniadkowski M. 2018. Molecular characteristics of VIM-type MBL-producing Pseudomonas aeruginosa in Poland from over a 10-year period (2005–2015), abstr O0132. 28th European Congress of Clinical Microbiology & Infectious Diseases, Madrid, Spain.

Urbanowicz P, Bitar I, Izdebski R, Baraniak A, Literacka E, Hrabák J, Gniadkowski M. 2019. Poster P1613, 28th European Congress of Clinical Microbiology & Infectious Diseases, Amsterdam, The Netherlands.

Cabrolier N, Sauget M, Bertrand X, Hocquet D. 2015. Matrix-assisted laser desorption ionization–time of flight mass spectrometry identifies Pseudomonas aeruginosa high-risk clones. J Clin Microbiol 53:1395–1398. doi:10.1128/JCM.00210-15. PubMed DOI PMC

Empel J, Filczak K, Mrowka A, Hryniewicz W, Livermore DM, Gniadkowski M. 2007. Outbreak of Pseudomonas aeruginosa infections with PER-1 extended-spectrum β-lactamase in Warsaw, Poland: further evidence for an international clonal complex. J Clin Microbiol 45:2829–2834. doi:10.1128/JCM.00997-07. PubMed DOI PMC

Botelho J, Grosso F, Quinteira S, Mabrouk A, Peixe L. 2017. The complete nucleotide sequence of an IncP-2 megaplasmid unveils a mosaic architecture comprising a putative novel blaVIM-2-harbouring transposon in Pseudomonas aeruginosa. J Antimicrob Chemother 72:2225–2229. doi:10.1093/jac/dkx143. PubMed DOI

Cazares A, Moore MP, Hall JPJ, Wright LL, Grimes M, Emond-Rheault JG, Pongchaikul P, Santanirand P, Levesque RC, Fothergill JL, Winstanley C. 2020. A megaplasmid family driving dissemination of multidrug resistance in Pseudomonas. Nat Commun 11:1370. doi:10.1038/s41467-020-15081-7. PubMed DOI PMC

Kuepper J, Ruijssenaars HJ, Blank LM, de Winde JH, Wierckx N. 2015. Complete genome sequence of solvent-tolerant Pseudomonas putida S12 including megaplasmid pTTS12. J Biotechnol 200:17–18. doi:10.1016/j.jbiotec.2015.02.027. PubMed DOI

Liu J, Yang L, Chen D, Peters BM, Li L, Li B, Xu Z, Shirtliff ME. 2018. Complete sequence of pBM413, a novel multidrug resistance megaplasmid carrying qnrVC6 and blaIMP-45 from Pseudomonas aeruginosa. Int J Antimicrob Agents 51:145–150. doi:10.1016/j.ijantimicag.2017.09.008. PubMed DOI

Schmid M, Frei D, Patrignani A, Schlapbach R, Frey JE, Remus-Emsermann MNP, Ahrens CH. 2018. Pushing the limits of de novo genome assembly for complex prokaryotic genomes harboring very long, near identical repeats. Nucleic Acids Res 46:8953–8965. doi:10.1093/nar/gky726. PubMed DOI PMC

Weiser R, Green AE, Bull MJ, Cunningham-Oakes E, Jolley KA, Maiden MCJ, Hall AJ, Winstanley C, Weightman AJ, Donoghue D, Amezquita A, Connor TR, Mahenthiralingam E. 2019. Not all Pseudomonas aeruginosa are equal: strains from industrial sources possess uniquely large multireplicon genomes. Microb Genom 5:e000276. doi:10.1099/mgen.0.000276. PubMed DOI PMC

Xiong J, Alexander DC, Ma JH, Deraspe M, Low DE, Jamieson FB, Roy PH. 2013. Complete sequence of pOZ176, a 500-kilobase IncP-2 plasmid encoding IMP-9-mediated carbapenem resistance, from outbreak isolate Pseudomonas aeruginosa 96. Antimicrob Agents Chemother 57:3775–3782. doi:10.1128/AAC.00423-13. PubMed DOI PMC

Yuan M, Chen H, Zhu X, Feng J, Zhan Z, Zhang D, Chen X, Zhao X, Lu J, Xu J, Zhou D, Li J. 2017. pSY153-MDR, a p12969-DIM-related mega plasmid carrying blaIMP-45 and armA, from clinical Pseudomonas putida. Oncotarget 8:68439–68447. doi:10.18632/oncotarget.19496. PubMed DOI PMC

Zhang Y, Meng L, Guan C, Zhou Y, Peng J, Liang H. 2020. Genomic characterisation of clinical Pseudomonas aeruginosa isolate PAG5 with a multidrug-resistant megaplasmid from China. J Glob Antimicrob Resist 21:130–131. doi:10.1016/j.jgar.2020.03.012. PubMed DOI

Zheng D, Wang X, Wang P, Peng W, Ji N, Liang R. 2016. Genome sequence of Pseudomonas citronellolis SJTE-3, an estrogen- and polycyclic aromatic hydrocarbon-degrading bacterium. Genome Announc 4:e01373-16. doi:10.1128/genomeA.01373-16. PubMed DOI PMC

Pincus NB, Bachta KER, Ozer EA, Allen JP, Pura ON, Qi C, Rhodes NJ, Marty FM, Pandit A, Mekalanos JJ, Oliver A, Hauser AR. 2020. Long-term persistence of an extensively drug resistant subclade of globally distributed Pseudomonas aeruginosa clonal complex 446 in an academic medical center. Clin Infect Dis 71:1524–1531. doi:10.1093/cid/ciz973. PubMed DOI PMC

Li Z, Cai Z, Cai Z, Zhang Y, Fu T, Jin Y, Cheng Z, Jin S, Wu W, Yang L, Bai F. 2020. Molecular genetic analysis of an XDR Pseudomonas aeruginosa ST664 clone carrying multiple conjugal plasmids. J Antimicrob Chemother 75:1443–1452. doi:10.1093/jac/dkaa063. PubMed DOI

Jiang X, Yin Z, Yuan M, Cheng Q, Hu L, Xu Y, Yang W, Yang H, Zhao Y, Zhao X, Gao B, Dai E, Song Y, Zhou D. 2020. Plasmids of novel incompatibility group IncpRBL16 from Pseudomonas species. J Antimicrob Chemother 75:2093–2100. doi:10.1093/jac/dkaa143. PubMed DOI

Kusumawardhani H, van Dijk D, Hosseini R, de Winde JH. 2020. Novel toxin-antitoxin module SlvT-SlvA regulates megaplasmid stability and incites solvent tolerance in Pseudomonas putida S12. Appl Environ Microbiol 86:e00686-20. doi:10.1128/AEM.00686-20. PubMed DOI PMC

Kusumawardhani H, Hosseini R, de Winde JH. 2020. Comparative analysis reveals the modular functional build-up of megaplasmid pTTS12 of Pseudomonas putida S12: a paradigm for transferable traits, plasmid stability and inheritance? bioRxiv doi:10.1101/2020.06.19.162511. PubMed DOI PMC

Li XZ, Plesiat P, Nikaido H. 2015. The challenge of efflux-mediated antibiotic resistance in Gram-negative bacteria. Clin Microbiol Rev 28:337–418. doi:10.1128/CMR.00117-14. PubMed DOI PMC

Jude F, Arpin C, Brachet-Castang C, Capdepuy M, Caumette P, Quentin C. 2004. TbtABM, a multidrug efflux pump associated with tributyltin resistance in Pseudomonas stutzeri. FEMS Microbiol Lett 232:7–14. doi:10.1016/S0378-1097(04)00012-6. PubMed DOI

Partridge SR, Recchia GD, Stokes HW, Hall RM. 2001. Family of class 1 integrons related to In4 from Tn1696. Antimicrob Agents Chemother 45:3014–3020. doi:10.1128/AAC.45.11.3014-3020.2001. PubMed DOI PMC

Partridge SR, Collis CM, Hall RM. 2002. Class 1 integron containing a new gene cassette, aadA10, associated with Tn1404 from R151. Antimicrob Agents Chemother 46:2400–2408. doi:10.1128/aac.46.8.2400-2408.2002. PubMed DOI PMC

Bryan LE, Semaka SD, Van den Elzen HM, Kinnear JE, Whitehouse RL. 1973. Characteristics of R931 and other Pseudomonas aeruginosa R factors. Antimicrob Agents Chemother 3:625–637. doi:10.1128/aac.3.5.625. PubMed DOI PMC

Sagai H, Hasuda K, Iyobe S, Bryan LE, Holloway BW, Mitsuhashi S. 1976. Classification of R plasmids by incompatibility in Pseudomonas aeruginosa. Antimicrob Agents Chemother 10:573–578. doi:10.1128/aac.10.4.573. PubMed DOI PMC

Lee K, Lim YS, Yong D, Yum JH, Chong Y. 2003. Evaluation of the Hodge test and the imipenem-EDTA double-disk synergy test for differentiating metallo-β-lactamase-producing isolates of Pseudomonas spp. and Acinetobacter spp. J Clin Microbiol 41:4623–4629. doi:10.1128/jcm.41.10.4623-4629.2003. PubMed DOI PMC

Seifert H, Dolzani L, Bressan R, van der Reijden T, van Strijen B, Stefanik D, Heersma H, Dijkshoorn L. 2005. Standardization and interlaboratory reproducibility assessment of pulsed-field gel electrophoresis-generated fingerprints of Acinetobacter baumannii. J Clin Microbiol 43:4328–4335. doi:10.1128/JCM.43.9.4328-4335.2005. PubMed DOI PMC

Tenover FC, Arbeit RD, Goering RV, Mickelsen PA, Murray BE, Persing DH, Swaminathan B. 1995. Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing. J Clin Microbiol 33:2233–2239. doi:10.1128/JCM.33.9.2233-2239.1995. PubMed DOI PMC

Curran B, Jonas D, Grundmann H, Pitt T, Dowson CG. 2004. Development of a multilocus sequence typing scheme for the opportunistic pathogen Pseudomonas aeruginosa. J Clin Microbiol 42:5644–5649. doi:10.1128/JCM.42.12.5644-5649.2004. PubMed DOI PMC

Stuart-Keil KG, Hohnstock AM, Drees KP, Herrick JB, Madsen EL. 1998. Plasmids responsible for horizontal transfer of naphthalene catabolism genes between bacteria at a coal tar-contaminated site are homologous to pDTG1 from Pseudomonas putida NCIB 9816-4. Appl Environ Microbiol 64:3633–3640. doi:10.1128/AEM.64.10.3633-3640.1998. PubMed DOI PMC

Bartosik AA, Lasocki K, Mierzejewska J, Thomas CM, Jagura-Burdzy G. 2004. ParB of Pseudomonas aeruginosa: interactions with its partner ParA and its target parS and specific effects on bacterial growth. J Bacteriol 186:6983–6998. doi:10.1128/JB.186.20.6983-6998.2004. PubMed DOI PMC

Treangen TJ, Ondov BD, Koren S, Phillippy AM. 2014. The Harvest suite for rapid core-genome alignment and visualization of thousands of intraspecific microbial genomes. Genome Biol 15:524. doi:10.1186/s13059-014-0524-x. PubMed DOI PMC

Letunic I, Bork P. 2019. Interactive Tree Of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Res 47:W256–W259. doi:10.1093/nar/gkz239. PubMed DOI PMC

Alikhan NF, Petty NK, Ben Zakour NL, Beatson SA. 2011. BLAST Ring Image Generator (BRIG): simple prokaryote genome comparisons. BMC Genomics 12:402. doi:10.1186/1471-2164-12-402. PubMed DOI PMC

Sullivan MJ, Petty NK, Beatson SA. 2011. Easyfig: a genome comparison visualizer. Bioinformatics 27:1009–1010. doi:10.1093/bioinformatics/btr039. PubMed DOI PMC

Siguier P, Perochon J, Lestrade L, Mahillon J, Chandler M. 2006. ISfinder: the reference centre for bacterial insertion sequences. Nucleic Acids Res 34:D32–D36. doi:10.1093/nar/gkj014. PubMed DOI PMC

Arndt D, Grant JR, Marcu A, Sajed T, Pon A, Liang Y, Wishart DS. 2016. PHASTER: a better, faster version of the PHAST phage search tool. Nucleic Acids Res 44:W16–W21. doi:10.1093/nar/gkw387. PubMed DOI PMC

Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV, Sirotkin AV, Vyahhi N, Tesler G, Alekseyev MA, Pevzner PA. 2012. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19:455–477. doi:10.1089/cmb.2012.0021. PubMed DOI PMC

Li H, Durbin R. 2009. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25:1754–1760. doi:10.1093/bioinformatics/btp324. PubMed DOI PMC

Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, Genome Project Data Processing Subgroup . 2009. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25:2078–2079. doi:10.1093/bioinformatics/btp352. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...