Local electromechanical alterations determine the left ventricle rotational dynamics in CRT-eligible heart failure patients

. 2021 Feb 05 ; 11 (1) : 3267. [epub] 20210205

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu klinické zkoušky, časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid33547401
Odkazy

PubMed 33547401
PubMed Central PMC7865069
DOI 10.1038/s41598-021-82793-1
PII: 10.1038/s41598-021-82793-1
Knihovny.cz E-zdroje

Left ventricle, LV wringing wall motion relies on physiological muscle fiber orientation, fibrotic status, and electromechanics (EM). The loss of proper EM activation can lead to rigid-body-type (RBT) LV rotation, which is associated with advanced heart failure (HF) and challenges in resynchronization. To describe the EM coupling and scar tissue burden with respect to rotational patterns observed on the LV in patients with ischemic heart failure with reduced ejection fraction (HFrEF) left bundle branch block (LBBB). Thirty patients with HFrEF/LBBB underwent EM analysis of the left ventricle using an invasive electro-mechanical catheter mapping system (NOGA XP, Biosense Webster). The following parameters were evaluated: rotation angle; rotation velocity; unipolar/bipolar voltage; local activation time, LAT; local electro-mechanical delay, LEMD; total electro-mechanical delay, TEMD. Patients underwent late-gadolinium enhancement cMRI when possible. The different LV rotation pattern served as sole parameter for patients' grouping into two categories: wringing rotation (Group A, n = 6) and RBT rotation (Group B, n = 24). All parameters were aggregated into a nine segment, three sector and whole LV models, and compared at multiple scales. Segmental statistical analysis in Group B revealed significant inhomogeneities, across the LV, regarding voltage level, scar burdening, and LEMD changes: correlation analysis showed correspondently a loss of synchronization between electrical (LAT) and mechanical activation (TEMD). On contrary, Group A (relatively low number of patients) did not present significant differences in LEMD across LV segments, therefore electrical (LAT) and mechanical (TEMD) activation were well synchronized. Fibrosis burden was in general associated with areas of low voltage. The rotational behavior of LV in HF/LBBB patients is determined by the local alteration of EM coupling. These findings serve as a strong basic groundwork for a hypothesis that EM analysis may predict CRT response.Clinical trial registration: SUM No. KNW/0022/KB1/17/15.

Zobrazit více v PubMed

Omar AM, Vallabhajosyula S, Sengupta PP. Left ventricular twist and torsion: Research observations and clinical applications. Circ. Cardiovasc. Imaging. 2015;8:e003029. doi: 10.1161/CIRCIMAGING.115.003029. PubMed DOI

Sengupta PP, et al. Left ventricular form and function revisited: Applied translational science to cardiovascular ultrasound imaging. J. Am. Soc. Echocardiogr. 2007;20:539–551. doi: 10.1016/j.echo.2006.10.013. PubMed DOI PMC

Sillanmaki S, et al. Relationships between electrical and mechanical dyssynchrony in patients with left bundle branch block and healthy controls. J. Nucl. Cardiol. 2019;26:1228–1239. doi: 10.1007/s12350-018-1204-0. PubMed DOI

Perini AP, et al. Left ventricular rotational dyssynchrony before cardiac resynchronization therapy: A step forward into ventricular mechanics. J. Cardiovasc. Med. (Hagerstown) 2016;17:469–477. doi: 10.2459/JCM.0000000000000391. PubMed DOI

Russel IK, Gotte MJ. New insights in LV torsion for the selection of cardiac resynchronisation therapy candidates. Neth. Heart J. 2011;19:386–391. doi: 10.1007/s12471-011-0136-y. PubMed DOI PMC

Setser RM, et al. Persistent abnormal left ventricular systolic torsion in dilated cardiomyopathy after partial left ventriculectomy. J. Thorac. Cardiovasc. Surg. 2003;126:48–55. doi: 10.1016/S0022-5223(03)00050-3. PubMed DOI

Kanzaki H, et al. Impaired systolic torsion in dilated cardiomyopathy: Reversal of apical rotation at mid-systole characterized with magnetic resonance tagging method. Basic Res. Cardiol. 2006;101:465–470. doi: 10.1007/s00395-006-0603-6. PubMed DOI

Popescu BA, et al. Left ventricular remodelling and torsional dynamics in dilated cardiomyopathy: Reversed apical rotation as a marker of disease severity. Eur. J. Heart Fail. 2009;11:945–951. doi: 10.1093/eurjhf/hfp124. PubMed DOI

van Dalen BM, et al. Left ventricular solid body rotation in non-compaction cardiomyopathy: A potential new objective and quantitative functional diagnostic criterion? Eur. J. Heart Fail. 2008;10:1088–1093. doi: 10.1016/j.ejheart.2008.08.006. PubMed DOI

Sade LE, Demir O, Atar I, Muderrisoglu H, Ozin B. Effect of mechanical dyssynchrony and cardiac resynchronization therapy on left ventricular rotational mechanics. Am. J. Cardiol. 2008;101:1163–1169. doi: 10.1016/j.amjcard.2007.11.069. PubMed DOI

Russel IK, et al. Loss of opposite left ventricular basal and apical rotation predicts acute response to cardiac resynchronization therapy and is associated with long-term reversed remodeling. J. Card. Fail. 2009;15:717–725. doi: 10.1016/j.cardfail.2009.04.007. PubMed DOI

Leclercq C, et al. Cardiac resynchronization therapy non-responder to responder conversion rate in the more response to cardiac resynchronization therapy with MultiPoint Pacing (MORE-CRT MPP) study: Results from Phase I. Eur. Heart J. 2019;40:2979–2987. doi: 10.1093/eurheartj/ehz109. PubMed DOI

Russel IK, et al. Left ventricular torsion: An expanding role in the analysis of myocardial dysfunction. JACC Cardiovasc. Imaging. 2009;2:648–655. doi: 10.1016/j.jcmg.2009.03.001. PubMed DOI

Taber LA, Yang M, Podszus WW. Mechanics of ventricular torsion. J. Biomech. 1996;29:745–752. doi: 10.1016/0021-9290(95)00129-8. PubMed DOI

Rodriguez LM, Timmermans C, Nabar A, Beatty G, Wellens HJ. Variable patterns of septal activation in patients with left bundle branch block and heart failure. J. Cardiovasc. Electrophysiol. 2003;14:135–141. doi: 10.1046/j.1540-8167.2003.02421.x. PubMed DOI

Nichols KJ, et al. Gated myocardial perfusion SPECT asynchrony measurements in patients with left bundle branch block. Int. J. Cardiovasc. Imaging. 2009;25:43–51. doi: 10.1007/s10554-008-9354-9. PubMed DOI PMC

Smiseth OA, Aalen JM. Mechanism of harm from left bundle branch block. Trends. Cardiovasc. Med. 2019;29:335–342. doi: 10.1016/j.tcm.2018.10.012. PubMed DOI

Eriksson P, Hansson PO, Eriksson H, Dellborg M. Bundle-branch block in a general male population: The study of men born 1913. Circulation. 1998;98:2494–2500. doi: 10.1161/01.CIR.98.22.2494. PubMed DOI

Aalen J, et al. Afterload hypersensitivity in patients with left bundle branch block. JACC Cardiovasc. Imaging. 2019;12:967–977. doi: 10.1016/j.jcmg.2017.11.025. PubMed DOI

Opdahl A, et al. Apical rotation by speckle tracking echocardiography: A simplified bedside index of left ventricular twist. J. Am. Soc. Echocardiogr. 2008;21:1121–1128. doi: 10.1016/j.echo.2008.06.012. PubMed DOI

Yilmaz S, et al. Left ventricular twist was decreased in isolated left bundle branch block with preserved ejection fraction. Anatol. J. Cardiol. 2017;17:475–480. PubMed PMC

Baldasseroni S, et al. Left bundle-branch block is associated with increased 1-year sudden and total mortality rate in 5517 outpatients with congestive heart failure: A report from the Italian network on congestive heart failure. Am. Heart J. 2002;143:398–405. doi: 10.1067/mhj.2002.121264. PubMed DOI

Bertini M, et al. Role of left ventricular twist mechanics in the assessment of cardiac dyssynchrony in heart failure. JACC Cardiovasc. Imaging. 2009;2:1425–1435. doi: 10.1016/j.jcmg.2009.09.013. PubMed DOI

Kim WJ, et al. Apical rotation assessed by speckle-tracking echocardiography as an index of global left ventricular contractility. Circ. Cardiovasc. Imaging. 2009;2:123–131. doi: 10.1161/CIRCIMAGING.108.794719. PubMed DOI

Lee SJ, et al. Isolated bundle branch block and left ventricular dysfunction. J. Card. Fail. 2003;9:87–92. doi: 10.1054/jcaf.2003.19. PubMed DOI

Zannad F, et al. Left bundle branch block as a risk factor for progression to heart failure. Eur. J. Heart Fail. 2007;9:7–14. doi: 10.1016/j.ejheart.2006.04.011. PubMed DOI

van Dalen BM, et al. Influence of cardiac shape on left ventricular twist. J. Appl. Physiol. 2010;1985(108):146–151. doi: 10.1152/japplphysiol.00419.2009. PubMed DOI

Maffessanti F, et al. The influence of scar on the spatio-temporal relationship between electrical and mechanical activation in heart failure patients. Europace. 2020;22:777–786. doi: 10.1093/europace/euz346. PubMed DOI

Setser RM, Smedira NG, Lieber ML, Sabo ED, White RD. Left ventricular torsional mechanics after left ventricular reconstruction surgery for ischemic cardiomyopathy. J. Thorac. Cardiovasc. Surg. 2007;134:888–896. doi: 10.1016/j.jtcvs.2007.05.060. PubMed DOI

Mornos C, et al. The influence of left bundle branch-block and cardiac dyssynchrony on 2D-strain parameters in patients with heart failure complicating ischemic cardiomyopathy. Rom. J. Intern. Med. 2011;49:179–188. PubMed

Sengupta PP, et al. Apex-to-base dispersion in regional timing of left ventricular shortening and lengthening. J. Am. Coll. Cardiol. 2006;47:163–172. doi: 10.1016/j.jacc.2005.08.073. PubMed DOI

de Lucia C, Eguchi A, Koch WJ. New insights in cardiac beta-adrenergic signaling during heart failure and aging. Front. Pharmacol. 2018;9:904. doi: 10.3389/fphar.2018.00904. PubMed DOI PMC

Tomaselli GF, Marban E. Electrophysiological remodeling in hypertrophy and heart failure. Cardiovasc. Res. 1999;42:270–283. doi: 10.1016/S0008-6363(99)00017-6. PubMed DOI

Bundgaard H, et al. The first-in-man randomized trial of a beta3 adrenoceptor agonist in chronic heart failure: The BEAT-HF trial. Eur. J. Heart Fail. 2017;19:566–575. doi: 10.1002/ejhf.714. PubMed DOI

Tavakoli V, Sahba N. Assessment of subendocardial vs. subepicardial left ventricular twist using tagged MRI images. Cardiovasc. Diagn. Ther. 2014;4:56–63. PubMed PMC

Cao JJ, et al. A comparison of both DENSE and feature tracking techniques with tagging for the cardiovascular magnetic resonance assessment of myocardial strain. J. Cardiovasc. Magn. Reson. 2018;20:26. doi: 10.1186/s12968-018-0448-9. PubMed DOI PMC

Notomi Y, et al. Assessment of left ventricular torsional deformation by Doppler tissue imaging: Validation study with tagged magnetic resonance imaging. Circulation. 2005;111:1141–1147. doi: 10.1161/01.CIR.0000157151.10971.98. PubMed DOI

Mitchell C, et al. Guidelines for performing a comprehensive transthoracic echocardiographic examination in adults: Recommendations from the American Society of Echocardiography. J. Am. Soc. Echocardiogr. 2019;32:1–64. doi: 10.1016/j.echo.2018.06.004. PubMed DOI

Gyongyosi M, Dib N. Diagnostic and prognostic value of 3D NOGA mapping in ischemic heart disease. Nat. Rev. Cardiol. 2011;8:393–404. doi: 10.1038/nrcardio.2011.64. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace