Local electromechanical alterations determine the left ventricle rotational dynamics in CRT-eligible heart failure patients
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu klinické zkoušky, časopisecké články, práce podpořená grantem
PubMed
33547401
PubMed Central
PMC7865069
DOI
10.1038/s41598-021-82793-1
PII: 10.1038/s41598-021-82793-1
Knihovny.cz E-zdroje
- MeSH
- biomechanika MeSH
- lidé středního věku MeSH
- lidé MeSH
- senioři MeSH
- srdeční komory patofyziologie MeSH
- srdeční resynchronizační terapie * metody MeSH
- srdeční selhání patofyziologie terapie MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- klinické zkoušky MeSH
- práce podpořená grantem MeSH
Left ventricle, LV wringing wall motion relies on physiological muscle fiber orientation, fibrotic status, and electromechanics (EM). The loss of proper EM activation can lead to rigid-body-type (RBT) LV rotation, which is associated with advanced heart failure (HF) and challenges in resynchronization. To describe the EM coupling and scar tissue burden with respect to rotational patterns observed on the LV in patients with ischemic heart failure with reduced ejection fraction (HFrEF) left bundle branch block (LBBB). Thirty patients with HFrEF/LBBB underwent EM analysis of the left ventricle using an invasive electro-mechanical catheter mapping system (NOGA XP, Biosense Webster). The following parameters were evaluated: rotation angle; rotation velocity; unipolar/bipolar voltage; local activation time, LAT; local electro-mechanical delay, LEMD; total electro-mechanical delay, TEMD. Patients underwent late-gadolinium enhancement cMRI when possible. The different LV rotation pattern served as sole parameter for patients' grouping into two categories: wringing rotation (Group A, n = 6) and RBT rotation (Group B, n = 24). All parameters were aggregated into a nine segment, three sector and whole LV models, and compared at multiple scales. Segmental statistical analysis in Group B revealed significant inhomogeneities, across the LV, regarding voltage level, scar burdening, and LEMD changes: correlation analysis showed correspondently a loss of synchronization between electrical (LAT) and mechanical activation (TEMD). On contrary, Group A (relatively low number of patients) did not present significant differences in LEMD across LV segments, therefore electrical (LAT) and mechanical (TEMD) activation were well synchronized. Fibrosis burden was in general associated with areas of low voltage. The rotational behavior of LV in HF/LBBB patients is determined by the local alteration of EM coupling. These findings serve as a strong basic groundwork for a hypothesis that EM analysis may predict CRT response.Clinical trial registration: SUM No. KNW/0022/KB1/17/15.
Department of Cardiothoracic and Vascular Surgery German Heart Center Berlin Berlin Germany
Department of Cardiovascular Surgery Charité Universitätsmedizin Berlin Berlin Germany
Department of Diagnostic Imaging Medical University of Silesia Katowice Poland
Department of Electrocardiology and Heart Failure Medical University of Silesia Katowice Poland
Department of Epidemiology Medical University of Silesia Katowice Poland
IHU LIRYC Inserm U1045 Bordeaux France
Institute for Regenerative Medicine University of Zurich Zurich Switzerland
Zobrazit více v PubMed
Omar AM, Vallabhajosyula S, Sengupta PP. Left ventricular twist and torsion: Research observations and clinical applications. Circ. Cardiovasc. Imaging. 2015;8:e003029. doi: 10.1161/CIRCIMAGING.115.003029. PubMed DOI
Sengupta PP, et al. Left ventricular form and function revisited: Applied translational science to cardiovascular ultrasound imaging. J. Am. Soc. Echocardiogr. 2007;20:539–551. doi: 10.1016/j.echo.2006.10.013. PubMed DOI PMC
Sillanmaki S, et al. Relationships between electrical and mechanical dyssynchrony in patients with left bundle branch block and healthy controls. J. Nucl. Cardiol. 2019;26:1228–1239. doi: 10.1007/s12350-018-1204-0. PubMed DOI
Perini AP, et al. Left ventricular rotational dyssynchrony before cardiac resynchronization therapy: A step forward into ventricular mechanics. J. Cardiovasc. Med. (Hagerstown) 2016;17:469–477. doi: 10.2459/JCM.0000000000000391. PubMed DOI
Russel IK, Gotte MJ. New insights in LV torsion for the selection of cardiac resynchronisation therapy candidates. Neth. Heart J. 2011;19:386–391. doi: 10.1007/s12471-011-0136-y. PubMed DOI PMC
Setser RM, et al. Persistent abnormal left ventricular systolic torsion in dilated cardiomyopathy after partial left ventriculectomy. J. Thorac. Cardiovasc. Surg. 2003;126:48–55. doi: 10.1016/S0022-5223(03)00050-3. PubMed DOI
Kanzaki H, et al. Impaired systolic torsion in dilated cardiomyopathy: Reversal of apical rotation at mid-systole characterized with magnetic resonance tagging method. Basic Res. Cardiol. 2006;101:465–470. doi: 10.1007/s00395-006-0603-6. PubMed DOI
Popescu BA, et al. Left ventricular remodelling and torsional dynamics in dilated cardiomyopathy: Reversed apical rotation as a marker of disease severity. Eur. J. Heart Fail. 2009;11:945–951. doi: 10.1093/eurjhf/hfp124. PubMed DOI
van Dalen BM, et al. Left ventricular solid body rotation in non-compaction cardiomyopathy: A potential new objective and quantitative functional diagnostic criterion? Eur. J. Heart Fail. 2008;10:1088–1093. doi: 10.1016/j.ejheart.2008.08.006. PubMed DOI
Sade LE, Demir O, Atar I, Muderrisoglu H, Ozin B. Effect of mechanical dyssynchrony and cardiac resynchronization therapy on left ventricular rotational mechanics. Am. J. Cardiol. 2008;101:1163–1169. doi: 10.1016/j.amjcard.2007.11.069. PubMed DOI
Russel IK, et al. Loss of opposite left ventricular basal and apical rotation predicts acute response to cardiac resynchronization therapy and is associated with long-term reversed remodeling. J. Card. Fail. 2009;15:717–725. doi: 10.1016/j.cardfail.2009.04.007. PubMed DOI
Leclercq C, et al. Cardiac resynchronization therapy non-responder to responder conversion rate in the more response to cardiac resynchronization therapy with MultiPoint Pacing (MORE-CRT MPP) study: Results from Phase I. Eur. Heart J. 2019;40:2979–2987. doi: 10.1093/eurheartj/ehz109. PubMed DOI
Russel IK, et al. Left ventricular torsion: An expanding role in the analysis of myocardial dysfunction. JACC Cardiovasc. Imaging. 2009;2:648–655. doi: 10.1016/j.jcmg.2009.03.001. PubMed DOI
Taber LA, Yang M, Podszus WW. Mechanics of ventricular torsion. J. Biomech. 1996;29:745–752. doi: 10.1016/0021-9290(95)00129-8. PubMed DOI
Rodriguez LM, Timmermans C, Nabar A, Beatty G, Wellens HJ. Variable patterns of septal activation in patients with left bundle branch block and heart failure. J. Cardiovasc. Electrophysiol. 2003;14:135–141. doi: 10.1046/j.1540-8167.2003.02421.x. PubMed DOI
Nichols KJ, et al. Gated myocardial perfusion SPECT asynchrony measurements in patients with left bundle branch block. Int. J. Cardiovasc. Imaging. 2009;25:43–51. doi: 10.1007/s10554-008-9354-9. PubMed DOI PMC
Smiseth OA, Aalen JM. Mechanism of harm from left bundle branch block. Trends. Cardiovasc. Med. 2019;29:335–342. doi: 10.1016/j.tcm.2018.10.012. PubMed DOI
Eriksson P, Hansson PO, Eriksson H, Dellborg M. Bundle-branch block in a general male population: The study of men born 1913. Circulation. 1998;98:2494–2500. doi: 10.1161/01.CIR.98.22.2494. PubMed DOI
Aalen J, et al. Afterload hypersensitivity in patients with left bundle branch block. JACC Cardiovasc. Imaging. 2019;12:967–977. doi: 10.1016/j.jcmg.2017.11.025. PubMed DOI
Opdahl A, et al. Apical rotation by speckle tracking echocardiography: A simplified bedside index of left ventricular twist. J. Am. Soc. Echocardiogr. 2008;21:1121–1128. doi: 10.1016/j.echo.2008.06.012. PubMed DOI
Yilmaz S, et al. Left ventricular twist was decreased in isolated left bundle branch block with preserved ejection fraction. Anatol. J. Cardiol. 2017;17:475–480. PubMed PMC
Baldasseroni S, et al. Left bundle-branch block is associated with increased 1-year sudden and total mortality rate in 5517 outpatients with congestive heart failure: A report from the Italian network on congestive heart failure. Am. Heart J. 2002;143:398–405. doi: 10.1067/mhj.2002.121264. PubMed DOI
Bertini M, et al. Role of left ventricular twist mechanics in the assessment of cardiac dyssynchrony in heart failure. JACC Cardiovasc. Imaging. 2009;2:1425–1435. doi: 10.1016/j.jcmg.2009.09.013. PubMed DOI
Kim WJ, et al. Apical rotation assessed by speckle-tracking echocardiography as an index of global left ventricular contractility. Circ. Cardiovasc. Imaging. 2009;2:123–131. doi: 10.1161/CIRCIMAGING.108.794719. PubMed DOI
Lee SJ, et al. Isolated bundle branch block and left ventricular dysfunction. J. Card. Fail. 2003;9:87–92. doi: 10.1054/jcaf.2003.19. PubMed DOI
Zannad F, et al. Left bundle branch block as a risk factor for progression to heart failure. Eur. J. Heart Fail. 2007;9:7–14. doi: 10.1016/j.ejheart.2006.04.011. PubMed DOI
van Dalen BM, et al. Influence of cardiac shape on left ventricular twist. J. Appl. Physiol. 2010;1985(108):146–151. doi: 10.1152/japplphysiol.00419.2009. PubMed DOI
Maffessanti F, et al. The influence of scar on the spatio-temporal relationship between electrical and mechanical activation in heart failure patients. Europace. 2020;22:777–786. doi: 10.1093/europace/euz346. PubMed DOI
Setser RM, Smedira NG, Lieber ML, Sabo ED, White RD. Left ventricular torsional mechanics after left ventricular reconstruction surgery for ischemic cardiomyopathy. J. Thorac. Cardiovasc. Surg. 2007;134:888–896. doi: 10.1016/j.jtcvs.2007.05.060. PubMed DOI
Mornos C, et al. The influence of left bundle branch-block and cardiac dyssynchrony on 2D-strain parameters in patients with heart failure complicating ischemic cardiomyopathy. Rom. J. Intern. Med. 2011;49:179–188. PubMed
Sengupta PP, et al. Apex-to-base dispersion in regional timing of left ventricular shortening and lengthening. J. Am. Coll. Cardiol. 2006;47:163–172. doi: 10.1016/j.jacc.2005.08.073. PubMed DOI
de Lucia C, Eguchi A, Koch WJ. New insights in cardiac beta-adrenergic signaling during heart failure and aging. Front. Pharmacol. 2018;9:904. doi: 10.3389/fphar.2018.00904. PubMed DOI PMC
Tomaselli GF, Marban E. Electrophysiological remodeling in hypertrophy and heart failure. Cardiovasc. Res. 1999;42:270–283. doi: 10.1016/S0008-6363(99)00017-6. PubMed DOI
Bundgaard H, et al. The first-in-man randomized trial of a beta3 adrenoceptor agonist in chronic heart failure: The BEAT-HF trial. Eur. J. Heart Fail. 2017;19:566–575. doi: 10.1002/ejhf.714. PubMed DOI
Tavakoli V, Sahba N. Assessment of subendocardial vs. subepicardial left ventricular twist using tagged MRI images. Cardiovasc. Diagn. Ther. 2014;4:56–63. PubMed PMC
Cao JJ, et al. A comparison of both DENSE and feature tracking techniques with tagging for the cardiovascular magnetic resonance assessment of myocardial strain. J. Cardiovasc. Magn. Reson. 2018;20:26. doi: 10.1186/s12968-018-0448-9. PubMed DOI PMC
Notomi Y, et al. Assessment of left ventricular torsional deformation by Doppler tissue imaging: Validation study with tagged magnetic resonance imaging. Circulation. 2005;111:1141–1147. doi: 10.1161/01.CIR.0000157151.10971.98. PubMed DOI
Mitchell C, et al. Guidelines for performing a comprehensive transthoracic echocardiographic examination in adults: Recommendations from the American Society of Echocardiography. J. Am. Soc. Echocardiogr. 2019;32:1–64. doi: 10.1016/j.echo.2018.06.004. PubMed DOI
Gyongyosi M, Dib N. Diagnostic and prognostic value of 3D NOGA mapping in ischemic heart disease. Nat. Rev. Cardiol. 2011;8:393–404. doi: 10.1038/nrcardio.2011.64. PubMed DOI