Revisiting Steroidogenic Pathways in the Human Placenta and Primary Human Trophoblast Cells
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
310030_149958
Swiss National Science Foundation - Switzerland
17-15-F
Stiftung Lindenhof Bern
20/13017S
Czech Science Foundation
SVV 2020/260414
Grant Agency of Charles University
PubMed
33567726
PubMed Central
PMC7915605
DOI
10.3390/ijms22041704
PII: ijms22041704
Knihovny.cz E-zdroje
- Klíčová slova
- gestation, placenta, steroid metabolism, steroidogenesis, trophoblast,
- MeSH
- choriokarcinom metabolismus patologie MeSH
- dospělí MeSH
- gestační stáří MeSH
- kultivované buňky MeSH
- lidé MeSH
- novorozenec MeSH
- placenta cytologie metabolismus MeSH
- první trimestr těhotenství metabolismus MeSH
- regulace genové exprese * MeSH
- steroidhydroxylasy genetika metabolismus MeSH
- steroidy metabolismus MeSH
- těhotenství MeSH
- trofoblasty cytologie metabolismus MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- novorozenec MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- steroidhydroxylasy MeSH
- steroidy MeSH
Steroid hormones play a crucial role in supporting a successful pregnancy and ensuring proper fetal development. The placenta is one of the principal tissues in steroid production and metabolism, expressing a vast range of steroidogenic enzymes. Nevertheless, a comprehensive characterization of steroidogenic pathways in the human placenta and potential developmental changes occurring during gestation are poorly understood. Furthermore, the specific contribution of trophoblast cells in steroid release is largely unknown. Thus, this study aimed to (i) identify gestational age-dependent changes in the gene expression of key steroidogenic enzymes and (ii) explore the role of trophoblast cells in steroid biosynthesis and metabolism. Quantitative and Droplet Digital PCR analysis of 12 selected enzymes was carried out in the first trimester (n = 13) and term (n = 20) human placentas. Primary trophoblast cells (n = 5) isolated from human term placentas and choriocarcinoma-derived cell lines (BeWo, BeWo b30 clone, and JEG-3) were further screened for gene expression of enzymes involved in placental synthesis/metabolism of steroids. Finally, de novo steroid synthesis by primary human trophoblasts was evaluated, highlighting the functional activity of steroidogenic enzymes in these cells. Collectively, we provide insights into the expression patterns of steroidogenic enzymes as a function of gestational age and delineate the cellular origin of steroidogenesis in the human placenta.
Zobrazit více v PubMed
Knöfler M., Haider S., Saleh L., Pollheimer J., Gamage T.K., James J. Human placenta and trophoblast development: Key molecular mechanisms and model systems. Cell. Mol. Life Sci. 2019;76:3479–3496. doi: 10.1007/s00018-019-03104-6. PubMed DOI PMC
Napso T., Yong H.E.J., Lopez-Tello J., Sferruzzi-Perri A.N. The Role of Placental Hormones in Mediating Maternal Adaptations to Support Pregnancy and Lactation. Front. Physiol. 2018;9 doi: 10.3389/fphys.2018.01091. PubMed DOI PMC
Staud F., Mazancova K., Miksik I., Pavek P., Fendrich Z., Pacha J. Corticosterone transfer and metabolism in the dually perfused rat placenta: Effect of 11beta-hydroxysteroid dehydrogenase type 2. Placenta. 2006;27:171–180. doi: 10.1016/j.placenta.2005.01.001. PubMed DOI
Stirrat L.I., Sengers B.G., Norman J.E., Homer N.Z.M., Andrew R., Lewis R.M., Reynolds R.M. Transfer and Metabolism of Cortisol by the Isolated Perfused Human Placenta. J. Clin. Endocrinol. Metab. 2018;103:640–648. doi: 10.1210/jc.2017-02140. PubMed DOI PMC
Benediktsson R., Calder A.A., Edwards C.R., Seckl J.R. Placental 11 beta-hydroxysteroid dehydrogenase: A key regulator of fetal glucocorticoid exposure. Clin. Endocrinol. 1997;46:161–166. doi: 10.1046/j.1365-2265.1997.1230939.x. PubMed DOI
Chatuphonprasert W., Jarukamjorn K., Ellinger I. Physiology and Pathophysiology of Steroid Biosynthesis, Transport and Metabolism in the Human Placenta. Front Pharm. 2018;9:1027. doi: 10.3389/fphar.2018.01027. PubMed DOI PMC
Noyola-Martínez N., Halhali A., Barrera D. Steroid hormones and pregnancy. Gynecol. Endocrinol. 2019;35:376–384. doi: 10.1080/09513590.2018.1564742. PubMed DOI
Raghupathy R., Al Mutawa E., Makhseed M., Azizieh F., Szekeres-Bartho J. Modulation of cytokine production by dydrogesterone in lymphocytes from women with recurrent miscarriage. BJOG. 2005;112:1096–1101. doi: 10.1111/j.1471-0528.2005.00633.x. PubMed DOI
Brar A.K., Frank G.R., Kessler C.A., Cedars M.I., Handwerger S. Progesterone-dependent decidualization of the human endometrium is mediated by cAMP. Endocrine. 1997;6:301–307. doi: 10.1007/BF02820507. PubMed DOI
Chen J.Z., Wong M.H., Brennecke S.P., Keogh R.J. The effects of human chorionic gonadotrophin, progesterone and oestradiol on trophoblast function. Mol. Cell Endocrinol. 2011;342:73–80. doi: 10.1016/j.mce.2011.05.034. PubMed DOI
O’Shaughnessy P.J., Antignac J.P., Le Bizec B., Morvan M.L., Svechnikov K., Söder O., Savchuk I., Monteiro A., Soffientini U., Johnston Z.C., et al. Alternative (backdoor) androgen production and masculinization in the human fetus. PLoS Biol. 2019;17:e3000002. doi: 10.1371/journal.pbio.3000002. PubMed DOI PMC
Albrecht E.D., Pepe G.J. Estrogen regulation of placental angiogenesis and fetal ovarian development during primate pregnancy. Int. J. Dev. Biol. 2010;54:397–408. doi: 10.1387/ijdb.082758ea. PubMed DOI PMC
Michael A.E., Papageorghiou A.T. Potential significance of physiological and pharmacological glucocorticoids in early pregnancy. Hum. Reprod. Update. 2008;14:497–517. doi: 10.1093/humupd/dmn021. PubMed DOI
Barker D.J., Gluckman P.D., Godfrey K.M., Harding J.E., Owens J.A., Robinson J.S. Fetal nutrition and cardiovascular disease in adult life. Lancet. 1993;341:938–941. doi: 10.1016/0140-6736(93)91224-A. PubMed DOI
Edwards C.R., Benediktsson R., Lindsay R.S., Seckl J.R. Dysfunction of placental glucocorticoid barrier: Link between fetal environment and adult hypertension? Lancet. 1993;341:355–357. doi: 10.1016/0140-6736(93)90148-A. PubMed DOI
Payne A.H., Hales D.B. Overview of steroidogenic enzymes in the pathway from cholesterol to active steroid hormones. Endocr. Rev. 2004;25:947–970. doi: 10.1210/er.2003-0030. PubMed DOI
Benirschke K., Kaufmann P., Baergen R. Pathology of the Human Placenta. Springer; New York, NY, USA: 2016. DOI
Kolahi K.S., Valent A.M., Thornburg K.L. Cytotrophoblast, Not Syncytiotrophoblast, Dominates Glycolysis and Oxidative Phosphorylation in Human Term Placenta. Sci. Rep. 2017;7:42941. doi: 10.1038/srep42941. PubMed DOI PMC
Bilban M., Tauber S., Haslinger P., Pollheimer J., Saleh L., Pehamberger H., Wagner O., Knöfler M. Trophoblast invasion: Assessment of cellular models using gene expression signatures. Placenta. 2010;31:989–996. doi: 10.1016/j.placenta.2010.08.011. PubMed DOI
Kallol S., Moser-Haessig R., Ontsouka C.E., Albrecht C. Comparative expression patterns of selected membrane transporters in differentiated BeWo and human primary trophoblast cells. Placenta. 2018;72:48–52. doi: 10.1016/j.placenta.2018.10.008. PubMed DOI
Karahoda R., Abad C., Horackova H., Kastner P., Zaugg J., Cerveny L., Kucera R., Albrecht C., Staud F. Dynamics of Tryptophan Metabolic Pathways in Human Placenta and Placental-Derived Cells: Effect of Gestation Age and Trophoblast Differentiation. Front. Cell Dev. Biol. 2020;8 doi: 10.3389/fcell.2020.574034. PubMed DOI PMC
Staud F., Karahoda R. Trophoblast: The central unit of fetal growth, protection and programming. Int. J. Biochem. Cell Biol. 2018;105:35–40. doi: 10.1016/j.biocel.2018.09.016. PubMed DOI
Costa M.A. The endocrine function of human placenta: An overview. Reprod. Biomed. Online. 2016;32:14–43. doi: 10.1016/j.rbmo.2015.10.005. PubMed DOI
Voutilainen R., Miller W.L. Developmental expression of genes for the stereoidogenic enzymes P450scc (20,22-desmolase), P450c17 (17 alpha-hydroxylase/17,20-lyase), and P450c21 (21-hydroxylase) in the human fetus. J. Clin. Endocrinol. Metab. 1986;63:1145–1150. doi: 10.1210/jcem-63-5-1145. PubMed DOI
Siiteri P.K., MacDonald P.C. Placental estrogen biosynthesis during human pregnancy. J. Clin. Endocrinol. Metab. 1966;26:751–761. doi: 10.1210/jcem-26-7-751. PubMed DOI
Little B., Shaw A. The conversion of progesterone to 17 alpha-hydroxyprogesterone by human placenta in vitro. Acta Endocrinol. 1961;36:455–461. doi: 10.1530/acta.0.0360455. PubMed DOI
Escobar J.C., Patel S.S., Beshay V.E., Suzuki T., Carr B.R. The human placenta expresses CYP17 and generates androgens de novo. J. Clin. Endocrinol. Metab. 2011;96:1385–1392. doi: 10.1210/jc.2010-2504. PubMed DOI
Durkee T.J., McLean M.P., Hales D.B., Payne A.H., Waterman M.R., Khan I., Gibori G. P450(17 alpha) and P450SCC gene expression and regulation in the rat placenta. Endocrinology. 1992;130:1309–1317. doi: 10.1210/endo.130.3.1537294. PubMed DOI
Tulchinsky D., Simmer H.H. Sources of plasma 17alpha-hydroxyprogesterone in human pregnancy. J. Clin. Endocrinol. Metab. 1972;35:799–808. doi: 10.1210/jcem-35-6-799. PubMed DOI
Baronio F., Ortolano R., Menabò S., Cassio A., Baldazzi L., Di Natale V., Tonti G., Vestrucci B., Balsamo A. 46,XX DSD due to Androgen Excess in Monogenic Disorders of Steroidogenesis: Genetic, Biochemical, and Clinical Features. Int. J. Mol. Sci. 2019;20:4605. doi: 10.3390/ijms20184605. PubMed DOI PMC
Mathur R.S., Landgrebe S., Moody L.O., Powell S., Williamson H.O. Plasma steroid concentrations in maternal and umbilical circulation after spontaneous onset of labor. J. Clin. Endocrinol. Metab. 1980;51:1235–1238. doi: 10.1210/jcem-51-6-1235. PubMed DOI
Rhéaume E., Lachance Y., Zhao H.F., Breton N., Dumont M., de Launoit Y., Trudel C., Luu-The V., Simard J., Labrie F. Structure and expression of a new complementary DNA encoding the almost exclusive 3 beta-hydroxysteroid dehydrogenase/delta 5-delta 4-isomerase in human adrenals and gonads. Mol. Endocrinol. 1991;5:1147–1157. doi: 10.1210/mend-5-8-1147. PubMed DOI
Flück C.E., Meyer-Böni M., Pandey A.V., Kempná P., Miller W.L., Schoenle E.J., Biason-Lauber A. Why boys will be boys: Two pathways of fetal testicular androgen biosynthesis are needed for male sexual differentiation. Am. J. Hum. Genet. 2011;89:201–218. doi: 10.1016/j.ajhg.2011.06.009. PubMed DOI PMC
Yoshida N., Osawa Y. Purification of human placental aromatase cytochrome P-450 with monoclonal antibody and its characterization. Biochemistry. 1991;30:3003–3010. doi: 10.1021/bi00226a004. PubMed DOI
Engler J.B., Kursawe N., Solano M.E., Patas K., Wehrmann S., Heckmann N., Lühder F., Reichardt H.M., Arck P.C., Gold S.M., et al. Glucocorticoid receptor in T cells mediates protection from autoimmunity in pregnancy. Proc. Natl. Acad. Sci. USA. 2017;114:E181–E190. doi: 10.1073/pnas.1617115114. PubMed DOI PMC
Solano M.E., Arck P.C. Steroids, Pregnancy and Fetal Development. Front. Immunol. 2020;10:3017. doi: 10.3389/fimmu.2019.03017. PubMed DOI PMC
Murphy V.E., Clifton V.L. Alterations in human placental 11beta-hydroxysteroid dehydrogenase type 1 and 2 with gestational age and labour. Placenta. 2003;24:739–744. doi: 10.1016/S0143-4004(03)00103-6. PubMed DOI
Pasqualini J.R. Enzymes involved in the formation and transformation of steroid hormones in the fetal and placental compartments. J. Steroid. Biochem. Mol. Biol. 2005;97:401–415. doi: 10.1016/j.jsbmb.2005.08.004. PubMed DOI
Sun K., Yang K., Challis J.R. Differential expression of 11 beta-hydroxysteroid dehydrogenase types 1 and 2 in human placenta and fetal membranes. J. Clin. Endocrinol. Metab. 1997;82:300–305. doi: 10.1210/jcem.82.1.3681. PubMed DOI
Michael A.E., Thurston L.M., Rae M.T. Glucocorticoid metabolism and reproduction: A tale of two enzymes. Reproduction. 2003;126:425–441. doi: 10.1530/rep.0.1260425. PubMed DOI
Yinon Y., Kingdom J.C., Proctor L.K., Kelly E.N., Salle J.L., Wherrett D., Keating S., Nevo O., Chitayat D. Hypospadias in males with intrauterine growth restriction due to placental insufficiency: The placental role in the embryogenesis of male external genitalia. Am. J. Med. Genet. A. 2010;152a:75–83. doi: 10.1002/ajmg.a.33140. PubMed DOI
Hakim C., Padmanabhan V., Vyas A.K. Gestational Hyperandrogenism in Developmental Programming. Endocrinology. 2017;158:199–212. doi: 10.1210/en.2016-1801. PubMed DOI PMC
Shimodaira M., Nakayama T., Sato I., Sato N., Izawa N., Mizutani Y., Furuya K., Yamamoto T. Glucocorticoid synthesis-related genes: HSD11B1 and HSD11B2 in hypertensive disorders in pregnancy. Gynecol. Endocrinol. 2013;29:657–661. doi: 10.3109/09513590.2013.788623. PubMed DOI
Shimodaira M., Nakayama T., Sato I., Sato N., Izawa N., Mizutani Y., Furuya K., Yamamoto T. Estrogen synthesis genes CYP19A1, HSD3B1, and HSD3B2 in hypertensive disorders of pregnancy. Endocrine. 2012;42:700–707. doi: 10.1007/s12020-012-9699-7. PubMed DOI
Kliman H.J., Nestler J.E., Sermasi E., Sanger J.M., Strauss J.F., 3rd Purification, characterization, and in vitro differentiation of cytotrophoblasts from human term placentae. Endocrinology. 1986;118:1567–1582. doi: 10.1210/endo-118-4-1567. PubMed DOI
Maldonado-Estrada J., Menu E., Roques P., Barre-Sinoussi F., Chaouat G. Evaluation of Cytokeratin 7 as an accurate intracellular marker with which to assess the purity of human placental villous trophoblast cells by flow cytometry. J. Immunol. Methods. 2004;286:21–34. doi: 10.1016/j.jim.2003.03.001. PubMed DOI
Li L., Schust D.J. Isolation, purification and in vitro differentiation of cytotrophoblast cells from human term placenta. Reprod. Biol. Endocrinol. 2015;13:71. doi: 10.1186/s12958-015-0070-8. PubMed DOI PMC
Xie F., Xiao P., Chen D., Xu L., Zhang B. miRDeepFinder: A miRNA analysis tool for deep sequencing of plant small RNAs. Plant Mol. Biol. 2012 doi: 10.1007/s11103-012-9885-2. PubMed DOI
Vandesompele J., De Preter K., Pattyn F., Poppe B., Van Roy N., De Paepe A., Speleman F. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002;3:research0034.0031. doi: 10.1186/gb-2002-3-7-research0034. PubMed DOI PMC
Karahoda R., Horackova H., Kastner P., Matthios A., Cerveny L., Kucera R., Kacerovsky M., Tebbens J.D., Bonnin A., Abad C., et al. Serotonin homeostasis in the materno-fetal interface at term: Role of transporters (SERT/SLC6A4 and OCT3/SLC22A3) and monoamine oxidase A (MAO-A) in uptake and degradation of serotonin by human and rat term placenta. Acta Physiol. 2020 doi: 10.1111/apha.13478. PubMed DOI PMC
Peitzsch M., Dekkers T., Haase M., Sweep F.C., Quack I., Antoch G., Siegert G., Lenders J.W., Deinum J., Willenberg H.S., et al. An LC-MS/MS method for steroid profiling during adrenal venous sampling for investigation of primary aldosteronism. J. Steroid. Biochem. Mol. Biol. 2015;145:75–84. doi: 10.1016/j.jsbmb.2014.10.006. PubMed DOI
Babicki S., Arndt D., Marcu A., Liang Y., Grant J.R., Maciejewski A., Wishart D.S. Heatmapper: Web-enabled heat mapping for all. Nucleic Acids Res. 2016;44:W147–W153. doi: 10.1093/nar/gkw419. PubMed DOI PMC