Mixed-Mating Model of Reproduction Revealed in European Phytophthora cactorum by ddRADseq and Effector Gene Sequence Data

. 2021 Feb 10 ; 9 (2) : . [epub] 20210210

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33578718

Grantová podpora
QK1710377 Ministerstvo Zemědělství
MZE-RO0418 Ministerstvo Zemědělství
Project Phytophthora Research Centre CZ.02.1.01/0.0/0.0/ 15_003/0000453 European Regional Development Fund

Odkazy

PubMed 33578718
PubMed Central PMC7916502
DOI 10.3390/microorganisms9020345
PII: microorganisms9020345
Knihovny.cz E-zdroje

A population study of Phytophthora cactorum was performed using ddRADseq sequence variation analysis completed by the analysis of effector genes-RXLR6, RXLR7 and SCR113. The population structure was described by F-statistics, heterozygosity, nucleotide diversity, number of private alleles, number of polymorphic sites, kinship coefficient and structure analysis. The population of P. cactorum in Europe seems to be structured into host-associated groups. The isolates from woody hosts are structured into four groups described previously, while isolates from strawberry form another group. The groups are diverse in effector gene composition and the frequency of outbreeding. When populations from strawberry were analysed, both asexual reproduction and occasional outbreeding confirmed by gene flow among distinct populations were detected. Therefore, distinct P. cactorum populations differ in the level of heterozygosity. The data support the theory of the mixed-mating model for P. cactorum, comprising frequent asexual behaviour and inbreeding alternating with occasional outbreeding. Because P. cactorum is not indigenous to Europe, such variability is probably caused by multiple introductions of different lineages from the area of its original distribution, and the different histories of sexual recombination and host adaptation of particular populations.

Zobrazit více v PubMed

Erwin D.C., Ribeiro O.K. Phytophthora Diseases Worldwide. APS Press; St. Paul, MN, USA: 1996.

Jung T., Orlikowski L., Henricot B., Abad-Campos P., Aday A.G., Aguín Casal O., Bakonyi J., Cacciola S.O., Cech T., Chavarriaga D., et al. Widespread Phytophthora infestations in European nurseries put forest, semi-natural and horticultural ecosystems at high risk of Phytophthora diseases. For. Pathol. 2016;46:134–163. doi: 10.1111/efp.12239. DOI

Eikemo H., Klemsdal S.S., Riisberg I., Bonants P., Stensvand A., Tronsmo A.M. Genetic variation between Phytophthora cactorum isolates differing in their ability to cause crown rot in strawberry. Mycol. Res. 2004;108:317–324. doi: 10.1017/S0953756204009244. PubMed DOI

Hantula J., Lilja A., Parikka P. Genetic variation and host specificity of Phytophthora cactorum isolated in Europe. Mycol. Res. 1997;101:565–572. doi: 10.1017/S0953756296002900. DOI

Lilja A., Reijo K., Päivi P., Kari K., Heikki N. Pathogenicity and genetic variation of Phytophthora cactorum from silver birch and strawberry. Eur. J. Plant Pathol. 1998;104:529–535. doi: 10.1023/A:1008644804415. DOI

Becktell M.C., Smart C.D., Haney C.H., Fry W.E. Host-pathogen interactions between Phytophthora infestans and the solanaceous hosts Calibrachoa x hybridus, Petunia x hybrida, and Nicotiana benthamiana. Plant Dis. 2006;90:24–32. doi: 10.1094/PD-90-0024. PubMed DOI

Haque M.M., Casero J.J. Susceptibility of common alder (Alnus glutinosa) seeds and seedlings to Phytophthora alni and other Phytophthora species. For. Syst. 2012;21:313–322. doi: 10.5424/fs/2012212-02267. DOI

Van Der Scheer H.A.T. Isolation of Phytophthora cactorum from soil in orchards and strawberry fields and differences in pathogenicity to apple. Neth. J. Plant Pathol. 1971;77:65–72. doi: 10.1007/BF01981494. DOI

Bhat R.G., Colowit P.M., Tai T.H., Aradhya M.K., Browne G.T. Genetic and pathogenic variation in Phytophthora cactorum affecting fruit and nut crops in California. Plant Dis. 2006;90:161–169. doi: 10.1094/PD-90-0161. PubMed DOI

Cooke D.E.L., Kennedy D.M., Guy D.C., Russell J., Unkles S.E., Duncan J.M. Relatedness of Group I species of Phytophthora as assessed by randomly amplified polymorphic DNA (RAPDs) and sequences of ribosomal DNA. Mycol. Res. 1996;100:297–303. doi: 10.1016/S0953-7562(96)80158-4. DOI

Hantula J., Lilja A., Nuorteva H., Parikka P., Werres S. Isolation and Pathogenicity of Phytophthora cactorum from Forest and Ginseng Garden Soils in Wisconsin. Plant Dis. 1991;75:610–612.

Oudemans P., Coffey M.D. Isozyme comparison within and among worldwide sources of three morphologically distinct species of Phytophthora. Mycol. Res. 1991;95:19–30. doi: 10.1016/S0953-7562(09)81358-0. DOI

Pánek M., Fér T., Mráček J., Tomšovský M. Evolutionary relationships within the Phytophthora cactorum species complex in Europe. Fungal Biol. 2016;120:836–851. doi: 10.1016/j.funbio.2016.03.006. PubMed DOI

de Cock A.W.A.M., Lévesque C.A. New species of Pythium and Phytophthora. Stud. Mycol. 2004;50:481–487.

Man in’t Veld W.A., De Cock A.W.A.M., Summerbell R.C. Natural hybrids of resident and introduced Phytophthora species proliferating on multiple new hosts. Eur. J. Plant Pathol. 2007;117:25–33. doi: 10.1007/s10658-006-9065-9. DOI

Man in ’t Veld W.A., Rosendahl K.C.H.M., Hong C. Phytophthora xserendipita sp. nov. and P. xpelgrandis, two destructive pathogens generated by natural hybridization. Mycologia. 2012;104:1390–1396. doi: 10.3852/11-272. PubMed DOI

Yang M., Duan S., Mei X., Huang H., Chen W., Liu Y., Guo C., Yang T., Wei W., Liu X., et al. The Phytophthora cactorum genome provides insights into the adaptation to host defense compounds and fungicides. Sci. Rep. 2018;8:1–11. doi: 10.1038/s41598-018-24939-2. PubMed DOI PMC

Armitage A.D., Lysøe E., Nellist C.F., Lewis L.A., Cano L.M., Harrison R.J., Brurberg M.B. Bioinformatic characterisation of the effector repertoire of the strawberry pathogen Phytophthora cactorum. PLoS ONE. 2018;13:e0202305. doi: 10.1371/journal.pone.0202305. PubMed DOI PMC

Chen X.R., Zhang B.Y., Xing Y.P., Li Q.Y., Li Y.P., Tong Y.H., Xu J.Y. Transcriptomic analysis of the phytopathogenic oomycete Phytophthora cactorum provides insights into infection-related effectors. BMC Genom. 2014;15:1–24. doi: 10.1186/1471-2164-15-980. PubMed DOI PMC

Liu L., Xu L., Jia Q., Pan R., Oelmüller R., Zhang W., Wu C. Arms race: Diverse effector proteins with conserved motifs. Plant Signal. Behav. 2019;14:e1557008-1–e1557008-18. doi: 10.1080/15592324.2018.1557008. PubMed DOI PMC

Förster H., Coffey M.D. Approaches to the taxonomy of Phytophthora using polymorphisms in mitochondrial and nuclear DNA. In: Lucas J.A., Shattock R.C., Shaw D.S., Cooke D.E.L., editors. Phytophthora. Cambridge University Press; Cambridge, UK: 1991. pp. 164–183.

Goodwin S.B. The Population Genetics Phytophthora. Phytopathology. 1997;87:448–453. doi: 10.1094/PHYTO.1997.87.4.462. PubMed DOI

Ko W.H. Hormonal regulation of sexual reproduction in Phytophthora. Bot. Stud. 2007;48:365–375. doi: 10.1099/00221287-116-2-459. DOI

Jung T., Vettraino A.M., Cech T.L., Vanini A. The impact of invasive 667 Phytophthora species on European forests. In: Lamour K., editor. Phytophthora: A Global Perspective. Volume 668. CABI; Wllington, New Zealand: 2013. pp. 146–158. DOI

Ko W.H. Hormonal Heterothallism and Homothallism in Phytophthora. Ann. Rev. Phytopathol. 1988;679:57–73. doi: 10.1146/annurev.py.26.090188.000421. DOI

Orona C.A.L., Martínez A.R., Arteaga T., García H.G., Palermo D., Ruiz C.A. First Report of Homothallic Isolates of Phytophthora infestans in Commercial Potato Crops (Solanum tuberosum) in the Toluca Valley, Mexico. Plant Dis. 2013;97:1112. doi: 10.1094/PDIS-10-12-0962-PDN. PubMed DOI

Ko W.H. Heterothallic Phytophthora: Evidence for hormonal regulation of sexual reproduction, J. Gen. Microbiol. 1978;107:15–18. doi: 10.1099/00221287-107-1-15. DOI

Tomura T., Molli S.D., Murata R., Ojika M. Universality of the Phytophthora mating hormones and diversity of their production profile. Sci. Rep. 2017;7:1–12. doi: 10.1038/s41598-017-05380-3. PubMed DOI PMC

Judelson H.S. Sexual reproduction in oomycetes: Biology, diversity, and contributions to fitness. In: Lamour K., Kamoun S., editors. Oomycete Genetics and Genomics. Willey-Blackwell; Hoboken, NJ, USA: 2009. pp. 121–138.

Fry W.E., Goodwin S.B., Matuszak J.M., Spielman L.J., Milgroom M.G., Drenth A. Population genetics and intercontinental migrations of Phytophthora infestans. Annu. Rev. Phytopathol. 1992;30:107–129. doi: 10.1146/annurev.py.30.090192.000543. DOI

Maurice S., Montes M.S., Nielsen B.J., Bødker L., Martin M.D., Jønck C.G., Kjøller R., Rosendahl S. Population genomics of an outbreak of the potato late blight pathogen, Phytophthora infestans, reveals both clonality and high genotypic diversity. Mol. Plant Pathol. 2019;20:1134–1146. doi: 10.1111/mpp.12819. PubMed DOI PMC

Wang Y.P., Xie J.H., Wu E.J., Yahuza L., Duan G.H., Shen L.L., Liu H., Zhou S.H., Nkurikiyimfura O., Andersson B., et al. Lack of gene flow between Phytophthora infestans populations of two neighboring countries with the largest potato production. Evol. Appl. 2019;13:1–12. doi: 10.1111/eva.12870. PubMed DOI PMC

Eyre C.A., Kozanitas M., Garbelotto M. Population dynamics of aerial and terrestrial populations of Phytophthora ramorum in a California forest under different climatic conditions. Phytopathology. 2013;103:1141–1152. doi: 10.1094/PHYTO-11-12-0290-R. PubMed DOI

Bhat R.G., Mc Blain B.A., Schmitthenner A.F. The inheritance of resistance to metalaxyl and to fluorophenylalanine in matings of homothallic Phytophthora sojae. Mycol. Res. 1993;97:865–870. doi: 10.1016/S0953-7562(09)81164-7. DOI

Declercq B., Van Buyten E., Claeys S., Cap N., De Nies J., Pollet S., Höfte M. Molecular characterization of Phytophthora porri and closely related species and their pathogenicity on leek (Allium porrum) Eur. J. Plant Pathol. 2010;127:341–350. doi: 10.1007/s10658-010-9601-5. DOI

Leitz R.A., Hartman G.L., Pedersen W.L., Nickell C.D. Races of Phytophthora sojae on Soybean in Illinois. Plant Health Prog. 2000;1:487. doi: 10.1094/PHP-2000-0603-01-HN. PubMed DOI

Whisson S.C., Drenth A., Maclean D.J., Irwin J.A.G. Evidence for outcrossing in Phytophthora sojae and linkage of a DNA marker to two avirulence genes. Curr. Genet. 1994;27:77–82. doi: 10.1007/BF00326582. PubMed DOI

Fry W. Phytophthora infestans: The plant (and R gene) destroyer, Mol. Plant Pathol. 2008;9:385–402. doi: 10.1111/j.1364-3703.2007.00465.x. PubMed DOI PMC

Tsao P.H. Factors affecting isolation and quantitation of Phytophthora from soil. In: Erwin D.C., Bartnicki-Garcia S., Tsao P.H., editors. Phytophthora, Its Biology, Taxonomy, Ecology and Pathology. APS Press; Sant Paul, MN, USA: 1983. pp. 219–236.

White T.J., Bruns T., Lee S., Taylor J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis M.A., Gelfand D., Sninsky J.J., White T.J., editors. PCR Protocols: A Guide to Methods and Applications. Academic Press; New York, NY, USA: 1990. pp. 315–322.

Peterson B.K., Weber J.N., Kay E.H., Fisher H.S., Hoekstra H.E. Double digest RADseq: An inexpensive method for de novo SNP discovery and genotyping in model and non-model species. PLoS ONE. 2012;7:e37135. doi: 10.1371/journal.pone.0037135. PubMed DOI PMC

Chen X.R., Huang S.X., Zhang Y., Sheng G.L., Zhang B.Y., Li Q.Y., Zhu F., Xu J.Y. Transcription profiling and identification of infection-related genes in Phytophthora cactorum. Mol. Genet. Genomics. 2018;293:541–555. doi: 10.1007/s00438-017-1400-7. PubMed DOI

Andrews S. FastQC: A Quality Control Tool for High Throughput Sequence Data. [(accessed on 9 February 2021)];2010 Available online: http://www.bioinformatics.babraham.ac.uk/projects/fastqc.

Catchen J., Amores A., Hohenlohe P., Cresko W., Postlethwait J.H. Stacks: Building and genotyping loci de novo from short-read sequences. Genes Genomes Genet. 2011;1:171–182. doi: 10.1534/g3.111.000240. PubMed DOI PMC

Catchen J., Hohenlohe P.A., Bassham S., Amores A., Cresko W.A. Stacks: An analysis tool set for population genomics. Mol. Ecol. 2013;22:3124–3140. doi: 10.1111/mec.12354. PubMed DOI PMC

Excoffier L., Smouse P.E., Quattro J.M. Analysis of molecular variance inferred from metric distances among DNA haplotypes: Application to human mitochondrial DNA restriction data. Genetics. 1992;131:479–491. doi: 10.1093/genetics/131.2.479. PubMed DOI PMC

Meirmans P.G. Using the Amova Framework To Estimate a Standardized Genetic Differentiation Measure. Evolution. 2006;60:2399–2402. doi: 10.1554/05-631.1. PubMed DOI

Weir B.S., Cockerham C.C. Estimating F-statistics for the analysis of population structure. Evolution. 1984;38:1358–1370. doi: 10.2307/2408641. PubMed DOI

Jost L. GST and its relatives do not measure differentiation. Mol. Ecol. 2008;17:4015–4026. doi: 10.1111/j.1365-294X.2008.03887.x. PubMed DOI

Balloux F., Lehmann L., De Meeûs T. The population genetics of clonal and partially clonal diploids. Genetics. 2003;164:1635–1644. doi: 10.2135/cropsci1967.0011183X000700040005x. PubMed DOI PMC

Stoeckel S., Masson J.P. The exact distributions of FIS under partial asexuality in small finite populations with mutation. PLoS ONE. 2014;9:e85228. doi: 10.1371/journal.pone.0085228. PubMed DOI PMC

Wahlund S. Zusammens etzung von populationen und korrelationserscheinungen vom standpunkt der vererbungslehre aus betrachtet. Hereditas. 1928;11:65–106. doi: 10.1111/j.1601-5223.1928.tb02483.x. DOI

Pritchard J.K., Stephens M., Donnelly P. Inference of population structure using multilocus genotype data. Genetics. 2000;155:945–959. doi: 10.1111/j.1471-8286.2007.01758.x. PubMed DOI PMC

Earl D.A., vonHoldt B.M. STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 2012;4:359–361. doi: 10.1007/s12686-011-9548-7. DOI

Danecek P., Auton A., Abecasis G., Albers C.A., Banks E., DePristo M.A., Handsaker R.E., Lunter G., Marth G.T., Sherry S.T., et al. The variant call format and VCFtools. Bioinformatics. 2011;27:2156–2158. doi: 10.1093/bioinformatics/btr330. PubMed DOI PMC

Wigginton J.E., Cutler D.J., Abecasis G.R. A note on exact tests of Hardy-Weinberg equilibrium. Am. J. Hum. Genet. 2005;76:887–893. doi: 10.1086/429864. PubMed DOI PMC

Manichaikul A., Mychaleckyj J.C., Rich S.S., Daly K., Sale M., Chen W.M. Robust relationship inference in genome-wide association studies. Bioinformatics. 2010;26:2867–2873. doi: 10.1093/bioinformatics/btq559. PubMed DOI PMC

Lanfear R., Frandsen P., Wright A., Senfeld T., Calcott B. PartitionFinder 2: New Methods for Selecting Partitioned Models of Evolution for Molecular and Morphological Phylogenetic Analyses. Mol. Biol. Evol. 2016;34:772–773. doi: 10.1093/molbev/msw260. PubMed DOI

Kozlov A., Darriba D., Flouri T., Morel B., Stamatakis A. RAxML-NG: A fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics. 2019;35:4453–4455. doi: 10.1093/bioinformatics/btz305. PubMed DOI PMC

Pattengale N., Alipour M., Bininda-Emonds O., Moret B., Stamatakis A. How Many Bootstrap Replicates Are Necessary? J. Comput. Biol. 2010;17:337–354. doi: 10.1089/cmb.2009.0179. PubMed DOI

Lemoine F., Domelevo Entfellner J., Wilkinson E., Correia D., Dávila Felipe M., De Oliveira T., Gascuel O. Renewing Felsenstein’s phylogenetic bootstrap in the era of big data. Nature. 2018;556:452–456. doi: 10.1038/s41586-018-0043-0. PubMed DOI PMC

Bouckaert R., Heled J., Kühnert D., Vaughan T., Wu C., Xie D., Suchard M., Rambaut A., Drummond A. BEAST 2: A Software Platform for Bayesian Evolutionary Analysis. PLoS Comput. Biol. 2014;10:e1003537. doi: 10.1371/journal.pcbi.1003537. PubMed DOI PMC

Bouckaert R., Drummond A. bModelTest: Bayesian phylogenetic site model averaging and model comparison. BMC Evol. Biol. 2017;17:1–11. doi: 10.1186/s12862-017-0890-6. PubMed DOI PMC

Rambaut A., Drummond A., Xie D., Baele G., Suchard M. Posterior Summarization in Bayesian Phylogenetics Using Tracer 1.7. Syst. Biol. 2018;67:901–904. doi: 10.1093/sysbio/syy032. PubMed DOI PMC

Tajima F. Evolutionary relationship of DNA sequences in finite populations. Genetics. 1983;105:437–460. doi: 10.1093/genetics/105.2.437. PubMed DOI PMC

Excoffier L., Laval G., Schneider S. Arlequin (version 3.0): An integrated software package for population genetics data analysis. Evol. Bioinform. 2005;1:47–50. doi: 10.1177/117693430500100003. PubMed DOI PMC

Slatkin M. Estimating levels of gene flow in natural populations. Genetics. 1981;99:323–335. PubMed PMC

Nei M. F-statistics and analysis of gene diversity in subdivided populations. Ann. Hum. Genet. 1977;41:225–233. doi: 10.1111/j.1469-1809.1977.tb01918.x. PubMed DOI

Huang H., Jeffers S.N., Layne D.R., Schnabel G. AFLP analysis of Phytophthora cactorum isolates from strawberry and other hosts: Implications for identifying the primary source of inoculum. Plant Dis. 2004;88:714–720. doi: 10.1094/PDIS.2004.88.7.714. PubMed DOI

Bergot M., Cloppet E., Pérarnaud V., Déqué M., Marçais B., Desprez-Loustau M.L. Simulation of potential range expansion of oak disease caused by Phytophthora cinnamomi under climate change. Glob. Chang. Biol. 2004;10:1539–1552. doi: 10.1111/j.1365-2486.2004.00824.x. DOI

Grünwald N.J., Goss E.M., Press C.M. Phytophthora ramorum: A pathogen with a remarkably wide host range causing sudden oak death on oaks and ramorum blight on woody ornamentals. Mol. Plant Pathol. 2008;9:729–740. doi: 10.1111/j.1364-3703.2008.00500.x. PubMed DOI PMC

de Cara M., Palmero D., Durán C., Lacasa C., Santos M., Coffey M.D., Tello J.C. Phytophthora parasitica showing host specificity and pathogenic ability on tomato and sweet pepper. In: Méndez-Vilas A., editor. Microorganisms in Industry and Environment. World Sci. Publ. Co. Pte. Ltd.; Singapore: 2010. pp. 101–105. DOI

Wang Y., Meng Y., Zhang M., Tong X., Wang Q., Sun Y., Quan J., Govers F., Shan W. Infection of Arabidopsis thaliana by Phytophthora parasitica and identification of variation in host specificity. Mol. Plant Pathol. 2011;12:187–201. doi: 10.1111/j.1364-3703.2010.00659.x. PubMed DOI PMC

Suassuna N.D., Maffia L.A., Mizubuti E.S.G. Aggressiveness and host specificity of Brazilian isolates of Phytophthora infestans. Plant Pathol. 2004;53:405–413. doi: 10.1111/j.1365-3059.2004.01043.x. DOI

LaFave M.C., Sekelsky J. Mitotic recombination: Why? when? how? where? PLoS Genet. 2009;5:e1000411. doi: 10.1371/journal.pgen.1000411. PubMed DOI PMC

Hulvey J., Young J., Finley L., Lamour K. Loss of heterozygosity in Phytophthora capsici after N-ethyl-nitrosourea mutagenesis. Mycologia. 2010;102:27–32. doi: 10.3852/09-102. PubMed DOI

Hurtado-Gonzales O.P., Lamour K.H. Evidence for inbreeding and apomixis in close crosses of Phytophthora capsici. Plant Pathol. 2009;58:715–722. doi: 10.1111/j.1365-3059.2009.02059.x. DOI

Coelho A.S.G., Vencovsky R. Intrapopulation fixation index dynamics in finite populations with variable outcrossing rates. Sci. Agric. 2003;60:305–313. doi: 10.1590/S0103-90162003000200015. DOI

Oliva Pérez R.C. Ph.D. Thesis. Swiss Federal Institute of Technology; Zurich, Switzerland: 2009. Occurence of Sympatric Phytophthora Species in the Highland of Ecuador. DOI

Brasier C.M. The biosecurity threat to the UK and global environment from international trade in plants. Plant Pathol. 2008;57:792–808. doi: 10.1111/j.1365-3059.2008.01886.x. DOI

Felsenstein J., Yokoyama S. The evolutionary advantage of recombination. II. Individual selection for recombination. Genetics. 1976;83:845–859. PubMed PMC

Carlson M.O., Gazave E., Gore M.A., Smart C.D. Temporal genetic dynamics of an experimental, biparental field population of Phytophthora capsici. Front. Genet. 2017;8:1–19. doi: 10.3389/fgene.2017.00026. PubMed DOI PMC

Drenth A., McTaggart A.R., Wingfield B.D. Fungal clones win the battle, but recombination wins the war. IMA Fungus. 2019;10:1–6. doi: 10.1186/s43008-019-0020-8. PubMed DOI PMC

Hu J., Diao Y., Zhou Y., Lin D., Bi Y., Pang Z., Fryxell R.T., Liu X., Lamour K. Loss of heterozygosity drives clonal diversity of Phytophthora capsici in China. PLoS ONE. 2013;8:e82691. doi: 10.1371/journal.pone.0082691. PubMed DOI PMC

Linde C., Drenth A., Wingfield M.J. Gene and genotypic diversity of Phytophthora cinnamomi in South Africa and Australia revealed by DNA polymorphisms. Eur. J. Plant Pathol. 1999;105:667–680. doi: 10.1023/A:1008755532135. DOI

Bhat R.G., Schmithenner F. Genetic crosses between physiologic races of Phytophthora sojae. Exp. Mycol. 1993;17:122–129. doi: 10.1006/emyc.1993.1011. DOI

Nieuwenhuis B.P.S., James T.Y. The frequency of sex in fungi. Philos. Trans. R. Soc. B Biol. Sci. 2016;371:1–12. doi: 10.1098/rstb.2015.0540. PubMed DOI PMC

Xue B.K., Leibler S. Benefits of phenotypic plasticity for population growth in varying environments. Proc. Natl. Acad. Sci. USA. 2018;115:12745–12750. doi: 10.1073/pnas.1813447115. PubMed DOI PMC

Grenville-Briggs L.J., Kushwaha S.K., Cleary M.R., Witzell J., Savenkov E.I., Whisson S.C., Chawade A., Vetukuri R.R. Draft genome of the oomycete pathogen Phytophthora cactorum strain LV007 isolated from European beech (Fagus sylvatica) Genomics Data. 2017;12:155–156. doi: 10.1016/j.gdata.2017.05.010. PubMed DOI PMC

Goss E.M., Press C.M., Grünwald N.J. Evolution of RXLR-class effectors in the oomycete plant pathogen Phytophthora ramorum. PLoS ONE. 2013;8:e79347. doi: 10.1371/journal.pone.0079347. PubMed DOI PMC

Jiang R.H.Y., Tripathy S., Govers F., Tyler B.M. RXLR effector reservoir in two Phytophthora species is dominated by a single rapidly evolving superfamily with more than 700 members. Proc. Natl. Acad. Sci. USA. 2008;105:4874–4879. doi: 10.1073/pnas.0709303105. PubMed DOI PMC

Tyler B.M., Tripathy S., Zhang X., Dehal P., Jiang R.H.Y., Aerts A., Arredondo F.D., Baxter L., Bensasson D., Beynon J.L., et al. Phytophthora Genome Sequences Uncover Evolutionary Origins and Mechanisms of Pathogenesis. Science. 2006;313:1261–1266. doi: 10.1126/science.1128796. PubMed DOI

Quinn L., O’Neill P.A., Harrison J., Paskiewicz K.H., McCracken A.R., Cooke L.R., Grant M.R., Studholme D.J. Genome-wide sequencing of Phytophthora lateralis reveals genetic variation among isolates from Lawson cypress (Chamaecyparis lawsoniana) in Northern Ireland. FEMS Microbiol. Lett. 2013;344:179–185. doi: 10.1111/1574-6968.12179. PubMed DOI

Goodwin S.B., Fry W.E. Genetic analyses of interspecific hybrids between Phytophthora infestans and Phytophthora mirabilis. Exp. Mycol. 1994;18:20–32. doi: 10.1006/emyc.1994.1003. DOI

Pánek M., Tomšovský M. In vitro growth response of Phytophthora cactorum, P. nicotianae and P. × pelgrandis to antibiotics and fungicides. Folia Microbiol. 2017;62:269–277. doi: 10.1007/s12223-017-0493-z. PubMed DOI

Utkhede R.S., Gupta V.K. In vitro selection of strains of Phytophthora cactorum resistant to metalaxyl. J. Phytopathol. 1988;122:35–44. doi: 10.1111/j.1439-0434.1988.tb00988.x. DOI

Utkhede R.S.S., Smith E.M.M. Long-term effects of chemical and biological treatments on crown and root rot of apple trees caused by Phytophthora cactorum. Soil Biol. Biochem. 1993;25:383–386. doi: 10.1016/0038-0717(93)90138-2. DOI

Chang T.T., Ko W.H. Resistance to fungicides and antibiotics in Phytophthora parasitica: Genetic nature and use in hybrid determination. Phytopathology. 1990;80:1414–1421. doi: 10.1094/Phyto-80-1414. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...