Evaluation of the Ability of Seven Active Ingredients of Fungicides to Suppress Phytophthora cactorum at Diverse Life Stages, and Variability in Resistance Found among Isolates
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
QK1710377
Ministry of Agriculture of the Czech Republic and institutional support MZE-RO0418.
PubMed
36294604
PubMed Central
PMC9605621
DOI
10.3390/jof8101039
PII: jof8101039
Knihovny.cz E-zdroje
- Klíčová slova
- Phytophthora cactorum, fungicide resistance, mycelial growth inhibition,
- Publikační typ
- časopisecké články MeSH
Phytophthora cactorum is considered an important plant pathogen which is causing major damage to strawberry plants worldwide. In the current study, the ability of the active ingredients of seven different fungicides, azoxystrobin, cymoxanil, dimethomorph, fenamidone, fluopicolide, metalaxyl and propamocarb, to suppress the mycelial growth, sporangial formation and zoospore release of P. cactorum isolates, was tested. The variation in resistance against various fungicides was found among the isolates. The active ingredients are also unequally efficient against different life stages of P. cactorum, which is probably associated with their different modes of action. A significant level of resistance was recorded against metalaxyl and dimethomorph; however, these were totally inefficient against the zoospore release, while azoxystrobin did not inhibit mycelial growth. The only fungicide efficient against all three P. cactorum life stages tested was fluopicolide, although the calculated resistance factor gives evidence of the rise of resistance in the majority of isolates even against this fungicide. Significant differences were found between responses to fungicides of isolates from strawberry and from other host species. Based on the Mahalanobis distances calculated in the discriminant analysis comprising all of the assays performed, the similarities among isolates were estimated.
Zobrazit více v PubMed
Jung T., Orlikowski L., Henricot B., Abad-Campos P., Aday A.G., Aguín Casal O., Bakonyi J., Cacciola S.O., Cech T., Chavarriaga D., et al. Widespread Phytophthora Infestations in European Nurseries Put Forest, Semi-Natural and Horticultural Ecosystems at High Risk of Phytophthora Diseases. For. Pathol. 2016;46:134–163. doi: 10.1111/efp.12239. DOI
Lebert H., Cohn F. Über die Fäule der Cactusstämme. Beiträge Biol. Pflanz. 1870;1:51–57.
Erwin D.C., Ribeiro O.K. Phytophthora Diseases Worldwide. American Phytopathological Society Press; St. Paul, MN, USA: 1996.
Hantula J., Lilja A., Nuorteva H., Parikka P., Werres S. Pathogenicity, Morphology and Genetic Variation of Phytophthora Cactorum from Strawberry, Apple, Rhododendron, and Silver Birch. Mycol. Res. 2000;104:1062–1068. doi: 10.1017/S0953756200002999. DOI
Paulus A.O. Fungal Diseases of Strawberry. HortScience. 1990;25:885–889. doi: 10.21273/HORTSCI.25.8.885. DOI
Shaw D.V., Hansen J., Browne G.T. Genotypic Variation for Resistance to Phytophthora Cactorum in a California Strawberry Breeding Population. J. Am. Soc. Hort. Sci. 2006;131:687–690. doi: 10.21273/JASHS.131.5.687. DOI
Zentmyer G.A. Origin and Distribution of Four Species of Phytophthora. Trans. Br. Mycol. Soc. 1988;91:367–378. doi: 10.1016/S0007-1536(88)80111-6. DOI
Brasier C.M. The Biosecurity Threat to the UK and Global Environment from International Trade in Plants. Plant Pathol. 2008;57:792–808. doi: 10.1111/j.1365-3059.2008.01886.x. DOI
de Haan J.V.B. De Bibitziekte in de Deli-Tabak Veroorzaakt Door Phytophthora Nicotianae. 1986. [(accessed on 1 August 2022)]. Available online: https://books.google.com.sg/books/about/De_bibitziekte_in_de_Deli_tabak_veroorza.html?id=gIbJ_AjWmxUC&hl=en&output=html_text&redir_esc=y.
de Cock A.W., Summerbell R.C. Natural Hybrids of Resident and Introduced Phytophthora Species Proliferating on Multiple New Hosts. Eur. J. Plant Pathol. 2007;117:25–33. doi: 10.1007/s10658-006-9065-9. DOI
Goss E.M., Vercauteren A., Weres S., Heungens K., Grünwald N.J. Phytophthora Ramorum in Canada: Evidence for Migration within North America and from Europe. Phytopathology. 2011;101:166–171. doi: 10.1094/PHYTO-05-10-0133. PubMed DOI
Martin F.N., Zhang Y., Cooke D.E.L.L., Coffey M.D., Grünwald N.J., Fry W.E. Insights into Evolving Global Populations of Phytophthora Infestans via New Complementary mtDNA Haplotype Markers and Nuclear SSRs. PLoS ONE. 2019;14:e0208606. doi: 10.1371/journal.pone.0208606. PubMed DOI PMC
Rose D.H. Leather rot of strawberries. J. Agric. Res. 1924;28:357–376.
Deutschmann V.F. Eine Wurzelfäule an Erdbeeren, Hervorgerufen Durch Phyrophthora Cactorum (Leb. et Cohn) Schroet. Bull. German Plant Protect. Serv. 1954;6:7–9.
Olsson C.H.B. Diagnosis of Phytophthora Infections in Raspberry and Strawberry Plants by ELISA Tests. J. Phytopathol. 1995;143:307–310. doi: 10.1111/j.1439-0434.1995.tb00265.x. DOI
Parikka P. Phytophthora Cactorum on Strawberry in Finland. Nord. Jordbr. 1991;73:121.
Stensvand A., Semb L. Rotstokkròte—Ein Ny Jordbærsjukdom (Crown Rot—A New Strawberry Disease) Gartneryrket. 1995;85:23–25.
Bourret T.B., Fajardo S.N., Engert C.P., Rizzo D.M. A Barcode-Based Phylogenetic Characterization of Phytophthora Cactorum Identifies Two Cosmopolitan Lineages with Distinct Host Affinities and the First Report of Phytophthora Pseudotsugae in California. J. Fungi. 2022;8:303. doi: 10.3390/jof8030303. PubMed DOI PMC
Ellis M.A., Wilcox W.F., Madden L.V. Efficacy of metalaxyl, fosetyl-aluminum, and straw mulch for control of strawberry leather rot caused by Phytophthora cactorum. Plant Dis. 1998;82:329–332. doi: 10.1094/PDIS.1998.82.3.329. PubMed DOI
Huang H., Jeffers S.N., Layne D.R., Schnabel G. AFLP Analysis of Phytophthora Cactorum Isolates from Strawberry and Other Hosts: Implications for Identifying the Primary Source of Inoculum. Plant Dis. 2004;88:714–720. doi: 10.1094/PDIS.2004.88.7.714. PubMed DOI
Rebollar-Alviter A., Ellis M.A. Efficacy of Azoxystrobin, Pyraclostrobin, Potassium Phosphite, and Mefenoxam for Control of Strawberry Leather Rot Caused by Phytophthora Cactorum. Plant Health Prog. 2005;6:17. doi: 10.1094/PHP-2005-0107-01-RS. PubMed DOI
Duncan J.M. Prospects for Integrated Control of Phytophthora Diseases of Strawberry. Acta Hortic. 2002;567:603–610. doi: 10.17660/ActaHortic.2002.567.130. DOI
Leadbeater A.J. Plant Health Management: Fungicides and Antibiotics. Encycl. Agric. Food Syst. 2014:408–424. doi: 10.1016/B978-0-444-52512-3.00179-0. DOI
Van den Bosch F., Paveley N., Shaw M., Hobbelen P., Oliver R. The Dose Rate Debate: Does the Risk of Fungicide Resistance Increase or Decrease with Dose? Plant Pathol. 2011;60:597–606. doi: 10.1111/j.1365-3059.2011.02439.x. DOI
Utkhede R.S., Gupta V.K. In Vitro Selection of Strains of Phytophthora Cactorum Resistant to Metalaxyl. J. Phytopathol. 1988;122:35–44. doi: 10.1111/j.1439-0434.1988.tb00988.x. DOI
Jeffers S.N., Schnabel G., Smith J.P. First Report of Resistance to Mefenoxam in Phytophthora Cactorum in the United States and Elsewhere. Plant Dis. 2004;88:576. doi: 10.1094/PDIS.2004.88.5.576A. PubMed DOI
Marin M.V., Peres N.A. Improving the Toolbox to Manage Phytophthora Diseases of Strawberry: Searching for Chemical Alternatives. Plant Health Prog. 2021;22:294–299. doi: 10.1094/PHP-02-21-0034-FI. DOI
Pánek M., Tomšovský M. In Vitro Growth Response of Phytophthora Cactorum, P. Nicotianae and P. × pelgrandis to Antibiotics and Fungicides. Folia Microbiol. 2017;62:269–277. doi: 10.1007/s12223-017-0493-z. PubMed DOI
Reeleder R.D., Miller J., Capell B., Schooley J. Mefenoxam Sensitivity and the Impact of Fumigation on Pythium Species and Phytophthora Cactorum in Ginseng Soils. Can. J. Plant Pathol. 2007;29:427–436. doi: 10.1080/07060660709507489. DOI
Matheron M.E., Porchas M. Impact of Azoxystrobin, Dimethomorph, Fluazinam, Fosetyl-Al, and Metalaxyl on Growth, Sporulation, and Zoospore Cyst Germination of Three Phytophthora spp. Plant Dis. 2000;84:454–458. doi: 10.1094/PDIS.2000.84.4.454. PubMed DOI
Pánek M., Helmer Š., Ali A. Use of Metalaxyl against Some Soil Plant Pathogens of the Class Peronosporomycetes—A Review and Two Case Studies. Plant Prot. Sci. 2022;58:92–109. doi: 10.17221/42/2021-PPS. DOI
Van Der Scheer H.A.T. Isolation of Phytophthora Cactorum from Soil in Orchards and Strawberry Fields and Differences in Pathogenicity to Apple. Neth. J. Plant Pathol. 1971;77:65–72. doi: 10.1007/BF01981494. DOI
Harris D.C., Stickels J.E. Crown Rot (Phytophthora cactorum) in Glasshouse-Grown Strawberries at East Mailing Research Station. Plant Pathol. 1981;30:205–212. doi: 10.1111/j.1365-3059.1981.tb01258.x. DOI
Seemüller E., Schmidle A. Einfluβ Der Herkunft von Phytophthora Cactorum-Isolaten Auf Ihre Virulenz an Apfelrinde, Erdbeerrhizomen Und Erdbeerfrüchten. J. Phytopathol. 1979;94:218–225. doi: 10.1111/j.1439-0434.1979.tb01553.x. DOI
Belisario A., Caciola S.O., Magnano Disan Lio G. Phytopbthora Cactorum on Walnut Seedlings in Italian Nurseries. Eur. J. For. Pathol. 1997;27:137–146. doi: 10.1111/j.1439-0329.1997.tb00855.x. DOI
Oudemans P., Coffey M.D. Isozyme Comparison within and among Worldwide Sources of Three Morphologically Distinct Species of Phytophthora. Mycol. Res. 1991;95:19–30. doi: 10.1016/S0953-7562(09)81358-0. DOI
Cooke D.E.L., Kennedy D.M.M., Guy D.C.C., Russell J., Unkles S.E.E., Duncan J.M.M. Relatedness of Group I Species of Phytophthora as Assessed by Randomly Amplified Polymorphic DNA (RAPDs) and Sequences of Ribosomal DNA. Mycol. Res. 1996;100:297–303. doi: 10.1016/S0953-7562(96)80158-4. DOI
Pánek M., Fér T., Mráček J., Tomšovský M. Evolutionary Relationships within the Phytophthora Cactorum Species Complex in Europe. Fungal Biol. 2016;120:836–851. doi: 10.1016/j.funbio.2016.03.006. PubMed DOI
Pánek M., Střížková I., Zouhar M., Kudláček T., Tomšovský M. Mixed-Mating Model of Reproduction Revealed in European Phytophthora Cactorum by ddRADseq and Effector Gene Sequence Data. Microorganisms. 2021;9:345. doi: 10.3390/microorganisms9020345. PubMed DOI PMC
Yahyazadeh M., Omidbaigi R., Zare R., Taheri H. Effect of Some Essential Oils on Mycelial Growth of Penicillium Digitatum Sacc. World J. Microbiol. Biotechnol. 2008;24:1445–1450. doi: 10.1007/s11274-007-9636-8. DOI
Gunetti M., Castiglia S., Rustichelli D., Mareschi K., Sanavio F., Muraro M., Signorino E., Castello L., Ferrero I., Fagioli F. Validation of Analytical Methods in GMP: The Disposable Fast Read 102® Device, an Alternative Practical Approach for Cell Counting. J. Transl. Med. 2012;10:112. doi: 10.1186/1479-5876-10-112. PubMed DOI PMC
Li J.L., Liu X.Y., Xie J.T., Di Y.L., Zhu F.X. A Comparison of Different Estimation Methods for Fungicide EC50 and EC95 Values. J. Phytopathol. 2014;163:239–244. doi: 10.1111/jph.12312. DOI
Lu X.H., Hausbeck M.K., Liu X.L., Hao J.J. Wild Type Sensitivity and Mutation Analysis for Resistance Risk to Fluopicolide in Phytophthora Capsici. Plant Dis. 2011;95:1535–1541. doi: 10.1094/PDIS-05-11-0372. PubMed DOI
Qu T., Shao Y., Csinos A.S., Ji P. Sensitivity of Phytophthora Nicotianae From Tobacco to Fluopicolide, Mandipropamid, and Oxathiapiprolin. Plant Dis. 2016;100:2119–2125. doi: 10.1094/PDIS-04-16-0429-RE. PubMed DOI
Zhang X., Jiang H., Hao J. Evaluation of the Risk of Development of Fluopicolide Resistance in Phytophthora Erythroseptica. Plant Dis. 2019;103:284–288. doi: 10.1094/PDIS-02-18-0366-RE. PubMed DOI
Kroon L.P.N.M., Brouwer H., de Cock A.W.A.M., Govers F. The Genus Phytophthora Anno 2012. Phytopathology. 2012;102:348–364. doi: 10.1094/PHYTO-01-11-0025. PubMed DOI
Timmer L.W., Graham J.H., Zitko S.E., Biologist S. Metalaxyl-Resistant Isolates of Phytophthora Nicotianae: Occurrence, Sensitivity, and Competitive Parasitic Ability on Citrus. Plant Dis. 1998;82:254–261. doi: 10.1094/PDIS.1998.82.2.254. PubMed DOI
Morton H.V., Urech P.A. Fungicide Resistance in North America. American Phytopathological Society; Saint Paul, MN, USA: 1988. History of Development of Resistence to Phenylamide Fungicides; pp. 59–60.
Gisi U., Sierotzki H. Fungicide Modes of Action and Resistance in Downy Mildews. In: Lebeda A., Spencer-Phillips P.T.N., Cooke B.M., editors. The Downy Mildews—Genetics, Molecular Biology and Control. Springer Netherlands; Dordrecht, The Netherlands: 2008. pp. 157–167.
Gisi U., Chin K.M., Knapova G., Küng Färber R., Mohr U., Parisi S., Sierotzki H., Steinfeld U. Recent Developments in Elucidating Modes of Resistance to Phenylamide, DMI and Strobilurin Fungicides. Crop. Prot. 2000;19:863–872. doi: 10.1016/S0261-2194(00)00114-9. DOI
Randall E., Young V., Sierotzki H., Scalliet G., Birch P.R.J., Cooke D.E.L., Csukai M., Whisson S.C. Sequence Diversity in the Large Subunit of RNA Polymerase I Contributes to Mefenoxam Insensitivity in Phytophthora Infestans. Mol. Plant Pathol. 2014;15:664–676. doi: 10.1111/mpp.12124. PubMed DOI PMC
Chen F., Zhou Q., Xi J., Li D., Schnabel G., Zhan J. Analysis of RPA190 Revealed Multiple Positively Selected Mutations Associated with Metalaxyl Resistance in Phytophthora Infestans. Pest Manag. Sci. 2018;74:1916–1924. doi: 10.1002/ps.4893. PubMed DOI
Molinero-Ruiz M.L., Cordón-Torres M.M., Martínez-Aguilar J., Melero-Vara J.M., Domínguez J. Resistance to Metalaxyl and to Metalaxyl-M in Populations of Plasmopara Halstedii Causing Downy Mildew in Sunflower. Can. J. Plant Pathol. 2008;30:97–105. doi: 10.1080/07060660809507500. DOI
Hobbelen P.H.F., Paveley N.D., Van Den Bosch F. The Emergence of Resistance to Fungicides. PLoS ONE. 2014;9:e91910. doi: 10.1371/journal.pone.0091910. PubMed DOI PMC
Marin M.V., Seijo T.E., Zuchelli E., Peres N.A. Resistance to Mefenoxam of Phytophthora Cactorum and P. Nicotianae Causing Crown and Leather Rot in Florida Strawberry. Plant Dis. 2021;105:3490–3495. doi: 10.1094/PDIS-11-20-2474-RE. PubMed DOI
Goodwin S.B., Sujkowski L.S., Fry W.E. Widespread Distribution and Probably Origin of Resistance to Metalaxyl in Clonal Genotypes of Phytopthora Infestans in the United States and Western Canada. Ecol. Epidemiol. 1996;86:793–800.
Bagirova S.F., Li A.Z., Dolgova A.V., Elansky S., Shaw D.S., Dyakov Y.T. Mutants of Phytophthora Infestans Resistant to Dimethomorph Fungicide. J. Russ. Phytopathol. Soc. 2001;2:19–24.
Stein J.M., Kirk W.W. The Generation and Quantification of Resistance to Dimethomorph in Phytophthora Infestans. Plant Dis. 2004;88:930–934. doi: 10.1094/PDIS.2004.88.9.930. PubMed DOI
Chabane K., Leroux P., Bompeix G., Maia N. Dimet Homorph and Metalaxyl Sensitivity in Somatic Hybrids of Phytophthora Parasitica Obtained by Protoplast Fusion. Phytopathol. Mediterr. 1996;35:111–116.
Thomas A., Neufeld K.N., Seebold K.W., Braun C.A., Schwarz M.R., Ojiambo P.S. Resistance to Fluopicolide and Propamocarb and Baseline Sensitivity to Ethaboxam among Isolates of Pseudoperonospora Cubensis from the Eastern United States. Plant Dis. 2018;102:1619–1626. doi: 10.1094/PDIS-10-17-1673-RE. PubMed DOI
Patel J.S., Sciences A., Vitoreli A., Palmateer A.J., Sciences A., El-sayed A., Norman D.J., Sciences A., Goss M., Sciences A., et al. Characterization of Phytophthora Spp. Isolated from Ornamental Plants in Florida. Plant Dis. 2012;100:500–509. doi: 10.1094/PDIS-05-15-0598-RE. PubMed DOI
Siegenthaler T.B., Hansen Z.R. Sensitivity of Phytophthora Capsici from Tennessee to Mefenoxam, Fluopicolide, Oxathiapiprolin, Dimethomorph, Mandipropamid, and Cyazofamid. Plant Dis. 2021;105:3000–3007. doi: 10.1094/PDIS-08-20-1805-RE. PubMed DOI
Thomidis T., Tsipouridis K. Effectiveness of Metalaxyl, Fosetyl-Al, Dimethomorph, and Cymoxanil against Phytophthora Cactorum and P. Citrophthora of Peach Tree. Phytopathol. Mediterr. 2001;40:253–259. doi: 10.14601/Phytopathol_Mediterr-1618. DOI
Keinath A.P. Sensitivity of Populations of Phytophthora Capsici from South Carolina to Mefenoxam, Dimethomorph, Zoxamide, and Cymoxanil. Plant Dis. 2007;91:743–748. doi: 10.1094/PDIS-91-6-0743. PubMed DOI
Gullino M.L., Mescalchin E., Mezzalama M. Sensitivity to Cymoxanil in Populations of Plasmopara Viticola in Northern Italy. Plant Pathol. 1997;46:729–736. doi: 10.1046/j.1365-3059.1997.d01-68.x. DOI
Reis A., Ribeiro F., Maffia L., Mizubuti E. Sensitivity of Brazilian Isolates of Phytophthora Infestans to Commonly Used Fungicides in Tomato and Potato Crops. Plant Dis. 2005;89:1279–1284. doi: 10.1094/PD-89-1279. PubMed DOI
Delmas C.E.L., Fabre F., Jolivet J., Mazet I.D., Richart Cervera S., Delière L., Delmotte F. Adaptation of a Plant Pathogen to Partial Host Resistance: Selection for Greater Aggressiveness in Grapevine Downy Mildew. Evol. Appl. 2016;9:709–725. doi: 10.1111/eva.12368. PubMed DOI PMC
Fishel F.M., Dewdney M.M. Fungicide Resistance Action Committee’s (FRAC) Classification Scheme of Fungicides According to Mode of Action. Pesticide Information Office, Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida; Gainesville, FL, USA: 2012.
Vincelli P. Some Principles of Fungicide Resistance. University of Kentucky, College of Agriculture, Plant Pathology Extension; Lexington, KY, USA: 2014. Plant Pathology Fact Sheet. PPFS-MISC-02.
Kerkenaar A. On the Antifungal Mode of Action of Metalaxyl, an Inhibitor of Nucleic Acid Synthesis in Pythium splendens. Pestic. Biochem. Physiol. 1981;16:1–13. doi: 10.1016/0048-3575(81)90066-3. DOI
Wang W., Liu D., Zhuo X., Wang Y., Song Z., Chen F., Pan Y., Gao Z. The RPA190-Pc Gene Participates in the Regulation of Metalaxyl Sensitivity, Pathogenicity and Growth in Phytophthora capsici. Gene. 2021;764:145081. doi: 10.1016/j.gene.2020.145081. PubMed DOI
Kuhn P.J., Pitt D., Lee S.A., Wakley G., Sheppard A.N. Effects of Dimethomorph on the Morphology and Ultrastructure of Phytophthora. Mycol. Res. 1991;95:333–340. doi: 10.1016/S0953-7562(09)81244-6. DOI
Fernández-Ortuño D.A., Torés J.A.B., De Vicente A.C., Pérez-García D. The QoI Fungicides, the Rise and Fall of a Successful Class of Agricultural Fungicides. In: Carrise O., editor. Fungicides. IntechOpen; Rijeka, Croatia: 2010. pp. 203–216.
Levina N., Lew R. The Role of Tip-Localized Mitochondria in Hyphal Growth. Fungal Genet. Biol. 2006;43:65–74. doi: 10.1016/j.fgb.2005.06.008. PubMed DOI
Toquin V., Barja F., Sirven C., Gamet S., Mauprivez L., Peret P., Latorse M.-P., Zundel J.-L., Schmitt F., Lebrun M.-H., et al. Recent Developments in Management of Plant Diseases. Springer; Dordrecht, The Netherlands: 2010. Novel Tools to Identify the Mode of Action of Fungicides as Exemplified with Fluopicolide; pp. 19–36. DOI
Bhat R.G., Colowit P.M., Tai T.H., Aradhya M.K., Browne G.T. Genetic and Pathogenic Variation in Phytophthora Cactorum Affecting Fruit and Nut Crops in California. Plant Dis. 2006;90:161–169. doi: 10.1094/PD-90-0161. PubMed DOI
Eikemo H., Klemsdal S.S., Riisberg I., Bonants P., Stensvand A., Tronsmo A.M. Genetic Variation between Phytophthora Cactorum Isolates Differing in Their Ability to Cause Crown Rot in Strawberry. Mycol. Res. 2004;108:317–324. doi: 10.1017/S0953756204009244. PubMed DOI
Brent K.J., Hollomon D.W. Fungicide Resistance in Crop Pathogens: How Can It Be Managed? 2nd ed. Fungicide Resistance Action Committee (FRAC); Brussels, Belgium: 2007.
Urech P.A., Staub T. The Resistance Strategy for Acylalanine fungicides1. EPPO Bull. 1985;15:539–543. doi: 10.1111/j.1365-2338.1985.tb00266.x. DOI