Photosynthetic parameters of a sedge-grass marsh as a big-leaf: effect of plant species composition

. 2021 Feb 12 ; 11 (1) : 3723. [epub] 20210212

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid33580095
Odkazy

PubMed 33580095
PubMed Central PMC7881001
DOI 10.1038/s41598-021-82382-2
PII: 10.1038/s41598-021-82382-2
Knihovny.cz E-zdroje

The study estimates the parameters of the photosynthesis-irradiance relationship (PN/I) of a sedge-grass marsh (Czech Republic, Europe), represented as an active "green" surface-a hypothetical "big-leaf". Photosynthetic parameters of the "big-leaf" are based on in situ measurements of the leaf PN/I curves of the dominant plant species. The non-rectangular hyperbola was selected as the best model for fitting the PN/I relationships. The plant species had different parameters of this relationship. The highest light-saturated rate of photosynthesis (Asat) was recorded for Glyceria maxima and Acorus calamus followed by Carex acuta and Phalaris arundinacea. The lowest Asat was recorded for Calamagrostis canescens. The parameters of the PN/I relationship were calculated also for different growth periods. The highest Asat was calculated for the spring period followed by the summer and autumn periods. The effect of the species composition of the local plant community on the photosynthetic parameters of the "big-leaf" was addressed by introducing both real (recorded) and hypothetical species compositions corresponding to "wet" and "dry" hydrological conditions. We can conclude that the species composition (or diversity) is essential for reaching a high Asat of the "big-leaf "representing the sedge-grass marsh in different growth periods.

Zobrazit více v PubMed

IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. (Cambridge University Press, Cambridge, 2013).

Reichstein M, et al. Climate extremes and the carbon cycle. Nature. 2013;500:287–295. doi: 10.1038/nature12350. PubMed DOI

Matson, P. A., Harriss, a. R. C. (ed.) Biogenic Trace Gases: Measuring Emissions from Soil and Water. Methods in ecology (Blackwell Science, Oxford [England]; Cambridge, Mass., USA, 1995).

Baldocchi D, et al. FLUXNET: a new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. Bull. Am. Meteorl. Soc. 2001;82:2415–2434. doi: 10.1175/1520-0477(2001)082<2415:FANTTS>2.3.CO;2. DOI

Sellers PJ, Berry JA, Collatz GJ, Field CB, Hall FG. Canopy reflectance, photosynthesis, and transpiration. III. A reanalysis using improved leaf models and a new canopy integration scheme. Remote Sens. Environ. 1992;42:187–216. doi: 10.1016/0034-4257(92)90102-P. DOI

de Pury D, Farquhar GD. Simple scaling of photosynthesis from leaves to canopies without the errors of big-leaf models. Plant Cell Environ. 1997;20:537–557. doi: 10.1111/j.1365-3040.1997.00094.x. DOI

Lasslop G, et al. Separation of net ecosystem exchange into assimilation and respiration using a light response curve approach: critical issues and global evaluation. Glob. Change Biol. 2010;16:187–208. doi: 10.1111/j.1365-2486.2009.02041.x. DOI

Naeem S, Li S. Biodiversity enhances ecosystem reliability. Nature. 1997;390:507–509. doi: 10.1038/37348. DOI

Tilman D. Biodiversity: population versus ecosystem stability. Ecology. 1995;77:350–363. doi: 10.2307/2265614. DOI

Walker B, Kinzig A, Langridge J. Plant attribute diversity, resilience, and ecosystem function: the nature and significance of dominant and minor species. Ecosystems. 1999;1999:95–113. doi: 10.1007/s100219900062. DOI

Isbell FI, Polley HW, Wilsey BJ. Biodiversity, productivity and the temporal stability of productivity: patterns and processes. Ecol. Lett. 2009;12:443–451. doi: 10.1111/j.1461-0248.2009.01299.x. PubMed DOI

Tilman D. Functional diversity. Ecyclopedia Biodivers. 2001;2001:109–121. doi: 10.1016/B0-12-226865-2/00132-2. DOI

Larcher W. Physiological Plant Ecology: Ecophysiology and Stress Physiology of Functional Groups. Berlin: Springer; 2003.

Crawford RMM. Studies in Plant Survival: Ecological Case Histories of Plant Adaptation to Adversity. Oxford: Blackwell Scientific Publications; 1989.

Kaplan, Z. (ed.) Klíč ke květeně: České republiky. Second editions. (Academia, Prague, 2019).

Jeník, J., Kurka, R. & Husák, Š. Wetlands of the Třeboň Basin Biosphere Reserve in the central European context, in Freshwater Wetlands and their Sustainable Future. A Case Study of the Třeboň Basin Biosphere Reserve 11–18 (CRC Press, New York, 2002).

Holubičková, B. Příspěvek ke studiu rašeliništní vegetace. I. Mokré louky u Třeboně (A contribution to the study of peatland vegetation. I. Mokré louky near Třeboň). (1959).

Blažková D. Pflanzensoziologische Studie über die Wiesen der Südböhmischen Becken. Stud. CSAV. 1973;73:1–172.

Prach K. Vegetational changes in a wet meadow complex, south-bohemia, Czech Republic. Folia Geobot. Phytotaxon. 1993;28:1–13. doi: 10.1007/BF02853197. DOI

Prach K. Vegetation changes in a wet meadow complex during the past half-century. Folia Geobot. 2008;43:119–130. doi: 10.1007/s12224-008-9011-z. DOI

Prach, K. & Soukupová, L. Alterations in the Wet Meadows vegetation pattern, in Freshwater Wetlands and their Sustainable Future. A Case Study of the Třeboň Basin Biosphere Reserve 243–254 (CRC Press, 2002).

Balátová-Tuláčková, E. Die Nass- und Feuchtwiesen Nordwest-Böhmens mit besonderer Berücksichtigung Der Magnocaricetalia-Gesellschaften. Rozpr. Českoslov. Akad. Věd, Řada Mat. Přír. Věd1978.

Květ, J. (ed.) Freshwater Wetlands and their Sustainable Future: A Case of the Třeboň Basin Biosphere Reserve, Czech Republic. Man and the biosphere series 28. (UNESCO, Paris, 2002).

Honissová M, et al. Seasonal dynamics of biomass partitioning in a tall sedge Carex acuta L. Aquat. Bot. 2015;125:64–71. doi: 10.1016/j.aquabot.2015.05.005. DOI

Hejný S. Dynamic changes in the macrophyte vegetation of South Bohemian fishponds after 35 years. Folia Geobot. Phytotaxon. 1990;25:245–255. doi: 10.1007/BF02913021. DOI

Káplová M, Edwards KR, Květ J. The effect of nutrient level on plant structure and production in a wet grassland: a field study. Plant Ecol. 2011;212:809–819. doi: 10.1007/s11258-010-9865-z. DOI

Chambers JM. Software for Data Analysis: Programming with R. Berlin: Springer; 2008.

Koyama K, Takemoto S. Morning reduction of photosynthetic capacity before midday depression. Sci. Rep. 2015;4:4389. doi: 10.1038/srep04389. PubMed DOI PMC

Nobel PS. Physicochemical and Environmental Plant Physiology. New York: Academic Press; 2009.

Gilmanov TG, et al. Gross primary production and light response parameters of four Southern Plains ecosystems estimated using long-term CO2-flux tower measurements: GPP OF SOUTHERN PLAINS ECOSYSTEMS. Glob. Biogeochem. Cycles. 1993;17:1–15.

Bates DM, Watts DG. Nonlinear Regression Analysis and Its Applications. New York: Wiley; 1988.

Ogren E. Convexity of the photosynthetic light-response curve in relation to intensity and direction of light during growth. Plant Physiol. 1993;101:7. doi: 10.1104/pp.101.3.1013. PubMed DOI PMC

Hollander M, Wolfe DA, Chicken E. Nonparametric Statistical Methods. New York: Wiley; 2014.

Best DJ, Roberts DE. Algorithm AS 89: the upper tail probabilities of Spearman’s Rho. Appl. Stat. 1975;24:377. doi: 10.2307/2347111. DOI

Busch J, Losch R. The gas exchange of Carex species from eutrophic wetlands and its dependence on microclimatic and soil wetness conditions. Phys. Chem. Earth Part B Hydrol. Oceans Atmos. 1999;24:117–120. doi: 10.1016/S1464-1909(98)00021-5. DOI

Ondok J, Gloser J. Leaf photosynthesis and dark respiration in a sedge-grass marsh. 1. model for mid-summer conditions. Photosynthetica. 1983;17:77–88.

Caudle KL, Maricle BR. Physiological relationship between oil tolerance and flooding tolerance in marsh plants. Environ. Exp. Bot. 2014;107:7–14. doi: 10.1016/j.envexpbot.2014.05.003. DOI

Ge Z-M, et al. Measured and modeled biomass growth in relation to photosynthesis acclimation of a bioenergy crop (Reed canary grass) under elevated temperature, CO2 enrichment and different water regimes. Biomass Bioenerg. 2012;46:251–262. doi: 10.1016/j.biombioe.2012.08.019. DOI

Waring EF, Maricle BR. Photosynthetic variation and carbon isotope discrimination in invasive wetland grasses in response to flooding. Environ. Exp. Bot. 2012;77:77–86. doi: 10.1016/j.envexpbot.2011.10.013. DOI

Gloser, J. Net photosynthesis and dark respiration of reed estimated by gas-exchange measurements, in Pond Littoral Ecosystems. Structure and Functioning, vol. 1978, 227–234 (Springer, Berlin, 1978).

Zhou X, Liu X, Wallace LL, Luo Y. Photosynthetic and respiratory acclimation to experimental warming for four species in a tallgrass prairie ecosystem. J. Integr. Plant Biol. 2007;49:270–281. doi: 10.1111/j.1744-7909.2007.00374.x. DOI

Jones HG. Plants and Microclimate: A Quantitative Approach to Environmental Plant Physiology. Cambridge: Cambridge University Press; 1992.

Smith M, Houpis JLJ. Gas exchange responses of the wetland plant Schoenoplectus hallii to irradiance and vapor pressure deficit. Aquat. Bot. 2004;79:267–275. doi: 10.1016/j.aquabot.2004.05.001. DOI

Li M, Yang D, Li W. Leaf gas exchange characteristics and chlorophyll fluorescence of three wetland plants in response to long-term soil flooding. Photosynthetica. 2007;45:222–228.

Li M, Hou G, Yang D, Deng G, Li W. Photosynthetic traits of Carex cinerascens in flooded and nonflooded conditions. Photosynthetica. 2010;48:370–376. doi: 10.1007/s11099-010-0048-x. DOI

Vervuren P, Beurskens S, Blom C. Light acclimation, CO2 response and long-term capacity of underwater photosynthesis in three terrestrial plant species. Plant Cell Environ. 1999;22:959–968. doi: 10.1046/j.1365-3040.1999.00461.x. DOI

Bouma TJ, De Visser R, Van Leeuwen PH, De Kock MJ, Lambers H. The respiratory energy requirements involved in nocturnal carbohydrate export from starch-storing mature source leaves and their contribution to leaf dark respiration. J. Exp. Bot. 1995;46:1185–1194. doi: 10.1093/jxb/46.9.1185. DOI

McCutchan CL, Monson RK. Night-time respiration rate and leaf carbohydrate concentrations are not coupled in two alpine perennial species. New Phytol. 2002;149:419–430. doi: 10.1046/j.1469-8137.2001.00039.x. PubMed DOI

Emerson R. The quantum yield of photosynthesis. Annu. Rev. Plant Physiol. 1958;9:1–24. doi: 10.1146/annurev.pp.09.060158.000245. DOI

Singsaas EL, Ort DR, DeLucia EH. Variation in measured values of photosynthetic quantum yield in ecophysiological studies. Oecologia. 2001;128:15–23. doi: 10.1007/s004420000624. PubMed DOI

de Lobo FA, et al. Fitting net photosynthetic light-response curves with Microsoft Excel—a critical look at the models. Photosynthetica. 2013;51:445–456. doi: 10.1007/s11099-013-0045-y. DOI

Busch J. Characteristic values of key ecophysiological parameters in the genus Carex. FLORA. 2001;196:405–430. doi: 10.1016/S0367-2530(17)30084-1. DOI

Hull JC. Photosynthetic induction dynamics to sunflecks of four deciduous forest understory herbs with different phenologies1. Int. J. Plant Sci. 2002;163:913–924. doi: 10.1086/342633. DOI

Wayne ER, Van Auken OW. Light responses of Carex planostachys from various microsites in a Juniperus community. J. Arid Environ. 2009;73:435–443. doi: 10.1016/j.jaridenv.2008.12.006. DOI

Colmer TD, Pedersen O. Underwater photosynthesis and respiration in leaves of submerged wetland plants: gas films improve CO2 and O2 exchange. New Phytol. 2008;177:918–926. doi: 10.1111/j.1469-8137.2007.02318.x. PubMed DOI

Mommer L, Visser EJW. Underwater photosynthesis in flooded terrestrial plants: a matter of leaf plasticity. Ann. Bot. 2005;96:581–589. doi: 10.1093/aob/mci212. PubMed DOI PMC

Dušek J. Seasonal dynamic of nonstructural saccharides in a rhizomatous grass Calamagrostis epigeios. Biol. Plant. 2002;45:383–387. doi: 10.1023/A:1016265616908. DOI

Mitsch, W. J. (ed.) Wetland Ecosystems (Wiley, Hoboken, NJ, 2009).

Soukupová, L. Life strategy of graminoid populations in the wet meadows, in Freshwater Wetlands and their Sustainable Future. A Case Study of the Třeboň Basin Biosphere Reserve 255–267 (CRC Press, New York, 2002).

Polechová, J. & Storch, D. Ecological Niche, in Encyclopedia of Ecology 72–80 (Elsevier, Amsterdam, 2019). 10.1016/B978-0-12-409548-9.11113-3.

Dykyjová D. Production ecology of Acorus calamus. Folia Geobot. Phytotaxon. 1980;15:29–57. doi: 10.1007/BF02853137. DOI

Westlake, D. F., Květ, J., Andrzej Szczepański, a International Biological Programme. (ed.) The Production Ecology of Wetlands: The IBP Synthesis (Cambridge University Press, Cambridge, UK; New York, NY, USA, 1998).

Pai A, McCarthy BC. Variation in shoot density and rhizome biomass of Acorus calamus L. With respect to environment. Castanea. 2005;70:263–275. doi: 10.2179/0008-7475(2005)070[0263:VISDAR]2.0.CO;2. DOI

Pai A, McCarthy BC. Suitability of the medicinal plant, Acorus calamus L, for wetland restoration. Nat. Areas J. 2010;30:380–386. doi: 10.3375/043.030.0402. DOI

Květ, J., Lukavská, J. & Tetter, M. Biomass and net primary production in graminoid vegetation. in Freshwater Wetlands and their Sustainable Future. A Case Study of the Třeboň Basin Biosphere Reserve 293–299 (CRC Press, Boca Raton, 2002).

Hejný S. The dynamic characteristics of littoral vegetation with respect to changes of water level. Hidrobiol. Bucur. 1971;1971:71–85.

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Plant species as ecological engineers of microtopography in a temperate sedge-grass marsh

. 2025 Apr 18 ; 15 (1) : 13432. [epub] 20250418

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...