Contemporary clinical neurophysiology applications in dystonia

. 2021 Apr ; 128 (4) : 509-519. [epub] 20210216

Jazyk angličtina Země Rakousko Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid33591454
Odkazy

PubMed 33591454
DOI 10.1007/s00702-021-02310-6
PII: 10.1007/s00702-021-02310-6
Knihovny.cz E-zdroje

The complex phenomenological understanding of dystonia has transcended from the clinics to genetics, imaging and neurophysiology. One way in which electrophysiology will impact into the clinics are cases wherein a dystonic clinical presentation may not be typical or a "forme fruste" of the disorder. Indeed, the physiological imprints of dystonia are present regardless of its clinical manifestation. Underpinnings in the understanding of dystonia span from the peripheral, segmental and suprasegmental levels to the cortex, and various electrophysiological tests have been applied in the course of time to elucidate the origin of dystonia pathophysiology. While loss of inhibition remains to be the key finding in this regard, intricacies and variabilities exist, thus leading to a notion that perhaps dystonia should best be gleaned as network disorder. Interestingly, the complex process has now spanned towards the understanding in terms of networks related to the cerebellar circuitry and the neuroplasticity. What is evolving towards a better and cohesive view will be neurophysiology attributes combined with structural dynamic imaging. Such a sound approach will significantly lead to better therapeutic modalities in the future.

Zobrazit více v PubMed

Abbruzzese G, Pelosin E, Avanzino L (2015) Physiology of dystonia. In: Bhatia K, Rosales RL (eds) Kaňovský, P. Dystonia and dystonic syndromes. Springer-Verlag, Wien, pp 13–25

Alexander GE (1994) Basal ganglia-thalamocortical circuits: their role in control of movements. J Clin Neurophysiol 11:420–431 PubMed

Amadio S, Panizza M, Pisano F et al (2000) Transcranial magnetic stimulation and silent period in spasmodic torticollis. Am J Phys Med Rehabil 79:361–368 PubMed

Antelmi E, Erro R, Rocchi L et al (2017) Neurophysiological correlates of abnormal somatosensory temporal discrimination in dystonia. Mov Disord 32:141–148 PubMed

Bareš M, Rektor I (2001) Basal ganglia involvement in sensory and cognitive processing. A depth electrode CNV study in human subjects. Clin Neurophysiol 112:2022–2030 PubMed

Bareš M, Filip P (2018) Cerebellum and dystonia: The story continues. Will the patients benefit from new discoveries? Clin Neurophysiol 129:282–283 PubMed

Beck S, Shamim EA, Richardson SP et al (2009) Inter-hemispheric inhibition is impaired in mirror dystonia. Eur J Neurosci 29:1634–1640 PubMed PMC

Berardelli A, Rothwell JC, Hallett M et al (1998) The pathophysiology of primary dystonia. Brain 121:1195–1212 PubMed

Berardelli A, Abbruzzese G, Chen R et al (2008) Consensus paper on short-interval intracortical inhibition and other transcranial magnetic stimulation intracortical paradigms in movement disorders. Brain Stimul 1:183–191 PubMed

Berman BD, Jinnah HA (2015) Dystonia: Five new things. Neurol Clin Pract 5:232–240 PubMed PMC

Bove M, Brichetto G, Abbruzzese G et al (2004) Neck proprioception and spatial orientation in cervical dystonia. Brain 127:2764–2778 PubMed

Bradnam L, Barry C (2013) The role of the trigeminal sensory nuclear complex in the pathophysiology of craniocervical dystonia. J Neurosci 33:18358–18367 PubMed PMC

Bradnam LV, Meiring RM, Boyce M, McCambridge A (2020) Neurorehabilitation in dystonia: a holistic perspective. J Neural Transm. https://doi.org/10.1007/s00702-020-02265-0 ((Epub ahead of print. PMID: 33099684)) PubMed DOI PMC

Brugger F, Peters A, Georgiev D et al (2019) Sensory trick efficacy in cervical dystonia is linked to processing of neck proprioception. Parkinsonism Relat Disord 61:50–56 PubMed

Chen R (2000) Studies of human motor physiology with transcranial magnetic stimulation. Muscle Nerve 9(Suppl. 1):S26-32 PubMed

Chen KS, Chen R (2020) Principles of electrophysiological assessments for movement disorders. J Mov Disord 13:27–38 PubMed PMC

Chen R, Corwell B, Hallett M (1999) Modulation of motor cortex excitability by median nerve and digit stimulation. Exp Brain Res 129:77–86 PubMed

Chen JC, Macerollo A, Sadnicka A et al (2018) Cervical dystonia: Normal auditory mismatch negativity and abnormal somatosensory mismatch negativity. Clin Neurophysiol 129:1947–1954 PubMed

Conte A, Berardelli I, Ferrazzano G et al (2016) Non-motor symptoms in patients with adult-onset focal dystonia: Sensory and psychiatric disturbances. Parkinsonism Relat Disord 22(Suppl 1):S111–S114 PubMed

Cooper I (1965) Effect of thalamic lesions upon torticollis. N Engl J Med 270:567–572

Corp DT, Joutsa J, Darby RR et al (2019) Network localization of cervical dystonia based on causal brain lesions. Brain 142:1660–1674 PubMed PMC

Delmaire C, Vidailhet M, Elbaz A et al (2007) Structural abnormalities in the cerebellum and sensorimotor circuit in writer´s cramp. Neurology 69:378–380

Delnooz C, Pasman JW, Beckmann CF, a, (2013) Task-free functional MRI in cervical dystonia reveals multi-network changes that partially normalize with botulinum toxin. PLoS ONE 8:e62877 PubMed PMC

Delnooz C, Pasman JW, Beckmann CF et al (2015) Altered striatal and pallidal connectivity in cervical dystonia. Brain Struct Funct 220:513–523 PubMed

Deuschl G, Toro C, Matsumoto J et al (1995) Movement-related cortical potentials in writer’s cramp. Ann Neurol 38:862–868 PubMed

Devanne H, Lavoie BA, Capaday C (1997) Input-output properties and gain changes in the human corticospinal pathway. Exp Brain Res 114:329–338 PubMed

Di Lazzaro V, Oliviero A, Profice P et al (2000) Muscarinic receptor blockade has differential effects on the excitability of intracortical circuits in the human motor cortex. Exp Brain Res 135:455–461 PubMed

Di Lazzaro V, Pilato F, Dileone M et al (2007) Segregating two inhibitory circuits in human motor cortex at the level of GABAA receptor subtypes: A TMS study. Clin Neurophysiol 118:2207–2214 PubMed

Domingo A, Yadav R, Ozelius LJ (2020) Isolated dystonia: clinical and genetic updates. J Neural Transm. https://doi.org/10.1007/s00702-020-02268-x PubMed DOI

Draganski B, Thun-Hohenstein C, Bogdahn U et al (2003) “Motor circuit” gray matter changes in idiopathic cervical dystonia. Neurology 61:1228–1231 PubMed

Dressler D, Saberi FA, Rosales RL (2020) Botulinum toxin therapy of dystonia. J Neural Transm. https://doi.org/10.1007/s00702-020-02266-z PubMed DOI

Fève A, Bathien N, Rondot P (1994) Abnormal movement related potentials in patients with lesions of basal ganglia and anterior thalamus. J Neurol Neurosurg Psychiatry 57:100–104 PubMed PMC

Filip P, Gallea C, Lehéricy S et al (2017) Disruption in cerebellar and basal ganglia networks during a visuospatial task in cervical dystonia. Mov Disord 32:757–768 PubMed

Frima N, Rome SM, Grünewald RA (2003) The effect of fatigue on abnormal vibration induced illusion of movement in idiopathic focal dystonia. J Neurol Neurosurg Psychiatry 74:1154–1156 PubMed PMC

Gracien R-M, Petrov F, Hok P et al (2019) Multimodal quantitative MRI reveals no evidence for tissue pathology in idiopathic cervical dystonia. Front Neurol 10:914 PubMed PMC

Grünewald RA, Yoneda Y, Shipman JM et al (1997) Idiopathic focal dystonia: a disorder of muscle spindle afferent processing? Brain 120:2179–2185 PubMed

Hamano T, Kaji R, Katayama M et al (1999) Abnormal contingent negative variation in writer’s cramp. Clin Neurophysiol 110:508–515 PubMed

Han-Joon K, Jeon B (2020) Arching deep brain stimulation in dystonia types. J Neural Transm. https://doi.org/10.1007/s00702-020-02272-1 DOI

Heimburger RF (1969) The role of the cerebellar nuclei in dyskinetic disorders. Confin Neurol 31:57–69 PubMed

Hendrix CM, Vitek JL (2012) Toward a network model of dystonia. Ann NY Acad Sci 1265:46–55 PubMed

Hvizdošová L, Nevrlý M, Otruba P et al (2020) The prevalence of dystonic tremor and tremor associated with dystonia in patients with cervical dystonia. Sci Rep 10:1436 PubMed PMC

Ikeda A, Shibasaki H, Kaji R et al (1996) Abnormal sensorimotor integration in writer’s cramp: study of contingent negative variation. Mov Disord 6:683–690

Jinnah HA, Albanese A (2014) The new classification system for the dystonias: why was it needed and how was it developed? Mov Disord Clin Pract 1:280–284 PubMed PMC

Jinnah HA, Hess EJ (2006) A new twist on the anatomy of dystonia: the basal ganglia and the cerebellum? Neurology 67:1740–1741 PubMed

Jinnah HA, Neychev V, Hess EJ (2017) The anatomical basis for dystonia: the motor network model. Tremor Other Hyperkinet Mov (N Y) 7:506

Kaji R, Ikeda A, Ikeda T et al (1995a) Physiological study of cervical dystonia. Task- specific abnormality in contingent negative variation. Brain 118:511–522 PubMed

Kaji R, Rothwell JC, Katayama M et al (1995b) Tonic vibration reflex and muscle afferent block in writer’s cramp. Ann Neurol 38:155–162 PubMed

Kamble NL, Pal PK (2016) Electrophysiological evaluation of psychogenic movement disorders. Parkinsonism Relat Disord 22(Suppl 1):S153–S158 PubMed

Kaňovský P (2002) Dystonia: a disorder of motor programming or motor execution? Mov Disord 17:1143–1147 PubMed

Kaňovský P, Rosales RL (2011) Debunking the pathophysiological puzzle of dystonia– with special reference to botulinum toxin therapy. Parkinsonism Relat Disord 17(Suppl1):S11–S14 PubMed

Kaňovský P, Streitová H, Dufek J et al (1997) Lateralization of the P22/N30 component of somatosensory evoked potentials of the median nerve in patients with cervical dystonia. Mov Disord 12:553–560 PubMed

Kaňovský P, Streitová H, Dufek J et al (1998) Change in lateralization of the P22/N30 cortical component of median nerve somatosensory evoked potentials in patients with cervical dystonia after successful treatment with botulinum toxin A. Mov Disord 13:108–117 PubMed

Kaňovský P, Streitová H, Dufek J et al (1999a) Lateralization of the P22/N30 precentral cortical component of the median nerve somatosensory evoked potentials is different in patients with a tonic or tremulous form of cervical dystonia. Mov Disord 14:642–651 PubMed

Kaňovský P, Bareš M, Rektor I (1999b) The selective gating of the N30 cortical component of the somatosensory evoked potentials of median nerve is different in the mesial and dorsolateral frontal cortex: evidence from intracerebral recordings. Clin Neurophysiol 114:981–991

Kaňovský P, Bareš M, Streitová H et al (2003) Abnormalities of cortical excitability and cortical inhibition in cervical dystonia Evidence from somatosensory evoked potentials and paired transcranial magnetic stimulation recordings. J Neurol 250:42–50 PubMed

Kaňovský P, Bhatia K, Rosales RL (eds) (2015) Dystonia and dystonic syndromes. Springer, Wein. ISBN 978-3-7091-1516-9

Katschnig-Winter P, Schwingenschuh P, Davare M et al (2014) Motor sequence learning and motor adaptation in primary cervical dystonia. J Clin Neurosci 21:934–938 PubMed

Kujirai T, Caramia MD, Rothwell JC, Day BL, Thompson PD, Ferbert A, Wroe S, Asselman P, Marsden CD (1993) Corticocortical inhibition in human motor cortex. J Physiol 471:501–519 PubMed PMC

LeDoux MS, Brady KA (2003) Secondary cervical dystonia associated with structural lesions of the central nervous system. Mov Disord 18:60–69 PubMed

Léhericy S, Tijssen MA, Vidailhet M et al (2013) The anatomical basis of dystonia: current view using neuroimaging. Mov Disord 28:944–957 PubMed

Lim VK, Bradshaw JL, Nicholls ME et al (2004) Abnormal sensorimotor processing in pianists with focal dystonia. Adv Neurol 94:267–273 PubMed

Macerollo A, Chen JC, Parees I et al (2016) Abnormal movement-related suppression of sensory evoked potentials in upper limb dystonia. Eur J Neurol 23:562–568 PubMed

Macerollo A, Brown MJN, Kilner JM et al (2018) Neurophysiological changes measured using somatosensory evoked potentials. Trends Neurosci 41:294–310 PubMed

Mazzini L, Zaccala M, Balzarini C (1994) Abnormalities of somatosensory evoked potentials in spasmodic torticollis. Mov Disord 9:426–430 PubMed

McCambridge AB, Bradnam LV (2020) Cortical neurophysiology of primary isolated dystonia and non-dystonic adults: A meta-analysis. Eur J Neurosci 29:10. https://doi.org/10.1111/ejn.14987 ((Epub ahead of print. PMID: 32991762.)) DOI

Menšíková K, Kaiserová M, Vaštík M et al (2020) The long-term effect of continuous subcutaneous apomorphine infusions on camptocormia in Parkinson’s disease. Parkinsonism Relat Disord 75:14–16 PubMed

Murase N, Kaji R, Shimazu H et al (2000) Abnormal premovement gating of somatosensory input in writer’s cramp. Brain 123:1813–1829 PubMed

Nevrlý M, Hluštík P, Hok P et al (2018) Changes in sensorimotor network activation after botulinum toxin type A injections in patients with cervical dystonia: a functional MRI study. Exp Brain Res 236:2627–2637 PubMed PMC

Neychev VK, Gross R, Lehericy S et al (2011) The functional neuroanatomy of dystonia. Neurobiol Dis 42:185–201 PubMed PMC

Obermann M, Yaldizli O, De Greiff A et al (2007) Morphometric changes in sensorimotor structures in focal dystonia. Mov Disord 22:1117–1123 PubMed

Oku T, Furuya S (2019) Neuromuscular incoordination in musician’s dystonia. Parkinsonism Relat Disord 65:97–104 PubMed

Opavský R, Hluštík P, Otruba P et al (2011) Sensorimotor network in cervical dystonia and the effect of botulinum toxin treatment: a functional MRI study. J Neurol Sci 306:71–75 PubMed

Opavský R, Hluštík P, Otruba P et al (2012) Somatosensory cortical activation in cervical dystonia and its modulation with botulinum toxin: an fMRI study. Int J Neurosci 122:45–52 PubMed

Oyama G, Hattori N (2020). New Modalities and Directions for Dystonia Care. J Neural Transm (accepted)

Pohl C, Happe J, Klockgether T (2002) Cooling improves the writing performance of patients with writer’s cramp. Mov Disord 17:1341–1344 PubMed

Popa T, Hubsch C, James P et al (2018) Abnormal cerebellar processing of the neck proprioceptive information drives dysfunctions in cervical dystonia. Sci Rep 8:2263 PubMed PMC

Prudente CN, Hess EJ, Jinnah HA (2014) Dystonia as a network disorder: what is the role of the cerebellum? Neuroscience 260:23–35 PubMed

Ramdhani RA, Simonyan K (2013). Primary dystonia: conceptualizing the disorder through a structural brain imaging lens. Tremor Other Hyperkinet Mov (N Y) 3:tre-03–152–3638–4

Rektor I, Kaňovský P, Bareš M et al (2001a) Event-related potentials, CNV, readiness potential, and movement accompanying potential recorded from posterior thalamus in human subjects. A SEEG study. Neurophysiol Clin 31:253–261 PubMed

Rektor I, Bareš M, Kaňovský P et al (2001b) Intracerebral recording of readiness potential induced by a complex motor task. Mov Disord 16:698–704 PubMed

Rektor I, Bareš M, Kubová D (2001c) Movement-related potentials in the basal ganglia: a SEEG readiness potential study. Clin Neurophysiol 112:2146–2153 PubMed

Rektor I, Bareš M, Brázdil M et al (2005) Cognitive- and movement-related potentials recorded in the human basal ganglia. Mov Disord 20:562–568 PubMed

Ridding MC, Sheean G, Rothwell JC et al (1995) Changes in the balance between motor cortical excitation and inhibition in focal, task specific dystonia. J Neurol Neurosurg Psychiatry 59:493–583 PubMed PMC

Ridding MC, Brouwer B, Nordstrom MA (2000) Reduced interhemispheric inhibition in musicians. Exp Brain Res 133:249–253 PubMed

Rosales RL, Dressler D (2010) On muscle spindles, dystonia and botulinum toxin. Eur J Neurol 17(Suppl 1):71–80 PubMed

Rosales RL, Dressler D (2016) Botulinum toxin type A therapy in dystonia and spasticity - what are current practical applications? In: Rosales RL, Dressler D (eds) Botulinum toxin therapy manual for dystonia and spasticity. Intech Open Access Publishers, Rijeka. ISBN 978-953-51-2851-9

Rothwell JC (1995) The physiology of dystonia. Marcel Dekker, New York

Sadnicka A, Hoffland BS, Bhatia KP et al (2012) The cerebellum in dystonia—help or hindrance? Clin Neurophysiol 123:65–70 PubMed

Sadnicka A, Hamada M, Bhatia KP et al (2014a) Cerebellar stimulation fails to modulate motor cortex plasticity in writing dystonia. Mov Disord 29:1304–1307 PubMed

Sadnicka A, Patani B, Saifee TA et al (2014b) Normal motor adaptation in cervical dystonia: a fundamental cerebellar computation is intact. Cerebellum 13:558–567 PubMed PMC

Sadnicka A, Teo JT, Kojovic M et al (2015) All in the blink of an eye: new insight into cerebellar and brainstem function in DYT1 and DYT6 dystonia. Eur J Neurol 22:762–767 PubMed

Samargia S, Schmidt R, Kimberley TJ (2014) Shortened cortical silent period in adductor spasmodic dysphonia: evidence for widespread cortical excitability. Neurosci Lett 560:12–15 PubMed

Sarasso E, Agosta F, Piramide N, Bianchi F, Butera C, Gatti R, Amadio S, Del Carro U, Filippi M (2020) Sensory trick phenomenon in cervical dystonia: a functional MRI study. J Neurol 267:1103–1115 PubMed

Shakkottai VG (2014) Physiologic changes associated with cerebellar dystonia. Cerebellum 13:637–644 PubMed PMC

Shakkottai VG, Batla A, Bhatia K et al (2017) Current opinions and areas of consensus on the role of the cerebellum in dystonia. Cerebellum 16:577–594 PubMed PMC

Supnet ML, Rosales RL (2018) Indirect central nervous effects of botulinum toxin. In: Dressler D, Altenmüller E, Krauss JK (eds) Treatment of Dystonia. Cambridge University Press, Cambridge. ISBN 978-1-107-13286-3

Swash M, Fox KP (1976) Normal muscle spindles in idiopathic torsion dystonia. J Neurol Sci 27:525–527 PubMed

Teo JT, van de Warrenburg BP, Schneider SA et al (2009) Neurophysiological evidence for cerebellar dysfunction in primary focal dystonia. J Neurol Neurosurg Psychiatry 80:80–83 PubMed

Tinazzi M, Frasson E, Polo A et al (1999a) Evidence for an abnormal cortical sensory processing in dystonia: selective enhancement of lower limb P37–N50 somatosensory evoked potential. Mov Disord 14:473–480 PubMed

Tinazzi M, Frasson E, Bertolasi L et al (1999b) Temporal discrimination of somesthetic stimuli is impaired in dystonic patients. NeuroReport 10:1547–1550 PubMed

Tinazzi M, Fiaschi A, Frasson E et al (2002) Deficits of temporal discrimination in dystonia are independent from the spatial distance between the loci of tactile stimulation. Mov Disord 17:333–338 PubMed

Tokimura H, Di Lazzaro V, Tokimura Y et al (2000) Short latency inhibition of human hand motor cortex by somatosensory input from the hand. J Physiol 523:503–513 PubMed PMC

Toro C, Deuschl G, Hallett M (2000) Movement-related electroencephalographic desynchronization in patients with hand cramps: evidence for motor cortical involvement in focal dystonia. Ann Neurol 2000(47):456–461

Tseng YJ, Chen RS, Hsu WY et al (2014) Reduced motor cortex deactivation in individuals who suffer from writer’s cramp. PLoS ONE 9:e97561 PubMed PMC

Turco CV, El-Sayes J, Locke MB, Chen R, Baker S, Nelson AJ (2018a) Effects of lorazepam and baclofen on short- and long-latency afferent inhibition. J Physiol 596:5267–5280 PubMed PMC

Turco CV, El-Sayes J, Savoie MJ, Fassett HJ, Locke MB, Nelson AJ (2018b) Short- and long-latency afferent inhibition; uses, mechanisms and influencing factors. Brain Stim 11:59–74

Udupa K, Chen R (2019) Motor cortical circuits in Parkinson disease and dystonia. Handb Clin Neurol 161:167–186 PubMed

Van der Kamp W, Rothwell JC, Thompson PD et al (1995) The movement- related cortical potential is abnormal in patients with idiopathic torsion dystonia. Mov Disord 10:630–633 PubMed

Wasserman E, Epstein CM, Ziemann U, Wassermann EM (2008) The Oxford handbook of transcranial stimulation. Oxford University Press, Oxford. ISBN 978-0-19-856892-6

Weissbach A, Saranza G, Domingo, (2020) Combined dystonias: clinical and genetic updates. J Neural Transm. https://doi.org/10.1007/s00702-020-02269-w PubMed DOI

Zeuner KE, Peller M, Knutzen A et al (2009) Slow pre-movement cortical potentials do not reflect individual response to therapy in writer’s cramp. Clin Neurophysiol 120:1213–1219 PubMed

Zheng Z, Pan P, Wang W, Shang H (2012) Neural network of primary focal dystonia by an anatomic likelihood estimation meta-analysis of gray matter abnormalities. J Neurol Sci 316:51–55 PubMed

Ziemann U, Lonnecker S, Steinhoff BJ, Paulus W (1996a) Effects of antiepileptic drugs on motor cortex excitability in humans: a transcranial magnetic stimulation study. Ann Neurol 40:367–378 PubMed

Ziemann U, Lonnecker S, Steinhoff BJ, Paulus W (1996b) The effect of lorazepam on the motor cortical excitability in man. Exp Brain Res 109:127–135 PubMed

Ziemann U, Chen R, Cohen LG, Hallett M (1998) Dextromethorphan decreases the excitability of the human motor cortex. Neurology 51:1320–1324 PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...