Differential regulation of β-catenin-mediated transcription via N- and C-terminal co-factors governs identity of murine intestinal epithelial stem cells
Language English Country England, Great Britain Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
33649334
PubMed Central
PMC7921392
DOI
10.1038/s41467-021-21591-9
PII: 10.1038/s41467-021-21591-9
Knihovny.cz E-resources
- MeSH
- Algorithms MeSH
- beta Catenin chemistry metabolism MeSH
- Cell Differentiation MeSH
- Chromatin metabolism MeSH
- Phenotype MeSH
- Transcription, Genetic * MeSH
- Homeostasis MeSH
- Hyperplasia MeSH
- JNK Mitogen-Activated Protein Kinases metabolism MeSH
- Stem Cells metabolism MeSH
- RNA, Messenger genetics metabolism MeSH
- Mutation genetics MeSH
- Mutant Proteins metabolism MeSH
- Mice MeSH
- Organoids metabolism MeSH
- Cell Proliferation MeSH
- Chromatin Assembly and Disassembly MeSH
- Base Sequence MeSH
- Signal Transduction MeSH
- Intestinal Mucosa cytology MeSH
- Transcription Factors metabolism MeSH
- Animals MeSH
- Check Tag
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- beta Catenin MeSH
- Chromatin MeSH
- JNK Mitogen-Activated Protein Kinases MeSH
- RNA, Messenger MeSH
- Mutant Proteins MeSH
- Transcription Factors MeSH
The homeostasis of the gut epithelium relies upon continuous renewal and proliferation of crypt-resident intestinal epithelial stem cells (IESCs). Wnt/β-catenin signaling is required for IESC maintenance, however, it remains unclear how this pathway selectively governs the identity and proliferative decisions of IESCs. Here, we took advantage of knock-in mice harboring transgenic β-catenin alleles with mutations that specifically impair the recruitment of N- or C-terminal transcriptional co-factors. We show that C-terminally-recruited transcriptional co-factors of β-catenin act as all-or-nothing regulators of Wnt-target gene expression. Blocking their interactions with β-catenin rapidly induces loss of IESCs and intestinal homeostasis. Conversely, N-terminally recruited co-factors fine-tune β-catenin's transcriptional output to ensure proper self-renewal and proliferative behaviour of IESCs. Impairment of N-terminal interactions triggers transient hyperproliferation of IESCs, eventually resulting in exhaustion of the self-renewing stem cell pool. IESC mis-differentiation, accompanied by unfolded protein response stress and immune infiltration, results in a process resembling aberrant "villisation" of intestinal crypts. Our data suggest that IESC-specific Wnt/β-catenin output requires selective modulation of gene expression by transcriptional co-factors.
Department of Biosystems Science and Engineering ETH Zurich Basel Switzerland
Department of Molecular Life Sciences University of Zurich Zurich Switzerland
Institute of Experimental Immunology University of Zurich Zurich Switzerland
Institute of Molecular Genetics of the ASCR v v i Prague 4 Czech Republic
See more in PubMed
Barker N, et al. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature. 2007;449:1003–1007. doi: 10.1038/nature06196. PubMed DOI
Sato, T. et al. Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts. Nature469, 415–418 (2011). PubMed PMC
Schepers AG, Vries R, Van Den Born M, Van De Wetering M, Clevers H. Lgr5 intestinal stem cells have high telomerase activity and randomly segregate their chromosomes. EMBO J. 2011 doi: 10.1038/emboj.2011.26. PubMed DOI PMC
Carroll TD, Newton IP, Chen Y, Blow JJ, Näthke I. Lgr5+ intestinal stem cells reside in an unlicensed G1 phase. J. Cell Biol. 2018 doi: 10.1083/jcb.201708023. PubMed DOI PMC
Söderholm, S. & Cantù, C. The WNT/β-catenin dependent transcription: a tissue-specific business. Wiley Interdiscip. Rev. Syst. Biol. Med. e1511 (2020). PubMed PMC
Mosimann C, Hausmann G, Basler K. β-Catenin hits chromatin: regulation of Wnt target gene activation. Nat. Rev. Mol. Cell Biol. 2009;10:276–286. doi: 10.1038/nrm2654. PubMed DOI
Valenta T, Hausmann G, Basler K. The many faces and functions of beta-catenin. EMBO J. 2012;31:2714–2736. doi: 10.1038/emboj.2012.150. PubMed DOI PMC
Valenta T, et al. Probing transcription-specific outputs of β-catenin in vivo. Genes Dev. 2011;25:2631–2643. doi: 10.1101/gad.181289.111. PubMed DOI PMC
Cantù C, et al. The Pygo2-H3K4me2/3 interaction is dispensable for mouse development and Wnt signaling-dependent transcription. Development. 2013;140:2377–2386. doi: 10.1242/dev.093591. PubMed DOI
Cantù C, et al. Pax6-dependent, but β-catenin-independent, function of Bcl9 proteins in mouse lens development. Genes Dev. 2014;28:1879–1884. doi: 10.1101/gad.246140.114. PubMed DOI PMC
Cantù C, et al. A cytoplasmic role of Wnt/b-catenin transcriptional cofactors Bcl9, Bcl9l, and Pygopus in tooth enamel formation. Sci. Signal. 2017;10:1–11. doi: 10.1126/scisignal.aah4598. PubMed DOI
Cantù C, et al. Mutations in Bcl9 and Pygo genes cause congenital heart defects by tissue-specific perturbation of Wnt/β-catenin signaling. Genes Dev. 2018;32:1443–1458. doi: 10.1101/gad.315531.118. PubMed DOI PMC
Deka J, et al. Bcl9/Bcl9l are critical for Wnt-mediated regulation of stem cell traits in colon epithelium and adenocarcinomas. Cancer Res. 2010;70:6619–6628. doi: 10.1158/0008-5472.CAN-10-0148. PubMed DOI
Moor AE, et al. BCL9/9L-β-catenin Signaling is Associated With Poor Outcome in Colorectal Cancer. EBioMedicine. 2015;2:1932–1943. doi: 10.1016/j.ebiom.2015.10.030. PubMed DOI PMC
Gay, D. M. et al. Loss of BCL9/9l suppresses Wnt driven tumourigenesis in models that recapitulate human cancer. Nat. Commun. 10.1038/s41467-019-08586-3 (2019). PubMed PMC
Mieszczanek, J., Tienen, L. M. Van, Ibrahim, A. E. K., Winton, D. J. & Bienz, M. Bcl9 and Pygo synergise downstream of Apc to effect intestinal neoplasia in FAP mouse models. Nat. Commun. 10.1038/s41467-018-08164-z (2019). PubMed PMC
El Marjou F, et al. Tissue-specific and inducible Cre-mediated recombination in the gut epithelium. Genesis. 2004;39:186–193. doi: 10.1002/gene.20042. PubMed DOI
Valenta T, et al. Wnt ligands secreted by subepithelial mesenchymal cells are essential for the survival of intestinal stem cells and gut homeostasis. Cell Rep. 2016;15:911–918. doi: 10.1016/j.celrep.2016.03.088. PubMed DOI
Subramanian, A. et al. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA10.1073/pnas.0506580102 (2005). PubMed PMC
van der Flier LG, Clevers H. Stem cells, self-renewal, and differentiation in the intestinal epithelium. Annu. Rev. Physiol. 2009;71:241–260. doi: 10.1146/annurev.physiol.010908.163145. PubMed DOI
Huels DJ, et al. E-cadherin can limit the transforming properties of activating -catenin mutations. EMBO J. 2015;34:2321–2333. doi: 10.15252/embj.201591739. PubMed DOI PMC
van Es, J. H. et al. A critical role for the Wnt effector Tcf4 in adult intestinal homeostatic self-renewal. Mol. Cell. Biol. 10.1128/mcb.06288-11 (2012). PubMed PMC
VanDussen, K. L. et al. Notch signaling modulates proliferation and differentiation of intestinal crypt base columnar stem cells. Development10.1242/dev.070763 (2012). PubMed PMC
Tian H, et al. Opposing activities of Notch and Wnt signaling regulate intestinal stem cells and gut homeostasis report opposing activities of Notch and Wnt signaling regulate intestinal stem cells and gut homeostasis. CellReports. 2015;11:33–42. PubMed PMC
Koppens, M. A. J. et al. Deletion of polycomb repressive complex 2 from mouse intestine causes loss of stem cells. Gastroenterology10.1053/j.gastro.2016.06.020 (2016). PubMed
Chiacchiera, F. & Pasini, D. Control of adult intestinal identity by the Polycomb repressive machinery. Cell Cycle10.1080/15384101.2016.1252582 (2017). PubMed PMC
Haghverdi, L., Buettner, F. & Theis, F. J. Diffusion maps for high-dimensional single-cell analysis of differentiation data. Bioinformatics10.1093/bioinformatics/btv325 (2015). PubMed
Kowalczyk, M. S. et al. Single-cell RNA-seq reveals changes in cell cycle and differentiation programs upon aging of hematopoietic stem cells. Genome Res. 10.1101/gr.192237.115 (2015). PubMed PMC
Macnair, W. & Claassen, M. psupertime: supervised pseudotime inference for single cell RNA-seq data with sequential labels. bioRxiv10.1101/622001 (2019).
Sansom, O. J. et al. Myc deletion rescues Apc deficiency in the small intestine. Nature446, 676–679 (2007). PubMed
Fevr, T., Robine, S., Louvard, D. & Huelsken, J. Wnt/β-Catenin is essential for intestinal homeostasis and maintenance of intestinal stem cells. Mol. Cell. Biol. 21 7551–7559 (2007). PubMed PMC
Haber AL, et al. A single-cell survey of the small intestinal epithelium. Nature. 2017;551:333–339. doi: 10.1038/nature24489. PubMed DOI PMC
Moor, A. E. et al. Spatial reconstruction of single enterocytes uncovers broad zonation along the intestinal villus axis. Cell10.1016/j.cell.2018.08.063 (2018). PubMed
Biton, M. et al. T helper cell cytokines modulate intestinal stem cell renewal and differentiation. Cell10.1016/j.cell.2018.10.008 (2018). PubMed PMC
Sato T, et al. Regulated IFN signalling preserves the stemness of intestinal stem cells by restricting differentiation into secretory-cell lineages. Nat. Cell Biol. 2020;22:919–926. doi: 10.1038/s41556-020-0545-5. PubMed DOI
Heijmans J, et al. ER stress causes rapid loss of intestinal epithelial stemness through activation of the unfolded protein response. Cell Rep. 2013 doi: 10.1016/j.celrep.2013.02.031. PubMed DOI
Ono, S. J., Liou, H. C., Davidon, R., Strominger, J. L. & Glimcher, L. H. Human X-box-binding protein 1 is required for the transcription of a subset of human class II major histocompatibility genes and forms a heterodimer with c-fos. Proc. Natl. Acad. Sci. USA10.1073/pnas.88.10.4309 (1991). PubMed PMC
Iwakoshi, N. N., Lee, A. H. & Glimcher, L. H. The X-box binding protein-1 transcription factor is required for plasma cell differentiation and the unfolded protein response. Immunol. Rev.10.1034/j.1600-065X.2003.00057.x (2003). PubMed
Heinz, S. et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol. Cell10.1016/j.molcel.2010.05.004 (2010). PubMed PMC
Halpern, K. B. et al. Lgr5+ telocytes are a signaling hub at the intestinal villus tip. bioRxiv10.1101/850909 (2019). PubMed
Chauhan, S. C. et al. Expression and functions of transmembrane mucin MUC13 in ovarian cancer. Cancer Res. 10.1158/0008-5472.CAN-08-0587 (2009). PubMed
Albuquerque, C. The ‘just-right’ signaling model: APC somatic mutations are selected based on a specific level of activation of the beta-catenin signaling cascade. Hum. Mol. Genet. 10.1093/hmg/11.13.1549 (2002). PubMed
Bankaitis ED, Ha A, Kuo CJ, Magness ST. Reserve stem cells in intestinal homeostasis and injury. Gastroenterology. 2018 doi: 10.1053/j.gastro.2018.08.016. PubMed DOI PMC
Santos AJM, Lo YH, Mah AT, Kuo CJ. The intestinal stem cell niche: homeostasis and adaptations. Trends Cell Biol. 2018 doi: 10.1016/j.tcb.2018.08.001. PubMed DOI PMC
Yousefi M, Li L, Lengner CJ. Hierarchy and plasticity in the intestinal stem cell compartment. Trends Cell Biol. 2017 doi: 10.1016/j.tcb.2017.06.006. PubMed DOI PMC
de Sousa e Melo, F. & de Sauvage, F. J. Cellular plasticity in intestinal homeostasis and disease. Cell Stem Cell10.1016/j.stem.2018.11.019 (2019). PubMed
Brault V, et al. Inactivation of the beta-catenin gene by Wnt1-Cre-mediated deletion results in dramatic brain malformation and failure of craniofacial development. Development. 2001;128:1253–1264. PubMed
Lyubimova A, et al. Single-molecule mRNA detection and counting in mammalian tissue. Nat. Protoc. 2013 doi: 10.1038/nprot.2013.109. PubMed DOI
Itzkovitz, S. et al. Single-molecule transcript counting of stem-cell markers in the mouse intestine. Nat. Cell Biol. 10.1038/ncb2384 (2012). PubMed PMC
Sato T, et al. Growing self-organizing mini-guts from a single intestinal stem cell: mechanism and applications. Science. 2013;340:241–260. doi: 10.1126/science.1234852. PubMed DOI
Mizutani T, Clevers H. Primary intestinal epithelial organoid culture. in. Methods Mol. Biol. 2020 doi: 10.1007/978-1-0716-0747-3_11. PubMed DOI
Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods25, 402–408 (2001). PubMed
Gracz AD, Puthoff BJ, Magness ST. Identification, isolation, and culture of intestinal epithelial stem cells from murine intestine. Methods Mol. Biol. 2012;879:89–107. doi: 10.1007/978-1-61779-815-3_6. PubMed DOI PMC
Andrews, S. FASTQC a quality control tool for high throughput sequence data. Babraham Inst. (2015).
Hatakeyama, M. et al. SUSHI: An exquisite recipe for fully documented, reproducible and reusable NGS data analysis. BMC Bioinform.10.1186/s12859-016-1104-8 (2016). PubMed PMC
Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics10.1093/bioinformatics/btp616 (2009). PubMed PMC
Kolde, R. Package ‘pheatmap’. Bioconductor (2012).
Sergushichev, A. A. An algorithm for fast preranked gene set enrichment analysis using cumulative statistic calculation. bioRxiv10.1101/060012 (2016).
Liberzon A, et al. The molecular signatures database hallmark gene set collection. Cell Syst. 2015 doi: 10.1016/j.cels.2015.12.004. PubMed DOI PMC
Chen, E. Y. et al. Enrichr: Interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinformatics10.1186/1471-2105-14-128 (2013). PubMed PMC
Kuleshov MV, et al. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 2016 doi: 10.1093/nar/gkw377. PubMed DOI PMC
Macosko, E. Z. Z. et al. DropSeq, experimental procedures. Cell10.1016/j.cell.2015.05.002 (2015).
Parekh, S., Ziegenhain, C., Vieth, B., Enard, W. & Hellmann, I. zUMIs - A fast and flexible pipeline to process RNA sequencing data with UMIs. GigaScience10.1093/gigascience/giy059 (2018). PubMed PMC
Stuart, T. et al. Comprehensive integration of single-cell data. Cell10.1016/j.cell.2019.05.031 (2019). PubMed PMC
Barkas, N. et al. Joint analysis of heterogeneous single-cell RNA-seq dataset collections. Nat. Methods10.1038/s41592-019-0466-z (2019). PubMed PMC
Angerer, P. et al. Destiny: Diffusion maps for large-scale single-cell data in R. Bioinformatics10.1093/bioinformatics/btv715 (2016). PubMed
Mereu E, et al. matchSCore: matching single-cell phenotypes across tools and experiments. bioRxiv. 2018 doi: 10.1101/314831. DOI
Kanehisa, M. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 10.1093/nar/28.1.27 (2000). PubMed PMC
Fabregat, A. et al. The Reactome Pathway Knowledgebase. Nucleic Acids Res. 10.1093/nar/gkx1132 (2018). PubMed PMC
Ashburner, M. et al. Gene ontology: tool for the unification of biology. Nat. Genet.10.1038/75556 (2000). PubMed PMC
Wickham, H. ggplot2: elegant graphics for data analysis. Journal of the Royal Statistical Society: Series A (Statistics in Society). 10.1007/978-3-319-24277-4 (2016).
Buenrostro, J. D., Wu, B., Chang, H. Y. & Greenleaf, W. J. ATAC-seq: a method for assaying chromatin accessibility genome-wide. Curr. Protoc. Mol. Biol. 10.1002/0471142727.mb2129s109 (2015). PubMed PMC
Langmead, B. & Salzberg, S. Bowtie2. Nat. Methods10.1038/nmeth.1923.Fast (2013).
Davis, C. A. et al. The Encyclopedia of DNA elements (ENCODE): data portal update. Nucleic Acids Res. 10.1093/nar/gkx1081 (2018). PubMed PMC
Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics10.1093/bioinformatics/btq033 (2010). PubMed PMC
Liao, Y., Smyth, G. K. & Shi, W. The R package Rsubread is easier, faster, cheaper and better for alignment and quantification of RNA sequencing reads. Nucleic Acids Res. 10.1093/nar/gkz114 (2019). PubMed PMC
Robinson, J. T. et al. Integrative genomics viewer. Nature Biotechnology10.1038/nbt.1754 (2011). PubMed PMC