• This record comes from PubMed

Differential regulation of β-catenin-mediated transcription via N- and C-terminal co-factors governs identity of murine intestinal epithelial stem cells

. 2021 Mar 01 ; 12 (1) : 1368. [epub] 20210301

Language English Country England, Great Britain Media electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Links

PubMed 33649334
PubMed Central PMC7921392
DOI 10.1038/s41467-021-21591-9
PII: 10.1038/s41467-021-21591-9
Knihovny.cz E-resources

The homeostasis of the gut epithelium relies upon continuous renewal and proliferation of crypt-resident intestinal epithelial stem cells (IESCs). Wnt/β-catenin signaling is required for IESC maintenance, however, it remains unclear how this pathway selectively governs the identity and proliferative decisions of IESCs. Here, we took advantage of knock-in mice harboring transgenic β-catenin alleles with mutations that specifically impair the recruitment of N- or C-terminal transcriptional co-factors. We show that C-terminally-recruited transcriptional co-factors of β-catenin act as all-or-nothing regulators of Wnt-target gene expression. Blocking their interactions with β-catenin rapidly induces loss of IESCs and intestinal homeostasis. Conversely, N-terminally recruited co-factors fine-tune β-catenin's transcriptional output to ensure proper self-renewal and proliferative behaviour of IESCs. Impairment of N-terminal interactions triggers transient hyperproliferation of IESCs, eventually resulting in exhaustion of the self-renewing stem cell pool. IESC mis-differentiation, accompanied by unfolded protein response stress and immune infiltration, results in a process resembling aberrant "villisation" of intestinal crypts. Our data suggest that IESC-specific Wnt/β-catenin output requires selective modulation of gene expression by transcriptional co-factors.

See more in PubMed

Barker N, et al. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature. 2007;449:1003–1007. doi: 10.1038/nature06196. PubMed DOI

Sato, T. et al. Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts. Nature469, 415–418 (2011). PubMed PMC

Schepers AG, Vries R, Van Den Born M, Van De Wetering M, Clevers H. Lgr5 intestinal stem cells have high telomerase activity and randomly segregate their chromosomes. EMBO J. 2011 doi: 10.1038/emboj.2011.26. PubMed DOI PMC

Carroll TD, Newton IP, Chen Y, Blow JJ, Näthke I. Lgr5+ intestinal stem cells reside in an unlicensed G1 phase. J. Cell Biol. 2018 doi: 10.1083/jcb.201708023. PubMed DOI PMC

Söderholm, S. & Cantù, C. The WNT/β-catenin dependent transcription: a tissue-specific business. Wiley Interdiscip. Rev. Syst. Biol. Med. e1511 (2020). PubMed PMC

Mosimann C, Hausmann G, Basler K. β-Catenin hits chromatin: regulation of Wnt target gene activation. Nat. Rev. Mol. Cell Biol. 2009;10:276–286. doi: 10.1038/nrm2654. PubMed DOI

Valenta T, Hausmann G, Basler K. The many faces and functions of beta-catenin. EMBO J. 2012;31:2714–2736. doi: 10.1038/emboj.2012.150. PubMed DOI PMC

Valenta T, et al. Probing transcription-specific outputs of β-catenin in vivo. Genes Dev. 2011;25:2631–2643. doi: 10.1101/gad.181289.111. PubMed DOI PMC

Cantù C, et al. The Pygo2-H3K4me2/3 interaction is dispensable for mouse development and Wnt signaling-dependent transcription. Development. 2013;140:2377–2386. doi: 10.1242/dev.093591. PubMed DOI

Cantù C, et al. Pax6-dependent, but β-catenin-independent, function of Bcl9 proteins in mouse lens development. Genes Dev. 2014;28:1879–1884. doi: 10.1101/gad.246140.114. PubMed DOI PMC

Cantù C, et al. A cytoplasmic role of Wnt/b-catenin transcriptional cofactors Bcl9, Bcl9l, and Pygopus in tooth enamel formation. Sci. Signal. 2017;10:1–11. doi: 10.1126/scisignal.aah4598. PubMed DOI

Cantù C, et al. Mutations in Bcl9 and Pygo genes cause congenital heart defects by tissue-specific perturbation of Wnt/β-catenin signaling. Genes Dev. 2018;32:1443–1458. doi: 10.1101/gad.315531.118. PubMed DOI PMC

Deka J, et al. Bcl9/Bcl9l are critical for Wnt-mediated regulation of stem cell traits in colon epithelium and adenocarcinomas. Cancer Res. 2010;70:6619–6628. doi: 10.1158/0008-5472.CAN-10-0148. PubMed DOI

Moor AE, et al. BCL9/9L-β-catenin Signaling is Associated With Poor Outcome in Colorectal Cancer. EBioMedicine. 2015;2:1932–1943. doi: 10.1016/j.ebiom.2015.10.030. PubMed DOI PMC

Gay, D. M. et al. Loss of BCL9/9l suppresses Wnt driven tumourigenesis in models that recapitulate human cancer. Nat. Commun. 10.1038/s41467-019-08586-3 (2019). PubMed PMC

Mieszczanek, J., Tienen, L. M. Van, Ibrahim, A. E. K., Winton, D. J. & Bienz, M. Bcl9 and Pygo synergise downstream of Apc to effect intestinal neoplasia in FAP mouse models. Nat. Commun. 10.1038/s41467-018-08164-z (2019). PubMed PMC

El Marjou F, et al. Tissue-specific and inducible Cre-mediated recombination in the gut epithelium. Genesis. 2004;39:186–193. doi: 10.1002/gene.20042. PubMed DOI

Valenta T, et al. Wnt ligands secreted by subepithelial mesenchymal cells are essential for the survival of intestinal stem cells and gut homeostasis. Cell Rep. 2016;15:911–918. doi: 10.1016/j.celrep.2016.03.088. PubMed DOI

Subramanian, A. et al. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA10.1073/pnas.0506580102 (2005). PubMed PMC

van der Flier LG, Clevers H. Stem cells, self-renewal, and differentiation in the intestinal epithelium. Annu. Rev. Physiol. 2009;71:241–260. doi: 10.1146/annurev.physiol.010908.163145. PubMed DOI

Huels DJ, et al. E-cadherin can limit the transforming properties of activating -catenin mutations. EMBO J. 2015;34:2321–2333. doi: 10.15252/embj.201591739. PubMed DOI PMC

van Es, J. H. et al. A critical role for the Wnt effector Tcf4 in adult intestinal homeostatic self-renewal. Mol. Cell. Biol. 10.1128/mcb.06288-11 (2012). PubMed PMC

VanDussen, K. L. et al. Notch signaling modulates proliferation and differentiation of intestinal crypt base columnar stem cells. Development10.1242/dev.070763 (2012). PubMed PMC

Tian H, et al. Opposing activities of Notch and Wnt signaling regulate intestinal stem cells and gut homeostasis report opposing activities of Notch and Wnt signaling regulate intestinal stem cells and gut homeostasis. CellReports. 2015;11:33–42. PubMed PMC

Koppens, M. A. J. et al. Deletion of polycomb repressive complex 2 from mouse intestine causes loss of stem cells. Gastroenterology10.1053/j.gastro.2016.06.020 (2016). PubMed

Chiacchiera, F. & Pasini, D. Control of adult intestinal identity by the Polycomb repressive machinery. Cell Cycle10.1080/15384101.2016.1252582 (2017). PubMed PMC

Haghverdi, L., Buettner, F. & Theis, F. J. Diffusion maps for high-dimensional single-cell analysis of differentiation data. Bioinformatics10.1093/bioinformatics/btv325 (2015). PubMed

Kowalczyk, M. S. et al. Single-cell RNA-seq reveals changes in cell cycle and differentiation programs upon aging of hematopoietic stem cells. Genome Res. 10.1101/gr.192237.115 (2015). PubMed PMC

Macnair, W. & Claassen, M. psupertime: supervised pseudotime inference for single cell RNA-seq data with sequential labels. bioRxiv10.1101/622001 (2019).

Sansom, O. J. et al. Myc deletion rescues Apc deficiency in the small intestine. Nature446, 676–679 (2007). PubMed

Fevr, T., Robine, S., Louvard, D. & Huelsken, J. Wnt/β-Catenin is essential for intestinal homeostasis and maintenance of intestinal stem cells. Mol. Cell. Biol. 21 7551–7559 (2007). PubMed PMC

Haber AL, et al. A single-cell survey of the small intestinal epithelium. Nature. 2017;551:333–339. doi: 10.1038/nature24489. PubMed DOI PMC

Moor, A. E. et al. Spatial reconstruction of single enterocytes uncovers broad zonation along the intestinal villus axis. Cell10.1016/j.cell.2018.08.063 (2018). PubMed

Biton, M. et al. T helper cell cytokines modulate intestinal stem cell renewal and differentiation. Cell10.1016/j.cell.2018.10.008 (2018). PubMed PMC

Sato T, et al. Regulated IFN signalling preserves the stemness of intestinal stem cells by restricting differentiation into secretory-cell lineages. Nat. Cell Biol. 2020;22:919–926. doi: 10.1038/s41556-020-0545-5. PubMed DOI

Heijmans J, et al. ER stress causes rapid loss of intestinal epithelial stemness through activation of the unfolded protein response. Cell Rep. 2013 doi: 10.1016/j.celrep.2013.02.031. PubMed DOI

Ono, S. J., Liou, H. C., Davidon, R., Strominger, J. L. & Glimcher, L. H. Human X-box-binding protein 1 is required for the transcription of a subset of human class II major histocompatibility genes and forms a heterodimer with c-fos. Proc. Natl. Acad. Sci. USA10.1073/pnas.88.10.4309 (1991). PubMed PMC

Iwakoshi, N. N., Lee, A. H. & Glimcher, L. H. The X-box binding protein-1 transcription factor is required for plasma cell differentiation and the unfolded protein response. Immunol. Rev.10.1034/j.1600-065X.2003.00057.x (2003). PubMed

Heinz, S. et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol. Cell10.1016/j.molcel.2010.05.004 (2010). PubMed PMC

Halpern, K. B. et al. Lgr5+ telocytes are a signaling hub at the intestinal villus tip. bioRxiv10.1101/850909 (2019). PubMed

Chauhan, S. C. et al. Expression and functions of transmembrane mucin MUC13 in ovarian cancer. Cancer Res. 10.1158/0008-5472.CAN-08-0587 (2009). PubMed

Albuquerque, C. The ‘just-right’ signaling model: APC somatic mutations are selected based on a specific level of activation of the beta-catenin signaling cascade. Hum. Mol. Genet. 10.1093/hmg/11.13.1549 (2002). PubMed

Bankaitis ED, Ha A, Kuo CJ, Magness ST. Reserve stem cells in intestinal homeostasis and injury. Gastroenterology. 2018 doi: 10.1053/j.gastro.2018.08.016. PubMed DOI PMC

Santos AJM, Lo YH, Mah AT, Kuo CJ. The intestinal stem cell niche: homeostasis and adaptations. Trends Cell Biol. 2018 doi: 10.1016/j.tcb.2018.08.001. PubMed DOI PMC

Yousefi M, Li L, Lengner CJ. Hierarchy and plasticity in the intestinal stem cell compartment. Trends Cell Biol. 2017 doi: 10.1016/j.tcb.2017.06.006. PubMed DOI PMC

de Sousa e Melo, F. & de Sauvage, F. J. Cellular plasticity in intestinal homeostasis and disease. Cell Stem Cell10.1016/j.stem.2018.11.019 (2019). PubMed

Brault V, et al. Inactivation of the beta-catenin gene by Wnt1-Cre-mediated deletion results in dramatic brain malformation and failure of craniofacial development. Development. 2001;128:1253–1264. PubMed

Lyubimova A, et al. Single-molecule mRNA detection and counting in mammalian tissue. Nat. Protoc. 2013 doi: 10.1038/nprot.2013.109. PubMed DOI

Itzkovitz, S. et al. Single-molecule transcript counting of stem-cell markers in the mouse intestine. Nat. Cell Biol. 10.1038/ncb2384 (2012). PubMed PMC

Sato T, et al. Growing self-organizing mini-guts from a single intestinal stem cell: mechanism and applications. Science. 2013;340:241–260. doi: 10.1126/science.1234852. PubMed DOI

Mizutani T, Clevers H. Primary intestinal epithelial organoid culture. in. Methods Mol. Biol. 2020 doi: 10.1007/978-1-0716-0747-3_11. PubMed DOI

Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods25, 402–408 (2001). PubMed

Gracz AD, Puthoff BJ, Magness ST. Identification, isolation, and culture of intestinal epithelial stem cells from murine intestine. Methods Mol. Biol. 2012;879:89–107. doi: 10.1007/978-1-61779-815-3_6. PubMed DOI PMC

Andrews, S. FASTQC a quality control tool for high throughput sequence data. Babraham Inst. (2015).

Hatakeyama, M. et al. SUSHI: An exquisite recipe for fully documented, reproducible and reusable NGS data analysis. BMC Bioinform.10.1186/s12859-016-1104-8 (2016). PubMed PMC

Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics10.1093/bioinformatics/btp616 (2009). PubMed PMC

Kolde, R. Package ‘pheatmap’. Bioconductor (2012).

Sergushichev, A. A. An algorithm for fast preranked gene set enrichment analysis using cumulative statistic calculation. bioRxiv10.1101/060012 (2016).

Liberzon A, et al. The molecular signatures database hallmark gene set collection. Cell Syst. 2015 doi: 10.1016/j.cels.2015.12.004. PubMed DOI PMC

Chen, E. Y. et al. Enrichr: Interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinformatics10.1186/1471-2105-14-128 (2013). PubMed PMC

Kuleshov MV, et al. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 2016 doi: 10.1093/nar/gkw377. PubMed DOI PMC

Macosko, E. Z. Z. et al. DropSeq, experimental procedures. Cell10.1016/j.cell.2015.05.002 (2015).

Parekh, S., Ziegenhain, C., Vieth, B., Enard, W. & Hellmann, I. zUMIs - A fast and flexible pipeline to process RNA sequencing data with UMIs. GigaScience10.1093/gigascience/giy059 (2018). PubMed PMC

Stuart, T. et al. Comprehensive integration of single-cell data. Cell10.1016/j.cell.2019.05.031 (2019). PubMed PMC

Barkas, N. et al. Joint analysis of heterogeneous single-cell RNA-seq dataset collections. Nat. Methods10.1038/s41592-019-0466-z (2019). PubMed PMC

Angerer, P. et al. Destiny: Diffusion maps for large-scale single-cell data in R. Bioinformatics10.1093/bioinformatics/btv715 (2016). PubMed

Mereu E, et al. matchSCore: matching single-cell phenotypes across tools and experiments. bioRxiv. 2018 doi: 10.1101/314831. DOI

Kanehisa, M. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 10.1093/nar/28.1.27 (2000). PubMed PMC

Fabregat, A. et al. The Reactome Pathway Knowledgebase. Nucleic Acids Res. 10.1093/nar/gkx1132 (2018). PubMed PMC

Ashburner, M. et al. Gene ontology: tool for the unification of biology. Nat. Genet.10.1038/75556 (2000). PubMed PMC

Wickham, H. ggplot2: elegant graphics for data analysis. Journal of the Royal Statistical Society: Series A (Statistics in Society). 10.1007/978-3-319-24277-4 (2016).

Buenrostro, J. D., Wu, B., Chang, H. Y. & Greenleaf, W. J. ATAC-seq: a method for assaying chromatin accessibility genome-wide. Curr. Protoc. Mol. Biol. 10.1002/0471142727.mb2129s109 (2015). PubMed PMC

Langmead, B. & Salzberg, S. Bowtie2. Nat. Methods10.1038/nmeth.1923.Fast (2013).

Davis, C. A. et al. The Encyclopedia of DNA elements (ENCODE): data portal update. Nucleic Acids Res. 10.1093/nar/gkx1081 (2018). PubMed PMC

Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics10.1093/bioinformatics/btq033 (2010). PubMed PMC

Liao, Y., Smyth, G. K. & Shi, W. The R package Rsubread is easier, faster, cheaper and better for alignment and quantification of RNA sequencing reads. Nucleic Acids Res. 10.1093/nar/gkz114 (2019). PubMed PMC

Robinson, J. T. et al. Integrative genomics viewer. Nature Biotechnology10.1038/nbt.1754 (2011). PubMed PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...