An Early Stage Researcher's Primer on Systems Medicine Terminology
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
PubMed
33659919
PubMed Central
PMC7919422
DOI
10.1089/nsm.2020.0003
PII: 10.1089/nsm.2020.0003
Knihovny.cz E-zdroje
- Klíčová slova
- multiscale data science, multiscale modeling, systems medicine,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Background: Systems Medicine is a novel approach to medicine, that is, an interdisciplinary field that considers the human body as a system, composed of multiple parts and of complex relationships at multiple levels, and further integrated into an environment. Exploring Systems Medicine implies understanding and combining concepts coming from diametral different fields, including medicine, biology, statistics, modeling and simulation, and data science. Such heterogeneity leads to semantic issues, which may slow down implementation and fruitful interaction between these highly diverse fields. Methods: In this review, we collect and explain more than100 terms related to Systems Medicine. These include both modeling and data science terms and basic systems medicine terms, along with some synthetic definitions, examples of applications, and lists of relevant references. Results: This glossary aims at being a first aid kit for the Systems Medicine researcher facing an unfamiliar term, where he/she can get a first understanding of them, and, more importantly, examples and references for digging into the topic.
Altnagelvin Area Hospital Western Health and Social Care Trust Altnagelvin United Kingdom
BIO3 Systems Genetics GIGA R University of Liege Liege Belgium
BIO3 Systems Medicine Department of Human Genetics KU Leuven Leuven Belgium
Bioengineering Research and Development Center Kragujevac Serbia
Biomechanics and Bioengineering Laboratory Université de Technologie de Compiègne Compiègne France
Center for Research and Technology Hellas Hellenic Institute of Transport Thessaloniki Greece
Centre for Molecular Medicine Norway Forskningparken Oslo Norway
Centro de Tecnología Biomédica Universidad Politécnica de Madrid Madrid Spain
CNR National Research Council IAC Institute for Applied Computing Rome Italy
College of Artificial Intelligence Nankai University Tianjin China
Department of Animal Science Biotechnical Faculty University of Ljubljana Ljubljana Slovenia
Department of Automation Biocybernetics and Robotics Jozef Stefan Institute Ljubljana Slovenia
Department of Drug Sciences University of Catania Catania Italy
Department of Mathematics and Natural Sciences Kaunas University of Technology Kaunas Lithuania
Department of Pharmacology University of Oxford Oxford United Kingdom
Department of Psychiatry University of Cambridge Cambridge United Kingdom
Escola Superior de Tecnologia e Gestão Instituto Politécnico de Portalegre Portalegre Portugal
Faculty of Automatic Control and Computers University Politehnica of Bucharest Bucharest Romania
Faculty of Civil and Geodetic Engineering University of Ljubljana Ljubljana Slovenia
Faculty of Computer Science and Engineering Ss Cyril and Methodius University Skopje Macedonia
Faculty of Engineering University of Kragujevac Kragujevac Serbia
Faculty of Health Medicine and Life Science Maastricht University Maastricht The Netherlands
Faculty of Sciences Holon Institute of Technology Holon Israel
Faculty of Technology Management Holon Institute of Technology Holon Israel
Northern Ireland Centre for Stratified Medicine Ulster University Londonderry United Kingdom
School of Computing Ulster University Ulster United Kingdom
Steinbeis Advanced Risk Technologies Institute doo Kragujevac Kragujevac Serbia
TUM School of Life Sciences Weihenstephan Technical University of Munich Freising Germany
Zobrazit více v PubMed
Castiglioni AA. History of Medicine. London: Routledge. 2019
Berry BJL, Kim H. Long waves 1790–1990: intermittency, chaos, and control. In: Chaos Theory in the Social Sciences: Foundations and Applications. (Kiel LD, Elliott EW; eds). Ann Arbor, MI: University of Michigan Press. 1996; pp. 215–236
Zeng BZ. On the holographic model of human body. In: 1st National Conference of Comparative Studies Traditional Chinese Medicine and West Medicine (Medicine and Philosophy). 1992
Kamada T. System biomedicine: a new paradigm in biomedical engineering. Front Med Biol Eng. 1992;4:1. PubMed
Zanin M, Chorbev I, Stres B, et al. Community effort endorsing multiscale modelling, multiscale data science and multiscale computing for systems medicine. Brief Bioinformatics. 2019;20:1057–1062 PubMed PMC
Bonaneau E. Agent-based modeling: methods and techniques for simulating human systems. Proc Natl Acad Sci U S A. 2002;99:7280–7287 PubMed PMC
Punam B, Chawla S. Agent based information retrieval system using information scent. J Artif Intell. 2010;3:220–238
Ugurlu S, Erdogan N. An agent-based information retrieval system. In: Proceedings of the First International Conference on Advances in Information Systems (ADVIS'00). London. 2000
Posadas JL, Poza JL, Simo JE, et al. Agent-based distributed architecture for mobile robot control. Eng Appl Artif Intell. 2008;21:805–823
Pennisi S, Pappalardo F, Motta S. Agent based modeling of lung metastasis-immune system competition. Lect Notes Comput Sci. 2009;5666:1–3
Glen CM, Kemp ML, Voit EO. Agent-based modeling of morphogenetic systems: advantages and challenges. PLoS Comput Biol. 2019;15:e1006577. PubMed PMC
Castiglione F, Celada F. Immune System Modeling and Simulation. Boca Raton: CRC Press. 2015
von Neumann J. The Theory of Self-Reproducing Automata. Urbana, IL: University of Illinois Press. 1966
Ulam S. Random processes and transformations. In: Proceedings of the International Congress of Mathematics. 1952; pp. 264–275
Langton C. Artificial Life: An Overview. Cambridge, MA: MIT Press. 1995
Zhang L, Wang Z, Sagotsky JA, et al. Multiscale agent-based cancer modeling. J Math Biol. 2009;58:545–559 PubMed
Gong C, Milberg O, Wang B, et al. A computational multiscale agent-based model for simulating spatio-temporal tumour immune response to PD1 and PDL1 inhibition. J R Soc Interface. 2017;14:20170320. PubMed PMC
Epstein JM. Modelling to contain pandemics. Nature. 2009;460:687. PubMed PMC
Perez L, Dragicevic S. An agent-based approach for modeling dynamics of contagious disease spread. Int J Health Geogr. 2009;8:50. PubMed PMC
An G, Mi Q, Dutta-Moscato J, et al. Agent-based models in translational systems biology. Wiley Interdiscip Rev Syst Biol Med. 2009;1:159–171 PubMed PMC
van Gerven M, Bohte S. Artificial neural networks as models of neural information processing. Front Comput Neuro sci 2017;11:114 PubMed PMC
Goodfellow I, Bengio Y, Courville A. Deep Learning. Cambridge, MA: MIT Press. 2016
Awwalu J, Garba AG, Ghazvini A, et al. Artificial intelligence in personalized medicine—application of AI algorithms in solving personalized medicine problems. Int J Comput Theory Eng. 2015;7:439–443
Ching T, Zhu X, Garmire LX. Cox-nnet: an artificial neural network method for prognosis prediction of high-throughput omics data. PLoS Comput Biol. 2018;14:e1006076. PubMed PMC
Bica I, Velickovic P, Xiao H, et al. Multi-omics data integration using cross-modal neural networks. In: Proceedings of the 26th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN 2018). April 25–27, 2018, Belgium
Donner Y, Kazmierczak S, Fortney K. Drug repurposing using deep embeddings of gene expression profiles. Mol Pharm. 2018;15:4314–4325 PubMed
Keeling MJ, Rohani P. Modeling Infectious Diseases in Humans and Animals. Princeton, NJ: Princeton University Press. 2011
Särkkä S. Bayesian Filtering and Smoothing. New York: Cambridge University Press. 2013
Lucas P. Bayesian networks in medicine: a model-based approach to medical decision making. 2001. Available at: http://cs.ru.nl/~peterl/eunite.pdf
Jensen FV. An Introduction to Bayesian Networks. London: UCL Press. 1996
Andreassen S, Riekehr C, Kristensen B, et al. Using probabilistic and decision–theoretic methods in treatment and prognosis modeling. Artif Intell Med. 1999;15:121–134 PubMed
Seixas FL, Zadrozny B, Laks J, et al. A Bayesian network decision model for supporting the diagnosis of dementia, Alzheimer's disease and mild cognitive impairment. Comput Biol Med. 2014;51:140–158 PubMed
Bueno MLP, Hommersom A, Lucas PJ, et al. Understanding disease processes by partitioned dynamic Bayesian networks. J Biomed Inform. 2016;61:283–297 PubMed
de Rooij SE, Abu-Hanna A, Levi M, et al. Identification of high-risk subgroups in very elderly intensive care unit patients. Crit Care. 2007;11:R33. PubMed PMC
Kalet AM, Gennari JH, Ford EC, et al. Bayesian network models for error detection in radiotherapy plans. Phys Med Biol. 2015;60:2735. PubMed
Xing L, Guo M, Liu X, et al. An improved Bayesian network method for reconstructing gene regulatory network based on candidate auto selection. BMC Genomics. 2017;18:844. PubMed PMC
Nielsen T, Jensen F. Bayesian Networks and Decision Graphs. New York: Springer Science & Business Media. 2009
Dagum P, Galper A, Horvitz E. Dynamic network models for forecasting. In: Uncertainty in Artificial Intelligence. (Dubois D, Wellman MP, D'Ambrosio B, Smets P; eds). San Mateo, CA: Morgan Kaufmann. 1992; pp. 41–48
Friedman N, Goldszmidt M. Discretizing continuous attributes while learning Bayesian networks. In: 13th International Conference on Machine Learning. 1996. San Francisco, CA: Morgan Kaufmann Publishers Inc.; pp. 157–165
Li H, Lu L, Manly K, et al. Inferring gene transcriptional modulatory relations: a genetical genomics approach. Hum Mol Genet. 2005;14:1119–1125 PubMed
Zhu J, Lum P, Lamb J, et al. An integrative genomics approach to the reconstruction of gene networks in segregating populations. Cytogenet Genome Res. 2004;105:363–374 PubMed
Bayarri MJ, Berger JO. The interplay of Bayesian and frequentist analysis. Stat Sci. 2004;58–80
Wagenmakers EJ, Lee M, Lodewyckx T, et al. Bayesian versus frequentist inference. In: Bayesian Evaluation of Informative Hypotheses. New York: Springer. 2008; pp. 181–207
Casella G, Berger RL. Reconciling Bayesian and frequentist evidence in the one-sided testing problem. J Am Stat Assoc. 1987;82:106–111
Sustersic T, Rankovic V, Peulic M, et al. An early disc herniation identification system for advancement in the standard medical screening procedure based on Bayes theorem. IEEE J Biomed Health Inform. 2019;24:151–159 PubMed
Ashby D. Bayesian statistics in medicine: a 25 year review. Stat Med. 2006;25:3589–3631 PubMed
Zanin M, Belkoura S, Gomez J, et al. Topological structures are consistently overestimated in functional complex networks. Sci Rep. 2018;8:11980. PubMed PMC
Gurrin LC, Kurinczuk JJ, Burton PR. Bayesian statistics in medical research: an intuitive alternative to conventional data analysis. J Eval Clin Pract. 2000;6:193–204 PubMed
Freedman LS, Spiegelhalter DJ. The assessment of the subjective opinion and its use in relation to stopping rules for clinical trials. J R Stat Soc Ser D Stat. 1983;32:153–160
Spiegelhalter DJ, Freedman LS. A predictive approach to selecting the size of a clinical trial, based on subjective clinical opinion. Stat Med. 1986;5:1–13 PubMed
Chaloner K, Church T, Louis TA, et al. Graphical elicitation of a prior distribution for a clinical trial. J R Stat Soc Ser D Stat. 1993;42:341–353
Kadane JB, Dickey JM, Winkler RL, et al. Interactive elicitation of opinion for a normal linear model. J Am Stat Assoc. 1980;75:845–854
Efron B. Bayesians, frequentists, and scientists. J Am Stat Assoc. 2005;100:1–5
Jeffreys H. The Theory of Probability. Clarendon, UK: OUP Oxford. 1998
Bernardo JM. Reference posterior distributions for Bayesian inference. J R Stat Soc Ser B Methodol. 1979;41:113–128
Berger JO, Bernardo JM. On the development of the reference prior method. Bayesian Stat. 1992;4:35–60
Jaynes ET. Probability Theory: The Logic of Science. Cambridge, UK: Cambridge University Press. 2003
Datta GS, Mukerjee R. Probability Matching Priors: higher Order Asymptotics. New York: Springer Science & Business Media. 2012
Berger JO, Strawderman W, Tang D. Posterior propriety and admissibility of hyperpriors in normal hierarchical models. Ann Stat. 2005;33:606–646
Kass RE, Wasserman L. The selection of prior distributions by formal rules. J Am Stat Assoc. 1996;91:1343–1370
Lambert PC, Sutton AJ, Burton PR, et al. How vague is vague? A simulation study of the impact of the use of vague prior distributions in MCMC using WinBUGS. Stat Med. 2005;24:2401–2428 PubMed
Herson J. Bayesian analysis of cancer clinical trials: an introduction to four papers. Stat Med. 1992;22:1–3
Wieand S, Cha S. Description of the statistical aspects of a study for advanced colorectal cancer patients. Stat Med. 1992;11:5–11 PubMed
Freedman LS, Spiegelhalter DJ. Application of Bayesian statistics to decision making during a clinical trial. Stat Med. 1992;11:23–35 PubMed
Greenhouse JB. On some applications of Bayesian methods in cancer clinical trials. Stat Med. 1992;11:37–53 PubMed
Dixon DO, Simon R. Bayesian subset analysis in a colorectal cancer clinical trial. Stat Med. 1992;11:13–22 PubMed
Berry DA. Bayesian clinical trials. Nat Rev Drug Discov. 2006;5:27. PubMed
Armitage P, Berry G. Matthews JNS Statistical Methods in Medical Research. Oxford, UK: John Wiley & Sons. 2008
Winkler RL. An Introduction to Bayesian Inference and Decision. New York: Holt, Rinehart and Winston. 1972
Casella G. An introduction to empirical Bayes data analysis. Am Stat. 1985;39:83–87
Kass RE, Wasserman L. A reference Bayesian test for nested hypotheses and its relationship to the Schwarz criterion. J Am Stat Assoc. 1995;90:928–934
Berger JO. An overview of robust Bayesian analysis [with discussion]. Test. 1994;3:5–124
Robert C. The Bayesian Choice: from Decision-Theoretic Foundations to Computational Implementation. New York: Springer Science & Business Media. 2007
Ayyaswamy PS. Introduction to biofluid mechanics. In: Fluid Mechanics. (Kundu PK, Cohen IM, Dowling DR; eds). Waltham, MA: Academic Press. 2012; pp. 779–852
Fung YC. Biomechanics: Circulation. New York: Springer Science & Business Media, 2013
Peskin CS. Flow patterns around heart valves: a numerical method. J Comput Phys. 1972;10:252–271
Nichols J, Niles J, Riddle M, et al. Production and assessment of decellularized pig and human lung scaffolds. Tissue Eng Part A. 2013;19:2045–2062 PubMed PMC
Liepsch D. An introduction to biofluid mechanics—basic models and applications. J Biomech. 2002;35:415–435 PubMed
Valvano JW. Encyclopedia of Medical Devices and Instrumentation. Bioheat Transfer. Hoboken, NJ: John Wiley & Sons, Inc. 2006
Deng ZS, Liu J. Analytical study on bioheat transfer problems with spatial or transient heating on skin surface or inside biological bodies. J Biomech Eng. 2002;124:638–649 PubMed
Chato JC. Fundamentals of bioheat transfer. In: Thermal Dosimetry and Treatment planning. (Gautherie M; ed). Berlin, Germany: Springer-Verlag. 1990; pp. 1–56
Barabasi AL, Oltvai ZN. Network biology: understanding the cell's functional organization. Nat Rev Genet. 2004;5:101–113 PubMed
Tieri P, Farina L, Petti M, et al. Network inference and reconstruction in bioinformatics. In: Encyclopedia of Bioinformatics and Computational Biology. (Ranganathan S, Nakai K, Schönbach C; eds). Amsterdam, Netherlands: Elsevier. 2019; pp. 805–813
Barabasi AL, Gulbahce N, Loscalzo J. Network medicine: a network-based approach to human disease. Nat Rev Genet. 2011;12:56–68 PubMed PMC
Przulj N. Protein-protein interactions: making sense of networks via graph-theoretic modeling. Bioessays. 2011;33:115–123 PubMed
Jeong H, Mason SP, Barabási AL, et al. Lethality and centrality in protein networks. Nature. 2001;411:41. PubMed
Rao VS, Srinivas K, Sujini GN, et al. Protein-protein interaction detection: methods and analysis. Int J Proteomics. 2014;2014:147648. PubMed PMC
Cafarelli TM, Desbuleux A, Wang Y, et al. Mapping, modeling, and characterization of protein–protein interactions on a proteomic scale. Curr Opin Struct Biol. 2017;44:201–210 PubMed
Huynh-Thu V, Sanguinetti G. Gene regulatory network inference: an introductory survey. In: Gene Regulatory Networks. (Sanguinetti G, Huynh-Thu VA; eds). New York: Humana Press. 2018; pp. 1–23 PubMed
Butte AJ, Tamayo P, Slonim D, et al. Discovering functional relationships between RNA expression and chemotherapeutic susceptibility using relevance networks. Proc Natl Acad Sci U S A. 2000;97:12182–12186 PubMed PMC
Aibar S, Gonzalez-Blas CB, Moerman T, et al. SCENIC: single-cell regulatory network inference and clustering. Nat Methods. 2017;14:1083–1086 PubMed PMC
Chan TE, Stumpf MPH, Babtie AC. Gene regulatory network inference from single-cell data using multivariate information measures. Cell Syst. 2017;5:251–267 PubMed PMC
Chai LE, Loh SK, Low ST, et al. A review on the computational approaches for gene regulatory network construction. Comput Biol Med. 2014;48:55–65 PubMed
Emmert-Streib F, Dehmer M, Haibe-Kains B. Gene regulatory networks and their applications: understanding biological and medical problems in terms of networks. Front Cell Dev Biol. 2014;2:38. PubMed PMC
Serin EA, Nijveen H, Hilhorst HW, et al. Learning from co-expression networks: possibilities and challenges. Front Plant Sci. 2016;7:444. PubMed PMC
Tieri P, Termanini A, Bellavista E, et al. Charting the NF-κB pathway interactome map. PLoS One. 2012;7:e32678. PubMed PMC
Molinelli EJ, Korkut A, Wang W, et al. Perturbation biology: inferring signaling networks in cellular systems. PLoS Comput Biol. 2013;9:e1003290. PubMed PMC
Papin JA, Hunter T, Palsson BO, et al. Reconstruction of cellular signalling networks and analysis of their properties. Nat Rev Mol Cell Biol. 2005;6:99–111 PubMed
Pitkanen E, Rousu J, Ukkonen E. Computational methods for metabolic reconstruction. Curr Opin Biotechnol. 2015;21:70–77 PubMed
Nikoloski Z, Perez-Storey R, Sweetlove LJ. Inference and prediction of metabolic network fluxes. Plant Physiol. 2015;169:1443–1455 PubMed PMC
Brent MR. Past roadblocks and new opportunities in transcription factor network mapping. Trends Genet. 2016;32:736–750 PubMed PMC
Maniatis T, Goodbourn S, Fischer JA. Regulation of inducible and tissue-specific gene expression. Science. 1987;236:1237–1245 PubMed
Niwa H. The principles that govern transcription factor network functions in stem cells. Development. 2018;145:dev157420. PubMed
Bonzanni N, Garg A, Feenstra KA, et al. Hard-wired heterogeneity in blood stem cells revealed using a dynamic regulatory network model. Bioinformatics. 2013;29:i80–i88 PubMed PMC
Moignard V, Woodhouse S, Haghverdi L, et al. Decoding the regulatory network of early blood development from single-cell gene expression measurements. Nat Biotechnol. 2015;33:269. PubMed PMC
Kang Y, Liow HH, Maier EJ, et al. NetProphet 2.0: mapping transcription factor networks by exploiting scalable data resources. Bioinformatics. 2017;34:249–257 PubMed PMC
Smyth GK. Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol. 2004;1:3 PubMed
Matys V, Kel-Margoulis OV, Fricke E, et al. TRANSFAC and its module TRANSCompel: transcriptional gene regulation in eukaryotes. Nucleic Acids Res. 2006;34:D108–D110 PubMed PMC
Urlep Ž, Lorbek G, Perše M, et al. Disrupting hepatocyte Cyp51 from cholesterol synthesis leads to progressive liver injury in the developing mouse and decreases RORC signalling. Sci Rep. 2017;7:40775. PubMed PMC
Ratner BD, Hoffman AS, Schoen FJ, et al. Biomaterials Science: An Introduction to Materials in Medicine. Amsterdam, Netherlands: Elsevier. 2004
Park J, Roderic SL. Biomaterials: An Introduction. New York: Springer Science & Business Media. 2007
Bronzino JD. Biomedical Engineering Handbook. Boca Raton, FL: CRC Press. 1999
Bronzino JD, Wong JY, Peterson DR. Biomaterials: Principles and Practices. Boca Raton, FL: CRC Press. 2012
Humphrey J, Delange SL. Introduction to Biomechanics. New York: Springer-Verlag. 2016
Zatsiorsky VM, Zaciorskij VM. Kinetics of Human Motion. Champaign, IL: Human Kinetics. 2002
Winter DA. Biomechanics and motor control of human gait: normal, elderly and pathological. Ontario, Canada: Waterloo Biomechanics. 1991
Fung YC. Biomechanics: Mechanical Properties of Living Tissues. New York: Springer Science & Business Media. 2013
De Luca CJ. The use of surface electromyography in biomechanics. J Appl Biomech. 1997;13:135–163
Reynolds NH, McGarry JP. Single cell active force generation under dynamic loading–part II: active modelling insights. Acta Biomater. 2015;27:251–263 PubMed
Chopard B, Droz M. Cellular Automata. Cambridge, UK: Cambridge University Press. 1998
Vezhnevets V, Konouchine V. GrowCut: Interactive multi-label ND image segmentation by cellular automata. In: Computer Graphics and Applications (GraphiCon'2005) Fifteenth International Conference. June 20–24, 2005. Novosibirsk Akademgorodok, Russia
Wongthanavasu S, Tangvoraphonkchai V. Cellular Automata-based Algorithm and its Application in Medical image processing. In: 2007 IEEE International Conference on Image Processing. Piscataway, NJ: IEEE. 2007; pp. 1–41
Prieto-Langarica A, Kojouharov H, Chen-Charpentier B, et al. A cellular automata model of infection control on medical implants. Appl Appl Math. 2011;6:1. PubMed PMC
dos Santos RMZ, Coutinho S. Dynamics of HIV infection: a cellular automata approach. Phys Rev Lett. 2001;87:168102. PubMed
Mikler AR, Venkatachalam S, Abbas K. Modeling infectious diseases using global stochastic cellular automata. J Biol Syst. 2005;13:421–439
Banning MA. A review of clinical decision making: models and current research. J Clin Nurs. 2008;17:187–195 PubMed
Hunink MGM, Weinstein CM, Wittenberg E, et al. Decision Making in Health and Medicine: Integrating Evidence and Values. Cambridge, UK: Cambridge University Press. 2014
Kong G, Xu DL, Yang JB. Clinical decision support systems: a review on knowledge representation and inference under uncertainties. Int J Comput Intell Syst. 2008;1:159–167
Sim I, Gorman P, Greenes RA, et al. Clinical decision support systems for the practice of evidence-based medicine. J Am Med Inform Assoc. 2008;8:527–534 PubMed PMC
Haenssle HA, Fink C, Schneiderbauer R, et al. Man against machine: diagnostic performance of a deep learning convolutional neural network for dermoscopic melanoma recognition in comparison to 58 dermatologists. Ann Oncol. 2018;29:1836–1842 PubMed
Belkoura S, Zanin M, LaTorre A. Fostering interpretability of data mining models through data perturbation. Expert Syst Appl. 2019;137:191–201
Khairat S, Marc D, Crosby W, et al. Reasons for physicians not adopting clinical decision support systems: critical analysis. JMIR Med Inform. 2018;6:e24. PubMed PMC
Kaufman L, Rousseeuw PJ. Finding Groups in Data: An Introduction to Cluster Analysis. Hoboken, NJ: John Wiley & Sons. 2009
Berkhin P. A survey of clustering data mining techniques. In: Grouping Multidimensional Data. (Kogan J, Nicholas C, Teboulle M; eds). Heidelberg, Germany: Springer. 2006; pp. 25–71
Hartigan JA, Wong MA. Algorithm AS 136: a k-means clustering algorithm. J R Stat Soc Ser C Appl Stat. 1979;28:100–108
Steinley D. K-means clustering: a half-century synthesis. Br J Math Stat Psychol. 2006;59:1–34 PubMed
Jain AK. Data clustering: 50 years beyond K-means. Pattern Recognit Lett. 2010;31:651–666
Ester M, Kriegel H-P, Sander J, et al. A density-based algorithm for discovering clusters in large spatial databases with noise. KDD. 1996;96:226–231
McLachlan GJ, Kaye EB. Mixture Models: Inference and Applications to Clustering. New York: M. Dekker. 1988
Dempster AP, Laird NM, Rubin DB. Maximum likelihood from incomplete data via the EM algorithm. J R Stat Soc Ser B Methodol. 1977;39:1–22
Albert R, Barabasi AL. Statistical mechanics of complex networks. Rev Mod Phys. 2002;74:47
Boccaletti S, Latora V, Moreno Y, et al. Complex networks: structure and dynamics. Phys Rep. 2006;424:175–308
Strogatz SH. Exploring complex networks. Nature. 2001;410:268. PubMed
Kossinets G, Watts DJ. Empirical analysis of an evolving social network. Science. 2006;311:88–90 PubMed
Bonanno G, Caldarelli G, Lillo F, et al. Topology of correlation-based minimal spanning trees in real and model markets. Phys Rev E. 2003;68:046130 PubMed
Tong AHY, Lesage G, Bader GD, et al. Global mapping of the yeast genetic interaction network. Science. 2004;303:808–813 PubMed
Costa LDF, Rodrigues FA, Travieso G, et al. Characterization of complex networks: a survey of measurements. Adv Phys. 2007;56:167–242
Zanin M, Papo D, Sousa PA, et al. Combining complex networks and data mining: why and how. Phys Rep. 2016;635:1–44
Anderson PW. More is different. Science. 1972;177:393–396 PubMed
Simon HA. The Organization of Complex Systems. In: Models of Discovery. (Simon HA; ed). Dordrecht, Netherlands: Springer. 1977; pp. 245–261
Bar-Yam Y. Dynamics of Complex Systems. Boca Raton, FL: CRC Press. 2019
Kaplan DT, Furman MI, Pincus SM, et al. Aging and the complexity of cardiovascular dynamics. Biophys J. 1991;59:945–949 PubMed PMC
Goldberger AL, West BJ. Fractals in physiology and medicine. Yale J Biol Med. 1987;60:421. PubMed PMC
Richman JS, Moorman JR. Physiological time-series analysis using approximate entropy and sample entropy. Am J Physiol Heart Circu Physiol. 2000;278:2039–2049 PubMed
Zanin M, Zunino L, Rosso OA, et al. Permutation entropy and its main biomedical and econophysics applications: a review. Entropy. 2012;14:1553–1577
Peng CK, Havlin S, Stanley HE, et al. Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series. Chaos. 1995;5:82–87 PubMed
Kauffman SA. Antichaos and adaptation. Sci Am. 1991;265:78–85 PubMed
Langedijk J, Mantel-Teeuwisse AK, Slijkerman DS, et al. Drug repositioning and repurposing: terminology and definitions in literature. Drug Discov Today. 2015;20:1027–1034 PubMed
Meslamani J, Li J, Sutter J, et al. Protein–ligand-based pharmacophores: generation and utility assessment in computational ligand profiling. J Chem Inf Model. 2012;52:943–955 PubMed
Aliper A, Plis S, Artemov A, et al. Deep learning applications for predicting pharmacological properties of drugs and drug repurposing using transcriptomic data. Mol Pharm. 2016;13:2524–2530 PubMed PMC
Lussier YA, Chen JL. The emergence of genome-based drug repositioning. Sci Transl Med. 2011;3:96ps35.: PubMed PMC
Andronis C, Sharma A, Virvilis V, et al. Literature mining, ontologies and information visualization for drug repurposing. Brief Bioinformatics. 2011;12:357–368 PubMed
Savva K, Zachariou M, Oulas A, et al. Computational drug repurposing for neurodegenerative diseases. In: In Silico Drug Desig. (Roy K; ed). London, UK: Academic Press. 2019; pp. 85–118
Cruse H. Constraints for joint angle control of the human arm. Biol Cybern. 1986;54:125–132
Stalidzans E, Seiman A, Peebo K, et al. Model-based metabolism design: constraints for kinetic and stoichiometric models. Biochem Soc Trans. 2018;46:261–267 PubMed PMC
Dey AK. Understanding and using context. Pers Ubiquitous Comput. 2001;5:4–7
Padovitz A, Loke SW, Zaslavsky A, et al. An approach to data fusion for context awareness. In: International and Interdisciplinary Conference on Modeling and Using Context. (Dey A, Kokinov B, Leake D, Turner R; eds). Heidelberg, Germany: Springer. 2005; pp. 353–367
Jahnke JH, Bychkov Y, Dahlem D, et al. Context-aware information services for health care. In: Proceedings of the KI-04 Workshop on Modeling and Retrieval of Context. 2004
Wirth R, Hipp J. CRISP-DM: towards a standard process model for data mining. In: Proceedings of the 4th International Conference on the Practical Applications of Knowledge Discovery and Data Mining. Blackpool, Lancashire, UK: Practical Application Company. 2000; pp. 29–39
Shearer C. The CRISP-DM model: the new blueprint for data mining. J Data Warehous. 2000;5:13–22
Pyle D. Data Preparation for Data Mining. San Mateo, CA: Morgan Kaufmann. 1999
Cooley R, Mobasher B, Srivastava J. Data preparation for mining world wide web browsing patterns. Knowl Inf Syst. 1999;1:5–32
Zhang S, Zhang C, Yang Q. Data preparation for data mining. Appl Artif Intell. 2003;17:375–381
Browne MW. Cross-validation methods. J Math Psychol. 2000;44:108–132 PubMed
Berthold MR, Cebron N, Dill F, et al. KNIME-the Konstanz information miner: version 2.0 and beyond. AcM SIGKDD Explor. 2009;11:26–31
Wendler T, Gröttrup S. Data Mining with SPSS Modeler: Theory, Exercises and Solutions. Berlin, Germany: Springer. 2016
Hofmann M, Klinkenberg R. RapidMiner: Data Mining Use Cases and Business Analytics Applications. Boca Raton, FL: CRC Press. 2013
Abadi M, Barham P, Chen J, et al. Tensorflow: a system for large-scale machine learning. In: 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 16). Savannah, GA: USENIX. 2016; pp. 265–283
Chen H, Chiang RHL, Storey VC. Business intelligence and analytics: from big data to big impact. MIS Q. 2012;1165–1188
Huang S, Chaudhary K, Garmire L. More is better: recent progress in multi-omics data integration methods. Front Genet. 2017;8:84. PubMed PMC
Breiman L, Friedman J, Stone CJ, et al. Classification and Regression Trees. Boca Raton, FL: Chapman And Hall/CRC. 1984
Mehta M, Agrawal R, Rissanen J. SLIQ: A fast scalable classifier for data mining. In: International Conference on Extending Database Technology. (Apers P, Bouzeghoub M, Gardarin G; eds). Berlin, Germany: Elsevier. 1996; pp. 18–32
Shafer J, Agrawal R, Mehta M. SPRINT: a scalable parallel classifier for data mining. In: Proceedings of the 1996 International Conference on Very Large Data Bases. (Vijayaraman TM, Buchmann AP, Mohan C, Sarda NL; eds). San Francisco, CA: Morgan Kaufmann. 1996; pp. 544–555
Quinlan JR. Induction of decision trees. Mach Learn. 1986;1:81–106
Quinlan JR. C4.5: Programs for Machine Learning. San Francisco, CA: Elsevier. 2014
Podgorelec V, Kokol P, Stiglic B, et al. Decision trees: an overview and their use in medicine. J Med Syst. 2002;26:445–463 PubMed
Azar AT, El-Metwally SM. Decision tree classifiers for automated medical diagnosis. Neural Comput Appl. 2013;23:2387–2403
Turban E. Decision Support and Expert Systems: Management Support Systems. Upper Saddle River, NJ: Prentice Hall. 1993
Barbosa-Póvoa A, Subias AC, De Miranda JL. Optimization and Decision Support Systems for Supply Chains. Zurich: Springer. 2017
Gurney K. An Introduction to Neural Networks. Boca Raton, FL: CRC Press. 2014
LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521:436. PubMed
Lupton D. Critical perspectives on digital health technologies. Sociol Compass. 2014;8:1344–1359
Lupton D. The digitally engaged patient: self-monitoring and self-care in the digital health era. Soc Theory Health. 2013;11:256–270
Birnbaum F, Lewis DM, Rosen R, et al. Patient engagement and the design of digital health. Acad Emerg Med. 2015;22:754. PubMed PMC
Tao F, Cheng J, Qi Q, et al. Digital twin-driven product design, manufacturing and service with big data. Int J Adv Manuf Technol. 2018;94:3563–3576
Bruynseels K, Santoni de Sio F, van den Hoven J. Digital twins in health care: ethical implications of an emerging engineering paradigm. Front Gene. 2018;9:31 PubMed PMC
Sabater-Mir J. Towards a Healthcare Digital Twin. In: Artificial Intelligence Research and Development: Proceedings of the 22nd International Conference of the Catalan Association for Artificial Intelligence. (Torra V, Sabater-Mir J, Aguiló I; eds). Amsterdam, Netherlands: IOS Press. 2019; p. 312
Moeendarbary E, Ng TY, Zangeneh M. Dissipative particle dynamics: introduction, methodology and complex fluid applications—a review. Int J Appl Mech. 2009;1:737–763
Filipovic N, Zivic M, Obradovic M, et al. Numerical and experimental LDL transport through arterial wall. Microfluid Nanofluidics. 2014;16:455–464
Vulović R, Nikolić M, Filipović N. Smart platform for the analysis of cupula deformation caused by otoconia presence within SCCs. Comput Methods Biomech Biomed Eng. 2019;22:130–138 PubMed
Filipovic N, Jovanovic A, Petrovic D, et al. Modelling of self-healing materials using discrete and continuum methods. Surf Coat Int. 2012;95:74–79
Wandelt S, Sun X, Menasalvas E, et al. On the use of random graphs as null model of large connected networks. Chaos Soliton Fract. 2019;119:318–325
Erdős P, Rényi A. On the evolution of random graphs. Publ Math Inst Hung Acad Sci. 1960;5:17–60
Wild CP. Complementing the genome with an “exposome”: the outstanding challenge of environmental exposure measurement in molecular epidemiology. Cancer Epidemiol Biomarkers Prev. 2005;14:1847. PubMed
Louis GMB, Smarr MM, Patel CJ. The Exposome Research Paradigm: an opportunity to understand the environmental basis for human health and disease. Curr Environ Health Rep. 2017;4:89–98 PubMed PMC
Louis GMB, Yeung E, Kannan K, et al. Patterns and variability of endocrine-disrupting chemicals during pregnancy: implications for understanding the exposome of normal pregnancy. Epidemiology. 2019;30:S65–S75 PubMed PMC
Wilkinson MD, Dumontier M, Aalbersberg IJ, et al. The FAIR Guiding Principles for scientific data management and stewardship. Sci Data. 2016;3:160018.: PubMed PMC
Blum AL, Langley P. Selection of relevant features and examples in machine learning. Artif Intell. 1997;97:245–271
Guyon I, Elisseeff A. An introduction to variable and feature selection. J Mach Learn Res. 2003;3:1157–1182
Reunanen J. Overfitting in making comparisons between variable selection methods. J Mach Learn Res. 2003;3:1371–1382
Lal TN, Chapelle O, Weston J, et al. Embedded methods. In: Feature Extraction. (Guyon I, Nikravesh M, Gunn S, Zadeh LA; eds). Berlin, Germany: Springer. 2006; pp. 137–165
Logan DL. A first course in the finite element method. Pacific Grove, CA: Cengage Learning. 2011
Reddy JN. Introduction to the Finite Element Method. New York: McGraw-Hill. 2017
Vulović A, Filipović N. Computational analysis of hip implant surfaces. J Serbian Soc Comput Mech. 2019;13:109–119
Nikolic M, Teal PD, Isailovic V, et al. Finite element cochlea box model—mechanical and electrical analysis of the cochlea. AIP Conf Proc. 2015;1703:070012
Auricchio F, Conti M, Ferrara A, et al. Patient-specific finite element analysis of carotid artery stenting: a focus on vessel modeling. Int J Numer Methods Biomed Eng. 2013;29:645–664 PubMed
Djorovic S, Saveljic I, Filipovic N. Computational simulation of carotid artery: from patient-specific images to finite element analysis. J Serbian Soc Comput Mech. 2019;13:120–129
Redaelli A, Boschetti F, Inzoli F. The assignment of velocity profiles in finite element simulations of pulsatile flow in arteries. Comput Biol Med. 1997;27:233–247 PubMed
Robnik-Šikonja M, Radović M, Đorović S, et al. Modeling ischemia with finite elements and automated machine learning. J Comput Sci. 2018;29:99–106
Šušteršič T, Liverani L, Boccaccini AR, et al. Numerical simulation of electrospinning process in commercial and in-house software PAK. Mater Res Express. 2018;6:025305
Eymard R, Gallouët T, Herbin R. Finite volume methods. In: Handbook of Numerical Analysis. (Ciarlet P, Zhang X, Bramble JH, Meurant GA, Lions J-L, Cohen A; eds). Amsterdam, Netherlands: Elsevier. 2000; pp. 713–1018
Vulović A, Šušteršič T, Cvijić S, et al. Coupled in silico platform: computational fluid dynamics (CFD) and physiologically-based pharmacokinetic (PBPK) modelling. Eur J Pharm Sci. 2018;113:171–184 PubMed
Bullmore E, Sporns O. Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci. 2009;10:186. PubMed
Friston KJ. Functional and effective connectivity: a review. Brain Connect. 2011;1:13–36 PubMed
Hung JH, Yang TH, Hu Z, et al. Gene set enrichment analysis: performance evaluation and usage guidelines. Brief Bioinformatics. 2011;13:281–291 PubMed PMC
Subramanian A, Tamayo P, Mootha VK, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A. 2005;102:15545–15550 PubMed PMC
Liberzon A, Subramanian A, Pinchback R, et al. Molecular signatures database (MSigDB) 3.0. Bioinformatics. 2011;27:1739–1740 PubMed PMC
Granger C. Investigating causal relations by econometric models and cross-spectral methods. Econometrica. 1969;424–438
Wiener N. The theory of prediction. In: Modern Mathematics for Engineers. (Beckenbach EF; ed). New York, McGraw-Hill. 1956; pp. 165–190
Bressler SL, Seth AK. Wiener–Granger causality: a well established methodology. Neuroimage. 2011;58:323–329 PubMed
Zanin M, Papo D. Detecting switching and intermittent causalities in time series. Chaos. 2017;27:047403. PubMed
Schiatti L, Nollo G, Rossato G, et al. Extended Granger causality: a new tool to identify the structure of physiological networks. Physiol Measur. 2015;36:827 PubMed
Bose E, Hravnak M, Sereika SM. Vector autoregressive (VAR) models and granger causality in time series analysis in nursing research: dynamic changes among vital signs prior to cardiorespiratory instability events as an example. Nurs Res. 2017;66:12. PubMed PMC
Erdil E, Yetkiner IH. The Granger-causality between health care expenditure and output: a panel data approach. Appl Econ. 2009;41:511–518
Goyal P, Ferrara E. Graph embedding techniques, applications, and performance: a survey. Knowl Based Syst. 2018;151:78–94
Cai H, Zheng V, Chang K. A comprehensive survey of graph embedding: problems, techniques, and applications. IEEE Trans Knowl Data Eng. 2018;30:1616–1637
Seshadhri C, Sharma A, Stolman A, et al. The impossibility of low-rank representations for triangle-rich complex networks. Proc Natl Acad Sci U S A. 2020;117:5631–5637 PubMed PMC
Pellegrini M, Haynor D, Johnson JM. Protein interaction networks. Expert Rev Proteomics. 2004;1:239–249 PubMed
Bullmore ET, Bassett DS. Brain graphs: graphical models of the human brain connectome. Annu Rev Clin Psychol. 2011;7:113–140 PubMed
Keeling MJ, Eames KT. Networks and epidemic models. J R Soc Interface. 2005;2:295–307 PubMed PMC
Jeong H, Tombor B, Albert R, et al. The large-scale organization of metabolic networks. Nature. 2000;407:651. PubMed
Perkins AD, Langston MA. Threshold selection in gene co-expression networks using spectral graph theory techniques. BMC Bioinformatics. 2009;10:S4 PubMed PMC
Yue X, Wang Z, Huang J, et al. Graph embedding on biomedical networks: methods, applications, and evaluations. arXiv. 2019;arXiv:1906..05017. PubMed PMC
Ietswaart R, Gyori BM, Bachman JA, et al. GeneWalk identifies relevant gene functions for a biological context using network representation learning. bioRxiv. 2019;755579. doi: 10.1101/755579 PubMed DOI PMC
Rosenthal G, Váša F, Griffa A, et al. Mapping higher-order relations between brain structure and function with embedded vector representations of connectomes. Nat Commun. 2018;9:2178. PubMed PMC
Quattoni A, Wang S, Morency L-P, et al. Hidden conditional random fields. IEEE Trans Pattern Anal Mach Intell. 2007;10:1848–1852 PubMed
Saa JFD, Cetin M. Hidden conditional random fields for classification of imaginary motor tasks from EEG data. In: 2011 19th European Signal Processing Conference. IEEE. 2011; pp. 171–175
Liu Y, Carbonell J, Weigele P, et al. Protein fold recognition using segmentation conditional random fields (SCRFs). J Comput Biol. 2006;13:394–406 PubMed
White IR, Royston P, Wood AM. Multiple imputation using chained equations: issues and guidance for practice. Stat Med. 2011;30:377–399 PubMed
McCutcheon AL. Latent Class Analysis. Thousand Oaks, CA: Sage. 1987
Gleeson MP, Modi S, Bender A, et al. The challenges involved in modeling toxicity data in silico: a review. Curr Pharm Des. 2012;18:1266–1291 PubMed
Edelman LB, Eddy JA, Price ND. In silico models of cancer. Wiley Interdiscip Rev Syst Biol Med. 2010;2:438–459 PubMed PMC
Martonen T, Fleming J, Schroeter J, et al. In silico modeling of asthma. Adv Drug Deliv Rev. 2003;55:829–849 PubMed
Vodovotz Y, Billiar TR. In silico modeling: methods and applications to trauma and sepsis. Crit Care Med. 2013;41:2008. PubMed PMC
Colquitt RB, Colquhoun DA, Thiele RH. In silico modelling of physiologic systems. Best Pract Res Clin Anaesthesiol. 2011;25:499–510 PubMed
Hamid JS, Hu P, Roslin NM, et al. Data integration in genetics and genomics: methods and challenges. Hum Genom Proteom. 2009;2009:869093 PubMed PMC
Lu LJ, Xia Y, Paccanaro A, et al. Assessing the limits of genomic data integration for predicting protein networks. Genome Res. 2005;15:945–953 PubMed PMC
Van Steen K, Malats N. Perspectives on data integration in human complex disease analysis. In: Big Data Analytics in Bioinformatics and Healthcare. (Wang B, Li R, Perrizo W; eds). Hershey, PA: IGI Global. 2015; pp. 284–322
Thorsen SN, Oxley ME. Fusion or Integration: What's the difference?. In: Fusion 2004: Seventh International Conference on Information Fusion. Mountain View, CA: International Society of Information Fusion. 2004; pp. 429–434
Vermesan O, Friess P, Guillemin P, et al. Internet of things strategic research and innovation agenda. In: Internet of Things: Converging Technologies for Smart Environments and Integrated Ecosystems. (Vermesan O, Friess P; eds). Aalborg, Denmark: River Publishers. 2013; pp. 7–152
Repta D, Moisescu MA, Sacala IS, et al. Towards the development of semantically enabled flexible process monitoring systems. Int J Comput Integr Manuf. 2017;30:96–108
Zheng H, Wassan JT, Moisescu MA, et al. Multiscale computing in systems medicine: a brief reflection. In: 2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). (Zheng HJ, Callejas Z, Griol D, et al.; eds). Piscataway, NJ: IEEE. 2018; pp. 2190–2195
Manogaran G, Chilamkurti N, Hsu CH. Emerging trends, issues, and challenges in Internet of Medical Things and wireless networks. Pers Ubiquitous Comput. 2018;22:879–882
Islam SR, Kwak D, Kabir MH, et al. The internet of things for health care: a comprehensive survey. IEEE Access. 2015;3:678–708
Yuehong YIN, Zeng Y, Chen X, et al. The internet of things in healthcare: an overview. J Ind Inf Integr. 2016;1:3–13
Wolf-Gladrow DA. Lattice-Gas Cellular Automata and Lattice Boltzmann Models: An Introduction. Berlin: Springer. 2000
Succi S. The Lattice Boltzmann Equation for UID Dynamics and Beyond. Clarendon, Oxford, UK: Oxford University Press. 2001
Sukop M, Thorne DT. Lattice Boltzmann Modeling. Heidelberg: Springer. 2006
Mohamad AA. Lattice Boltzmann Method: Fundamentals and Engineering Applications with Computer Codes. London: Springer. 2011
Timm K, Kusumaatmaja H, Kuzmin A, et al. The Lattice Boltzmann Method: Principles and Practice. Cham, Switzerland: Springer. 2017
Feng YT, Han K, Owen DRJ. Coupled lattice Boltzmann method and discrete element modelling of particle transport in turbulent fluid flows: computational issues. Int J Numer Methods Eng. 2007;72:1111–1134
Malaspinas O, Fietier N, Deville M. Lattice Boltzmann method for the simulation of viscoelastic fluid flows. J Non Newtonian Fluid Mech. 2010;165:1637–1653
Djukic T, Filipovic N. Numerical modeling of the cupular displacement and motion of otoconia particles in a semicircular canal. Biomech Model Mechanobiol. 2017;16:1669–1680 PubMed
Djukic T, Saveljic I, Filipovic N. Numerical modeling of the motion of otoconia particles in the patient-specific semicircular canal. Comput Part Mech. 2019;6:767–780
Bishop CM. Pattern Recognition and Machine Learning. New York: Springer Science & Business Media. 2006
Alpaydin E. Introduction to Machine Learning. Cambridge, MA: MIT Press. 2009
Richiardi L, Bellocco R, Zugna D. Mediation analysis in epidemiology: methods, interpretation and bias. Int J Epidemiol. 2013;42:1511–1519 PubMed
Preacher KJ. Advances in mediation analysis: a survey and synthesis of new developments. Annu Rev Psychol. 2015;66:825–852 PubMed
Musen MA, van Bemmel JH. Handbook of medical informatics. Heidelberg, Germany: Springer–Verlag. 1997
Hersh WR. Medical informatics: improving health care through information. JAMA. 2002;288:1955–1958 PubMed
Prokosch HU, Ganslandt T. Perspectives for medical informatics. Methods Inf Med. 2009;48:38–44 PubMed
Haux R. Medical informatics: past, present, future. Int J Med Inform. 2010;79:599–610 PubMed
Benis A, Barak Barkan R, Sela T. Communication behavior changes between patients with diabetes and healthcare providers over 9 years. J Med Internet Res. 2020;22:e17186. PubMed PMC
Goodman KW, Miller RA. Ethics and health informatics: users, standards, and outcomes. In: Medical Informatics. (Shortliffe EH, Cimino JJ; eds). New York: Springer. 2001; pp. 257–281
Chong J, Yamamoto M, Xia J. MetaboAnalystR 2.0: from raw spectra to biological insights. Metabolites. 2019;9:57 PubMed PMC
Nicholson JK, Lindon JC, Holmes E. ‘Metabonomics’: understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica. 1999;29:1181–1189 PubMed
Fiehn O, Kopka J, Dörmann P, et al. Metabolite profiling for plant functional genomics. Nat Biotechnol. 2000;18:1157–1161 PubMed
Ramautar R, Berger R, van der Greef J, et al. Human metabolomics: strategies to understand biology. Curr Opin Chem Biol. 2013;17:841–846 PubMed
Lindon JC, Holmes E, Nicholson JK. Metabonomics techniques and applications to pharmaceutical research & development. Pharm Res. 2006;23:1075–1088 PubMed
Dhariwal A, Chong J, Habib S, et al. MicrobiomeAnalyst—a web-based tool for comprehensive statistical, visual and meta-analysis of microbiome data. Nucleic Acids Res. 2017;45:180–188 PubMed PMC
Bertsimas D, Sim M. The price of robustness. Oper Res. 2004;52:35–53
Schultz R, Stougie L, Van Der Vlerk MH. Two-stage stochastic integer programming: a survey. Stat Neerlandica. 1996;50:404–416
Hendrycks D, Lee K, Mazeika M. Using pre-training can improve model robustness and uncertainty. arXiv Preprint. 2019;arXiv:1901..09960.
Tsipras D, Santurkar S, Engstrom L, et al. Robustness may be at odds with accuracy. arXiv Preprint. 2018;arXiv:1805..12152.
Cobelli C, Carson ER, Finkelstein L, et al. Validation of simple and complex models in physiology and medicine. Am J Physiol Regul Integr Comp Physiol. 1984;246:259–266 PubMed
Antonelli G, Padoan A, Aita A, et al. Verification or validation, that is the question. J Lab Precis Med. 2017;2:58
Seidlitz J, Váša F, Shinn M, et al. Morphometric similarity networks detect microscale cortical organization and predict inter-individual cognitive variation. Neuron. 2018;97:231–247 PubMed PMC
Morgan SE, Seidlitz J, Whitaker KJ, et al. Cortical patterning of abnormal morphometric similarity in psychosis is associated with brain expression of schizophrenia-related genes. Proc Natl Acad Sci U S A. 2019;116:9604–9609 PubMed PMC
Doucet GE, Moser DA, Rodrigue A, et al. Person-based brain morphometric similarity is heritable and correlates with biological features. Cereb Cortex. 2018;29:852–862 PubMed PMC
Michopoulos JG, Farhat C, Fish J. Modeling and simulation of multiphysics systems. J Comput Inf Sci Eng. 2005;5:198–213
Keyes DE, McInnes LC, Woodward C, et al. Multiphysics simulations: challenges and opportunities. Int J High Perform Comput Appl. 2013;27:4–83
White JG, Southgate E, Thomson JN, et al. The structure of the nervous system of the nematode PubMed
Boccaletti S, Bianconi G, Criado R, et al. The structure and dynamics of multilayer networks. Phys Rep. 2014;544:1–122 PubMed PMC
McCammon JA, Gelin BR, Karplus M. Dynamics of folded proteins. Nature. 1977;267:585–590 PubMed
Rokhlin V. Rapid solution of integral equations of classical potential theory. J Comput Phys. 1985;60:187–207
Karabasov S, Nerukh D, Hoekstra A, et al. Multiscale Modelling: Approaches and Challenges. Phil Trans R Soc A. 2021;372:20130390 PubMed PMC
Stres B, Kronegger L. Shift in the paradigm towards next-generation microbiology. FEMS Microbiol Lett. 2019;366:fnz159. PubMed PMC
Weinan E. Principles of Multiscale Modeling. Cambridge, UK: Cambridge University Press. 2011
Hagberg A, Swart P, Chult D. Exploring network structure, dynamics, and function using NetworkX. In: Proceedings of the 7th Python in Science Conference (SciPy 2008). (Varoquaux G, Vaught T, Millman J; eds). 2008; pp. 11–16
Shannon P, Markiel A, Ozier O, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13:2498–2504 PubMed PMC
Smoot ME, Ono K, Ruscheinski J, et al. Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics. 2010;27:431–432 PubMed PMC
Bastian M, Heymann S, Jacomy M. Gephi: an open source software for exploring and manipulating networks. ICWSM. 2009;8:361–362
Batagelj V, Mrvar A. Pajek-program for large network analysis. Connections. 1998;21:47–57
Hu Z, Mellor J, Wu J, et al. VisANT: an online visualization and analysis tool for biological interaction data. BMC bioinformatics. 2004;5:17. PubMed PMC
Zhou G, Soufan O, Ewald J, et al. NetworkAnalyst 3.0: a visual analytics platform for comprehensive gene expression profiling and meta-analysis. Nucleic Acids Res. 2019;47:234–241 PubMed PMC
Xia J, Benner MJ, Hancock RE. NetworkAnalyst—integrative approaches for protein-protein interaction network analysis and visual exploration. Nucleic Acids Res. 2014;42:167–174 PubMed PMC
Barabasi AL. Network medicine—from obesity to the “Diseasome”. N Engl J Med. 2007;357:404–407 PubMed
Maslov S, Sneppen K. Specificity and stability in topology of protein networks. Science. 2002;296:910–913 PubMed
Zhu W, Baust M, Cheng Y, et al. Privacy-preserving federated brain tumour segmentation. In: Machine Learning in Medical Imaging: 10th International Workshop, MLMI 2019. (Suk H-I, Liu M, Yan P, Lian C; eds). Cham, Switzerland: Springer Nature. 2019; p. 133
Kovalenko G, Ducluzeau AL, Ishchenko L, et al. Complete genome sequence of a virulent african swine fever virus from a domestic pig in Ukraine. Microbiol Resour Announcements. 2019;8:e00883-19 PubMed PMC
Cvitanović T, Reichert MC, Moškon M, et al. Large-scale computational models of liver metabolism: how far from the clinics? Hepatology. 2017;66:1323–1334 PubMed
Larsdotter Nilsson E, Fritzson P. BioChem—a biological and chemical library for modelica. In: 3rd International Modelica Conference. (Fritzson PA; ed). Linköping: Modelica Association. 2003; pp. 215–220
Belič A, Ačimovič J, Naik A, et al. Analysis of the steady-state relations and control-algorithm characterisation in a mathematical model of cholesterol biosynthesis. Simul Model Pract Theory. 2013;33:18–27
Naik A, Rozman D, Belič A. SteatoNet: the first integrated human metabolic model with multi-layered regulation to investigate liver-associated pathologies. PLoS Comput Biol. 2014;10:e1003993. PubMed PMC
Cvitanović Tomaš T, Urlep Ž, Moškon M, et al. LiverSex Computational Model: sexual aspects in hepatic metabolism and abnormalities. Front Physiol. 2018;9:360. PubMed PMC
Rubin DL, Shah NH, Noy NF. Biomedical ontologies: a functional perspective. Brief Bioinformatics. 2007;9:75–90 PubMed
Groß A, Pruski C, Rahm E. Evolution of biomedical ontologies and mappings: overview of recent approaches. Comput Struct Biotechnol J. 2016;14:333–340 PubMed PMC
Smith B, Ashburner M, Rosse C, et al. The OBO Foundry: coordinated evolution of ontologies to support biomedical data integration. Nat Biotechnol. 2007;25:1251. PubMed PMC
Clermont G, Auffray C, Moreau Y, et al. Bridging the gap between systems biology and medicine. Genome Med. 2009;1:88. PubMed PMC
Council NR. Toward Precision Medicine: Building a Knowledge Network for Biomedical Research and a New Taxonomy of disease. Washington, DC: National Academies Press. 2011 PubMed
Köhler S, Vasilevsky N, Engelstad M, et al. The human phenotype ontology in 2017. Nucleic Acids Res. 2017;45:D865–D876 PubMed PMC
Haendel M, Chute C, Robinson P. Classification, ontology, and precision medicine. N Engl J Med. 2018;379:1452–1462 PubMed PMC
Ashyraliyev M, Fomekong-Nanfack Y, Kaandorp JA, et al. Systems biology: parameter estimation for biochemical models. FEBS J. 2009;276:886–902 PubMed
Stalidzans E, Landmane K, Sulins J, et al. Misinterpretation risks of global stochastic optimisation of kinetic models revealed by multiple optimisation runs. Math Biosci. 2019;307:25–32 PubMed
Chis OT, Banga JR, Balsa-Canto E. Structural identifiability of systems biology models: a critical comparison of methods. PLoS One. 2011;6:e27755. PubMed PMC
Zi Z. Sensitivity analysis approaches applied to systems biology models. IET Syst Biol. 2011;5:336–346 PubMed
Kiparissides A, Kucherenko SS, Mantalaris A, et al. Global sensitivity analysis challenges in biological systems modeling. Ind Eng Chem Res. 2009;48:7168–7180
Cho KH, Shin SY, Kolch W, et al. Experimental design in systems biology, based on parameter sensitivity analysis using a Monte Carlo method: a case study for the TNFα-mediated NF-κb signal transduction pathway. Simulation. 2003;79:726–739
Knijnenburg TA, Wessels LF, Reinders MJ, et al. Fewer permutations, more accurate P-values. Bioinformatics. 2009;25:161–168 PubMed PMC
Liu RR, Wang WX, Lai YC, et al. Cascading dynamics on random networks: crossover in phase transition. Phys Rev E. 2012;85:026110 PubMed
Omholt SW, Hunter PJ. The Human Physiome: a necessary key for the creative destruction of medicine. Interface Focus. 2016;6:20160003
Ginsburg GS, Willard HF. Genomic and Precision Medicine: Foundations, Translation, and Implementation. London, UK: Academic Press. 2016
Katsnelson A. Momentum Grows to Make ‘Personalized’ Medicine More ‘Precise’. Nat Med. 2016;19:249 PubMed
Bedford T, Cooke R. Probabilistic Risk Analysis: Foundations and Methods. Cambridge, UK: Cambridge University Press. 2001
Danhof M. Systems pharmacology—towards the modeling of network interactions. Eur J Pharm Sci. 2016;94:4–14 PubMed
Geerts H, Spiros A, Roberts P, et al. Quantitative systems pharmacology as an extension of PK/PD modeling in CNS research and development. J Pharmacokinet Pharmacodyn. 2013;40:257–265 PubMed
van der Graaf PH, Benson N. Systems pharmacology: bridging systems biology and pharmacokinetics-pharmacodynamics (PKPD) in drug discovery and development. Pharm Res. 2011;28:1460–1464 PubMed
Leil T, Bertz R. Quantitative systems pharmacology can reduce attrition and improve productivity in pharmaceutical research and development. Front Pharmacol. 2014;5:247. PubMed PMC
Hart T, Xie L. Providing data science support for systems pharmacology and its implications to drug discovery. Expert Opin Drug Discov. 2016;11:241–256 PubMed PMC
Peterson MC, Riggs MM. FDA advisory meeting clinical pharmacology review utilizes a quantitative systems pharmacology (QSP) model: a watershed moment. CPT Pharmacometrics Syst Pharmacol. 2015;4:189–192 PubMed PMC
Breiman L. Random forests. Mach Learn. 2001;45:5–32
Oshiro TM, Perez PS, Baranauskas JA. How many trees in a random forest? In: International Workshop on Machine Learning and Data Mining in Pattern Recognition. (Perner P; ed). Berlin, Germany: Springer. 2012; pp. 154–168
Verikas A, Gelzinis A, Bacauskiene M. Mining data with random forests: a survey and results of new tests. Pattern Recognit. 2011;44:330–349
Bollobás B. Random graphs. In: Modern Graph Theory. (Bollobas; ed). New York: Springer. 1998; pp. 215–252
Janson S, Luczak T, Rucinski A. Random graphs. John Wiley & Sons. 2011
Albert R. Scale-free networks in cell biology. J Cell Sci. 2005;118:4947–4957 PubMed
Fox Keller E. Revisiting “scale-free” networks. Bioessays. 2005;27:1060–1068 PubMed
Caldarelli G. Scale-Free Networks: Complex Webs in Nature and Technology. Clarendon, Oxford, UK: Oxford University Press. 2007
Barabási AL. Scale-free networks: a decade and beyond. Science. 2009;325:412–413 PubMed
Khanin R, Wit E. How scale-free are biological networks. J Comput Biol. 2006;13:810–818 PubMed
Crucitti P, Latora V, Marchiori M, et al. Efficiency of scale-free networks: error and attack tolerance. Phys A. 2003;320:622–642
Gallos LK, Cohen R, Argyrakis P, et al. Stability and topology of scale-free networks under attack and defense strategies. Phys Rev Lett. 2005;94:188701. PubMed
Barabási AL, Albert R. Emergence of scaling in random networks. Science. 1999;286:509–512 PubMed
Barabási AL, Ravasz E, Vicsek T. Deterministic scale-free networks. Phys A. 2001;299:559–564
Caldarelli G, Capocci A, De Los Rios P, et al. Scale-free networks from varying vertex intrinsic fitness. Phys Rev Lett. 2002;89:258702. PubMed
Saramäki J, Kaski K. Scale-free networks generated by random walkers. Phys A. 2004;341:80–86
Press WH, Teukolsky SA, Vetterling WT, et al. Numerical Recipes in C, 2e. Cambridge, UK: Cambridge University Press. 1992
Granville V, Krivánek M, Rasson J.-P. Simulated annealing: a proof of convergence. IEEE Trans Pattern Anal Mach Intell. 1994;16:652–656
Webb S. Optimisation of conformal radiotherapy dose distribution by simulated annealing. Phys Med Biol. 1989;34:1349. PubMed
Lessard E, Pouliot J. Inverse planning anatomy-based dose optimization for HDR-brachytherapy of the prostate using fast simulated annealing algorithm and dedicated objective function. Med Phys. 2001;28:773–779 PubMed
Langer M, Morrill S, Brown R, et al. A comparison of mixed integer programming and fast simulated annealing for optimizing beam weights in radiation therapy. Med Phys. 1996;23:957–964 PubMed
Friedland N, Adam D. Automatic ventricular cavity boundary detection from sequential ultrasound images using simulated annealing. IEEE Trans Med Imaging. 1989;8:344–353 PubMed
Alexandridis A, Chondrodima E. A medical diagnostic tool based on radial basis function classifiers and evolutionary simulated annealing. J Biomed Inform. 2014;49:61–72 PubMed
Watts DJ, Strogatz SH. Collective dynamics of small-world networks. Nature. 1998;393:440. PubMed
Karinthy F. Chains. Everything Is Different. Budapest: Atheneum Press. 1929
Liu GR, Liu MB. Smoothed Particle Hydrodynamics: A Meshfree Particle Method. Singapore: World Scientific. 2003
Monaghan JJ. Smoothed particle hydrodynamics. Annu Rev Astron Astrophys. 1992;30:543–574
Cleary PW, Prakash M. Discrete–element modelling and smoothed particle hydrodynamics: potential in the environmental sciences. Philos Trans A Math Phys Eng Sci. 2004;362:2003–2030 PubMed
Zhang Z, Qiang H, Gao W. Coupling of smoothed particle hydrodynamics and finite element method for impact dynamics simulation. Eng Struct. 2011;33:255–264
Lobovský L, Křen J. Smoothed particle hydrodynamics modelling of fluids and solids. Appl Comput Mech. 2007;1:512–530
Sofla A, Cirkovic B, Hsieh A, et al. Enrichment of live unlabelled cardiomyocytes from heterogeneous cell populations using manipulation of cell settling velocity by magnetic field. Biomicrofluidics. 2013;7:014110 PubMed PMC
Djukic T, Saveljic I, Pelosi G, et al. Numerical simulation of stent deployment within patient-specific artery and its validation against clinical data. Comput Methods Prog Biomed. 2019;175:121–127 PubMed
Djukic T, Topalovic M, Filipovic N. Numerical simulation of isolation of cancer cells in a microfluidic chip. J Micromech Microeng. 2015;25:084012
Djukic TR, Karthik S, Saveljic I, et al. Modeling the behavior of red blood cells within the caudal vein plexus of zebrafish. Front Physiol. 2016;7:455. PubMed PMC
Filipovic N, Nikolic D, Saveljic I, et al. Computer simulation of thromboexclusion of the complete aorta in the treatment of chronic type B aneurysm. Comput Aided Surg. 2013;18:1–9 PubMed
Ewens WJ, Grant GR. Statistical Methods in Bioinformatics: An Introduction. New York: Springer Science & Business Media. 2006
Mathur SK. Statistical Bioinformatics with R. London, UK: Academic Press. 2009
Lee JK. Statistical Bioinformatics: For Biomedical and Life Science Researchers. New York: John Wiley & Sons, 2011
Lu HH, Schölkopf B, Zhao H. Handbook of Statistical Bioinformatics. New York: Springer Science & Business Media. 2011
Hu T, Sinnott-Armstrong NA, Kiralis JW, et al. Characterizing genetic interactions in human disease association studies using statistical epistasis networks. BMC Bioinformatics. 2011;12:364. PubMed PMC
Van Steen K, Moore JH. How to increase our belief in discovered statistical interactions via large-scale association studies?. Hum Genet. 2019;138:293–305 PubMed PMC
Basak D, Pal S, Patranabis DC. Support vector regression. Neural Inf Process-Lett Rev. 2007;11:203–224
Yan XF, Ge HW, Yan QS. SVM with RBF kernel and its application research. Comput Eng Des. 2006;27:1996–1997
Cristianini N, Shawe-Taylor J. An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods. Cambridge, UK: Cambridge University Press. 2000
Steinwart I, Christmann A. Support Vector Machines. New York: Springer Science & Business Media. New York: 2008
Gorissen D, Couckuyt I, Demeester P, et al. A surrogate modeling and adaptive sampling toolbox for computer based design. J Mach Learn Res. 2010;11:2051–2055
Kitano H. Foundations of Systems Biology. Cambridge, MA: The MIT Press. 2001
Kitano H. Systems biology: a brief overview. Science. 2002;295:1662–1664 PubMed
Boogerd F, Bruggeman FJ, Hofmeyr JHS, et al. Systems Biology: Philosophical Foundations. Amsterdam, Netherlands: Elsevier. 2007
Oulas A, Minadakis G, Sokratous K, et al. Systems Bioinformatics: increasing precision of computational diagnostics and therapeutics through network-based approaches. Brief Bioinformatics. 2017;20:806–824 PubMed PMC
Singh A, Shannon CP, Gautier B, et al. DIABLO: an integrative approach for identifying key molecular drivers from multi-omic assays. Bioinformatics. 2019;35:3055–3062; PubMed PMC
Conesa A, Beck S. Making multi-omics data accessible to researchers. Sci Data. 2019;6:1–4 PubMed PMC
Wu C, Zhou F, Ren J, et al. A selective review of multi-level omics data integration using variable selection. High Throughput. 2019;8:4 PubMed PMC
Fall CP, Marland ES, Wagner JM, et al. Computational cell biology. New York: Springer-Verlag. 2002
Izhikevich EM. Dynamical Systems in Neuroscience. Cambridge, MA: MIT press. 2007
Goldbeter A. Biochemical Oscillations and Cellular Rhythms: The Molecular Bases of Periodic and Chaotic Behaviour. Cambridge, UK: Cambridge University Press. 1997
Preziosi L. Cancer Modelling and Simulation. Boca Raton, FL: CRC Press. 2003
Strogatz SH. Nonlinear Dynamics and Chaos. Boulder, CO: Westview Press. 2014
Ermentrout B. Simulating, Analyzing, and Animating Dynamical Systems: a Guide to XPPAUT for Researchers and Students. Philadelphia, PA: SIAM. 2002
Dhooge A, Govaerts W, Kuznetsov YA. MatCont: a MATLAB package for numerical bifurcation analysis of ODEs. ACM Trans Math Softw. 2003;29:141–164
Kunznetsov YA. Elements of Applied Bifurcation Theory. New York: Springer-Verlag. 1998
Arnold VI. Elements of Applied Bifurcation Theory. New York: Springer-Verlag. 1992
Thomé B. Systems Engineering: Principles and Practice of Computer-Based Systems Engineering. New York: John Wiley and Sons Ltd. 1993
Maier MW. Architecting principles for systems-of-systems. Syst Eng. 1998;1:267–284
Hata Y, Kobashi S, Nakajima H. Human health care system of systems. IEEE Syst J. 2009;3:231–238
Hucka M, Nickerson DP, Bader GD, et al. Promoting coordinated development of community-based information standards for modeling in biology: the COMBINE initiative. Front Bioeng Biotechnol. 2015;3:19. PubMed PMC
Stanford NJ, Wolstencroft K, Golebiewski M, et al. The evolution of standards and data management practices in systems biology. Mol Syst Biol. 2015;11:851. PubMed PMC
Alexander-Bloch A, Giedd JN, Bullmore E. Imaging structural co-variance between human brain regions. Nat Rev Neurosci. 2013;14:322–336 PubMed PMC
Evans AC. Networks of anatomical covariance. Neuroimage. 2013;80:489–504 PubMed
Khundrakpam BS, Reid A, Brauer J, et al. Developmental changes in organization of structural brain networks. Cereb Cortex. 2013;23:2072–2085 PubMed PMC
Zielinski BA, Gennatas ED, Zhou J, et al. Network-level structural covariance in the developing brain. Proc Natl Acad Sci U S A. 2010;107:18191–18196 PubMed PMC
Bassett DS, Bullmore E, Verchinski BA, et al. Hierarchical organization of human cortical networks in health and schizophrenia. J Neurosci. 2008;28:9239–9248 PubMed PMC
Bethlehem RAI, Romero-Garcia R, Mak E, et al. Structural covariance networks in children with autism or ADHD. Cereb Cortex. 2017;27:4267–4276 PubMed PMC
He Y, Chen Z, Gong G, et al. Neuronal networks in Alzheimer's disease. Neuroscientist. 2009;15:33–350 PubMed
Sharda M, Khundrakpam BS, Evans AC, et al. Disruption of structural covariance networks for language in autism is modulated by verbal ability. Brain Struct Funct. 2016;221:1017–1032 PubMed
Solé-Casals J, Serra-Grabulosa JM, Romero-Garcia R, et al. Structural brain network of gifted children has more integrated and versatile topology. Brain Struct Funct. 2019;224:2373–2383 PubMed
Holme P, Saramäki J. Temporal networks. Phys Rep. 2012;519:97–125
Holme P, Saramäki J. Temporal Networks. Berlin, Germany: Springer. 2013
Gunawardena J. Time-scale separation—Michaelis and Menten's old idea, still bearing fruit. FEBS J. 2014;281:473–488 PubMed PMC
Rocha F, Aguiar M, Souza M, et al. Time-scale separation and centre manifold analysis describing vector-borne disease dynamics. Int J Comput Math. 2013;90:2105–2125
Gunawardena J. A linear framework for time-scale separation in nonlinear biochemical systems. PLoS One. 2012;7:e36321. PubMed PMC
Borcard DP, Legendre P, Drapeau P. Partialling out the spatial component of ecological variation. Ecology. 1992;73:1045–1055
Duchene A, Graves RE, Brugger P. Schizotypal thinking and associative processing: a response commonality analysis of verbal fluency. J Psychiatry Neurosci. 1998;23:56. PubMed PMC
Stellefson M, Yannessa JF, Martel GF. Using canonical commonality analysis to examine the predictive quality of aging and falls efficacy on balance functioning in older adults. Eval Health Prof. 2012;35:239–255 PubMed