Systems Biology in ELIXIR: modelling in the spotlight
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
36742342
PubMed Central
PMC9871403
DOI
10.12688/f1000research.126734.2
PII: ELIXIR-1265
Knihovny.cz E-zdroje
- Klíčová slova
- Biological data, Biomolecular Models, Biotechnology, ELIXIR Communities, FAIR, Network Biology, Systems Biology, Systems Medicine,
- Publikační typ
- časopisecké články MeSH
In this white paper, we describe the founding of a new ELIXIR Community - the Systems Biology Community - and its proposed future contributions to both ELIXIR and the broader community of systems biologists in Europe and worldwide. The Community believes that the infrastructure aspects of systems biology - databases, (modelling) tools and standards development, as well as training and access to cloud infrastructure - are not only appropriate components of the ELIXIR infrastructure, but will prove key components of ELIXIR's future support of advanced biological applications and personalised medicine. By way of a series of meetings, the Community identified seven key areas for its future activities, reflecting both future needs and previous and current activities within ELIXIR Platforms and Communities. These are: overcoming barriers to the wider uptake of systems biology; linking new and existing data to systems biology models; interoperability of systems biology resources; further development and embedding of systems medicine; provisioning of modelling as a service; building and coordinating capacity building and training resources; and supporting industrial embedding of systems biology. A set of objectives for the Community has been identified under four main headline areas: Standardisation and Interoperability, Technology, Capacity Building and Training, and Industrial Embedding. These are grouped into short-term (3-year), mid-term (6-year) and long-term (10-year) objectives.
BIO3 Laboratory for Systems Medicine Department of Human Genetics KU Leuven Leuven 3000 Belgium
BIO3 Systems Genetics GIGA R Medical Genomics University of Liege Liege 4000 Belgium
Centre of Biological Engineering University of Minho Braga Portugal
Department of Bioinformatics BiGCaT NUTRIM Maastricht University Maastricht 6200 MD The Netherlands
Department of Bioinformatics Maastricht University Maastricht The Netherlands
Department of Computer Science The University of Manchester Manchester M13 9PL UK
Division of Infection and Immunity School of Medicine Cardiff University Cardiff UK
ELIXIR Hub Hinxton Cambridge CB10 1SD UK
Faculty of Informatics Masaryk University Brno 602 00 Czech Republic
Faculty of Medicine University of Ljubljana Ljubljana SI 1000 Slovenia
Heidelberg Institute for Theoretical Studies HITS Heidelberg 69118 Germany
ISBE NL VU University of Amsterdam Amsterdam The Netherlands
Leiden Institute of Advanced Computer Science Leiden University Leiden 2333 CA The Netherlands
Luxembourg Centre for Systems Biomedicine University of Luxembourg Belvaux L 4367 Luxembourg
Maastricht Centre for Systems Biology Maastricht University Maastricht 6200 MD The Netherlands
Research and Platforms Department Genopole Evry Courcouronnes 91030 France
Scientific Network Management SL Barcelona 08015 Spain
SIB Swiss Institute of Bioinformatics Lausanne Switzerland
Systems Biology Ireland School of Medicine University College Dublin Dublin 4 Ireland
UNLOCK Wageningen University and Research 6708 PB Wageningen The Netherlands
Zobrazit více v PubMed
Adler S, Basketter D, Creton S, et al. : Alternative (non-animal) methods for cosmetics testing: current status and future prospects-2010. Arch Toxicol. 2011;85(5):367–485. 10.1007/s00204-011-0693-2 PubMed DOI
Amberger JS, Bocchini CA, Scott AF, et al. : OMIM.org: leveraging knowledge across phenotype-gene relationships. Nucleic Acids Res. 2019;47(D1):D1038–D1043. 10.1093/nar/gky1151 PubMed DOI PMC
Apostolopoulos Y, Lich KH, Lemke M: Complex systems and population health: a primer.Oxford University Press, New York, NY,2020. Reference Source
Athar A, Füllgrabe A, George N, et al. : ArrayExpress update - from bulk to single-cell expression data. Nucleic Acids Res. 2019;47(D1):D711–D715. 10.1093/nar/gky964 PubMed DOI PMC
Bairoch A: The cellosaurus, a cell-line knowledge resource. J Biomol Tech. 2018;29(2):25–38. 10.7171/jbt.18-2902-002 PubMed DOI PMC
Barillari C, Ottoz DSM, Fuentes-Serna JM, et al. : OpenBIS ELN-LIMS: an open-source database for academic laboratories. Bioinformatics. 2016;32(4):638–640. 10.1093/bioinformatics/btv606 PubMed DOI PMC
Barrette AM, Bouhaddou M, Birtwistle MR: Integrating transcriptomic data with mechanistic systems pharmacology models for virtual drug combination trials. ACS Chem Neurosci. 2018;9(1):118–129. 10.1021/acschemneuro.7b00197 PubMed DOI PMC
Béal J, Pantolini L, Noël V, et al. : Personalized logical models to investigate cancer response to BRAF treatments in melanomas and colorectal cancers. PLoS Comput Biol. 2021;17(1): e1007900. 10.1371/journal.pcbi.1007900 PubMed DOI PMC
Beard N, Bacall F, Nenadic A, et al. : TeSS: a platform for discovering life-science training opportunities. Bioinformatics. 2020;36(10):3290–3291. 10.1093/bioinformatics/btaa047 PubMed DOI PMC
Bhinder B, Elemento O: Towards a better cancer precision medicine: systems biology meets immunotherapy. Curr Opin Syst Biol. 2017;2:67–73. 10.1016/j.coisb.2017.01.006 PubMed DOI PMC
Capella-Gutierrez S, de la Iglesia D, Haas J, et al. : Lessons Learned: Recommendations for Establishing Critical Periodic Scientific Benchmarking. Bioinformatics. bioRxiv.2017. 10.1101/181677 DOI
Caspi R, Billington R, Keseler IM, et al. : The MetaCyc database of metabolic pathways and enzymes - a 2019 update. Nucleic Acids Res. 2020;48(D1):D445–D453. 10.1093/nar/gkz862 PubMed DOI PMC
Chang A, Jeske L, Ulbrich S, et al. : BRENDA, the ELIXIR core data resource in 2021: new developments and updates. Nucleic Acids Res. 2021;49(D1):D498–D508. 10.1093/nar/gkaa1025 PubMed DOI PMC
Collin CB, Gebhardt T, Golebiewski M, et al. : Computational models for clinical applications in personalized medicine—guidelines and recommendations for data integration and model validation. J Pers Med. 2022;12(2):166. 10.3390/jpm12020166 PubMed DOI PMC
Crawford N, Salvucci M, Hellwig CT, et al. : Simulating and predicting cellular and in vivo responses of colon cancer to combined treatment with chemotherapy and IAP antagonist Birinapant/TL32711. Cell Death Differ. 2018;25(11):1952–1966. 10.1038/s41418-018-0082-y PubMed DOI PMC
Czarnewski P, Mahfouz A, Calogero RA, et al. : Community-driven ELIXIR activities in single-cell omics [version 1; peer review: 2 approved with reservations]. F1000Res. 2022;11(ELIXIR):869. 10.12688/f1000research.122312.1 DOI
da Veiga Leprevost F, Grüning BA, Aflitos SA, et al. : BioContainers: an open-source and community-driven framework for software standardization. Bioinformatics. 2017;33(16):2580–2582. 10.1093/bioinformatics/btx192 PubMed DOI PMC
Damiani C, Di Filippo M, Pescini D, et al. : popFBA: tackling intratumour heterogeneity with Flux Balance Analysis. Bioinformatics. 2017;33(14):i311–i318. 10.1093/bioinformatics/btx251 PubMed DOI PMC
Danhof M, Alvan G, Dahl SG, et al. : Mechanism-based pharmacokinetic-pharmacodynamic modeling—a new classification of biomarkers. Pharm Res. 2005;22(9):1432–1437. 10.1007/s11095-005-5882-3 PubMed DOI
Demir E, Cary MP, Paley S, et al. : The BioPAX community standard for pathway data sharing. Nat Biotechnol. 2010;28(9):935–942. 10.1038/nbt.1666 PubMed DOI PMC
du Lac M, Duigou T, Hérisson J, et al. : Galaxy-SynBioCAD: synthetic biology design automation tools in Galaxy workflows.Bioengineering, bioRxiv. 2020. 10.1101/2020.06.14.145730 DOI
Ebata K, Yamashiro S, Iida K, et al. : Building patient-specific models for receptor tyrosine kinase signaling networks. FEBS J. 2022;289(1):90–101. 10.1111/febs.15831 PubMed DOI
Eduati F, Jaaks P, Wappler J, et al. : Patient‐specific logic models of signaling pathways from screenings on cancer biopsies to prioritize personalized combination therapies. Mol Syst Biol. 2020;16(2): e8664. 10.15252/msb.20188664 PubMed DOI PMC
European Biopharmaceutical Enterprises: EBE White Paper on Personalised Medicine.2015. Reference Source
Fey D, Halasz M, Dreidax D, et al. : Signaling pathway models as biomarkers: patient-specific simulations of JNK activity predict the survival of neuroblastoma patients. Sci Signal. 2015;8(408):ra130. 10.1126/scisignal.aab0990 PubMed DOI
Fröhlich F, Kessler T, Weindl D, et al. : Efficient parameter estimation enables the prediction of drug response using a mechanistic pan-cancer pathway model. Cell Syst. 2018;7(6):567–579.e6. 10.1016/j.cels.2018.10.013 PubMed DOI
Gaulton A, Hersey A, Nowotka M, et al. : The ChEMBL database in 2017. Nucleic Acids Res. 2017;45(D1):D945–D954. 10.1093/nar/gkw1074 PubMed DOI PMC
Gawron P, Ostaszewski M, Satagopam V, et al. : MINERVA-a platform for visualization and curation of molecular interaction networks. NPJ Syst Biol Appl. 2016;2: 16020. 10.1038/npjsba.2016.20 PubMed DOI PMC
Gillespie M, Jassal B, Stephan R, et al. : The reactome pathway knowledgebase 2022. Nucleic Acids Res. 2022;50(D1):D687–D692. 10.1093/nar/gkab1028 PubMed DOI PMC
Glont M, Arankalle C, Tiwari K, et al. : BioModels parameters: a treasure trove of parameter values from published systems biology models. Bioinformatics. 2020;36(17):4649–4654. 10.1093/bioinformatics/btaa560 PubMed DOI PMC
Goble C, Soiland-Reyes S, Bacall F, et al. : Implementing FAIR digital objects in the EOSC-life workflow collaboratory.2021. 10.5281/zenodo.4605654 DOI
Golebiewski M: Data formats for systems biology and quantitative modeling.In: Encyclopedia of Bioinformatics and Computational Biology. Elsevier,2019;2:884–893. 10.1016/b978-0-12-809633-8.20471-8 DOI
Hastings JF, O'Donnell YEI, Fey D, et al. : Applications of personalised signalling network models in precision oncology. Pharmacol Ther. 2020;212: 107555. 10.1016/j.pharmthera.2020.107555 PubMed DOI
Hatos A, Quaglia F, Piovesan D, et al. : APICURON: a database to credit and acknowledge the work of biocurators. Database (Oxford). 2021;2021: baab019. 10.1093/database/baab019 PubMed DOI PMC
Haug K, Cochrane K, Nainala VC, et al. : MetaboLights: a resource evolving in response to the needs of its scientific community. Nucleic Acids Res. 2020;48(D1):D440–D444. 10.1093/nar/gkz1019 PubMed DOI PMC
Hucka M, Nickerson DP, Bader GD, et al. : Promoting coordinated development of community-based information standards for modeling in biology: the COMBINE initiative. Front Bioeng Biotechnol. 2015;3:19. 10.3389/fbioe.2015.00019 PubMed DOI PMC
Hutter C, Zenklusen JC: The Cancer Genome Atlas: creating lasting value beyond its data. Cell. 2018;173(2):283–285. 10.1016/j.cell.2018.03.042 PubMed DOI
Ison J, Rapacki K, Ménager H, et al. : Tools and data services registry: a community effort to document bioinformatics resources. Nucleic Acids Res. 2016;44(D1):D38–D47. 10.1093/nar/gkv1116 PubMed DOI PMC
Ivanovic S, El-Kebir M: Modeling and predicting cancer clonal evolution with reinforcement learning. Genome Res. 2023;33(7):1078–1088. 10.1101/gr.277672.123 PubMed DOI PMC
Jupp S, Burdett T, Malone J, et al. : A new Ontology Lookup Service at EMBL-EBI. SWAT4LS. 2015;2:118–119. Reference Source
Kafarski P: Rainbow code of biotechnology. Chemik. 2012;66(8):811–816. Reference Source
Kampers LFC, Asin-Garcia E, Schaap PJ, et al. : Navigating the Valley of Death: perceptions of industry and academia on production platforms and opportunities in biotechnology. EFB Bioeconomy J. 2022;2: 100033. 10.1016/j.bioeco.2022.100033 DOI
Kanehisa M, Araki M, Goto S, et al. : KEGG for linking genomes to life and the environment. Nucleic Acids Res. 2008;36(Database issue):D480–D484. 10.1093/nar/gkm882 PubMed DOI PMC
Kezer CA, Shah VH, Simonetto DA: Advances in predictive modeling using Machine Learning in the field of hepatology. Clin Liver Dis (Hoboken). 2021;18(6):288–291. 10.1002/cld.1148 PubMed DOI PMC
King RD, Rowland J, Oliver SG, et al. : The automation of science. Science. 2009;324(5923):85–89. 10.1126/science.1165620 PubMed DOI
Kolodkin A, Alberghina L, Snoep JL, et al. : Infrastructure Systems Biology Europe (ISBE): emergence of innovative systems biology servicing.In: BioSB-2018 4th Dutch Bioinformatics & Systems Biology Conference Congrescentrum De Werelt. abstract book, Lunteren 15–16 May2018;71. 10.18699/BGRSSB-2018-108 DOI
Lieven C, Beber ME, Olivier BG, et al. : MEMOTE for standardized genome-scale metabolic model testing. Nat Biotechnol. 2020;38(3):272–276. 10.1038/s41587-020-0446-y PubMed DOI PMC
Malik-Sheriff RS, Glont M, Nguyen TVN, et al. : BioModels-15 years of sharing computational models in life science. Nucleic Acids Res. 2020;48(D1):D407–D415. 10.1093/nar/gkz1055 PubMed DOI PMC
Martens M, Ammar A, Riutta A, et al. : WikiPathways: connecting communities. Nucleic Acids Res. 2021;49(D1):D613–D621. 10.1093/nar/gkaa1024 PubMed DOI PMC
Mazein A, Ostaszewski M, Kuperstein I, et al. : Systems medicine disease maps: community-driven comprehensive representation of disease mechanisms. NPJ Syst Biol Appl. 2018;4: 21. 10.1038/s41540-018-0059-y PubMed DOI PMC
Mendes P, Hoops S, Sahle S, et al. : Computational modeling of biochemical networks using COPASI.In: Maly,I.V. (ed), Systems Biology. Methods Mol Biol. Humana Press, Totowa, NJ,2009;500:17–59. 10.1007/978-1-59745-525-1_2 PubMed DOI
Moretti S, Tran VDT, Mehl F, et al. : MetaNetX/MNXref: unified namespace for metabolites and biochemical reactions in the context of metabolic models. Nucleic Acids Res. 2021;49(D1):D570–D574. 10.1093/nar/gkaa992 PubMed DOI PMC
Nickerson D, Atalag K, de Bono B, et al. : The human physiome: how standards, software and innovative service infrastructures are providing the building blocks to make it achievable. Interface Focus. 2016;6(2): 20150103. 10.1098/rsfs.2015.0103 PubMed DOI PMC
OECD: Guidance document on the characterisation, validation and reporting of Physiologically Based Kinetic (PBK) models for regulatory purposes. OECD Series on Testing and Assessment, Environment, Health and Safety, Environment Directorate, OECD,2021;331. Reference Source
Ostaszewski M, Niarakis A, Mazein A, et al. : COVID19 disease map, a computational knowledge repository of virus-host interaction mechanisms. Mol Syst Biol. 2021;17(10): e10387. 10.15252/msb.202110387 PubMed DOI PMC
Peck CC, Barr WH, Benet LZ, et al. : Opportunities for integration of pharmacokinetics, pharmacodynamics, and toxicokinetics in rational drug development. J Pharm Sci. 1992;81(6):605–610. 10.1002/jps.2600810630 PubMed DOI
Peters M, Eicher JJ, van Niekerk DD, et al. : The JWS online simulation database. Bioinformatics. 2017;33(10):1589–1590. 10.1093/bioinformatics/btw831 PubMed DOI
Ploemen JPHTM, Wormhoudt LW, Haenen GR, et al. : The use of human in vitro metabolic parameters to explore the risk assessment of hazardous compounds: the case of ethylene dibromide. Toxicol Appl Pharmacol. 1997;143(1):56–69. 10.1006/taap.1996.8004 PubMed DOI
Robinson JL, Kocabaş P, Wang H, et al. : An atlas of human metabolism. Sci Signal. 2020;13(624): eaaz1482. 10.1126/scisignal.aaz1482 PubMed DOI PMC
Rodchenkov I, Babur O, Luna A, et al. : Pathway commons 2019 update: integration, analysis and exploration of pathway data. Nucleic Acids Res. 2020;48(D1): gkz946. 10.1093/nar/gkz946 PubMed DOI PMC
Roth YD, Lian Z, Pochiraju S, et al. : Datanator: an integrated database of molecular data for quantitatively modeling cellular behavior. Nucleic Acids Res. 2021;49(D1):D516–D522. 10.1093/nar/gkaa1008 PubMed DOI PMC
Sarkans U, Gostev M, Athar A, et al. : The bioStudies database—one stop shop for all data supporting a life sciences study. Nucleic Acids Res. 2018;46(D1):D1266–D1270. 10.1093/nar/gkx965 PubMed DOI PMC
Satagopam V, Gu W, Eifes S, et al. : Integration and visualization of translational medicine data for better understanding of human diseases. Big Data. 2016;4(2):97–108. 10.1089/big.2015.0057 PubMed DOI PMC
Scharm M, Wolkenhauer O, Waltemath D: An algorithm to detect and communicate the differences in computational models describing biological systems. Bioinformatics. 2016;32(4):563–570. 10.1093/bioinformatics/btv484 PubMed DOI PMC
Schreiber F, Sommer B, Czauderna T, et al. : Specifications of standards in systems and synthetic biology: status and developments in 2020. J Integr Bioinforma. 2020;17(2–3): 20200022. 10.1515/jib-2020-0022 PubMed DOI PMC
Shannon P, Markiel A, Ozier O, et al. : Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498–2504. 10.1101/gr.1239303 PubMed DOI PMC
Sharma RP, Kumar V, Schuhmacher M, et al. : Development and evaluation of a harmonized whole body Physiologically Based Pharmacokinetic (PBPK) model for flutamide in rats and its extrapolation to humans. Environ Res. 2020;182: 108948. 10.1016/j.envres.2019.108948 PubMed DOI
Sherry ST, Ward MH, Kholodov M, et al. : DbSNP: the NCBI database of genetic variation. Nucleic Acids Res. 2001;29(1):308–311. 10.1093/nar/29.1.308 PubMed DOI PMC
Sluka JP, Fu X, Swat M, et al. : A liver-centric multiscale modeling framework for xenobiotics. PLoS One. 2016;11(9): e0162428. 10.1371/journal.pone.0162428 PubMed DOI PMC
Soiland-Reyes S, Sefton P, Crosas M, et al. : Packaging research artefacts with RO-Crate. Data Sci. 2022;5(2):97–138. 10.3233/DS-210053 DOI
Stanford NJ, Scharm M, Dobson PD, et al. : Data management in computational systems biology: exploring standards, tools, databases, and packaging best practices. In: Oliver,S.G. and Castrillo,J.I. (eds), Yeast Systems Biology. Springer New York, New York, NY. Methods Mol Biol. 2019;2049:285–314. 10.1007/978-1-4939-9736-7_17 PubMed DOI
Stanford NJ, Wolstencroft K, Golebiewski M, et al. : The evolution of standards and data management practices in systems biology. Mol Syst Biol. 2015;11(12):851. 10.15252/msb.20156053 PubMed DOI PMC
Subramanian A, Tamayo P, Mootha VK, et al. : Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A. 2005;102(43):15545–15550. 10.1073/pnas.0506580102 PubMed DOI PMC
Subramanian I, Verma S, Kumar S, et al. : Multi-omics data integration, interpretation, and its application. Bioinforma Biol Insights. 2020;14: 1177932219899051. 10.1177/1177932219899051 PubMed DOI PMC
Szklarczyk D, Gable AL, Nastou KC, et al. : The STRING database in 2021: customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res. 2021;49(D1): D605–D612. 10.1093/nar/gkaa1074 PubMed DOI PMC
Tekle KM, Gundersen S, Klepper K, et al. : Norwegian e-Infrastructure for Life Sciences (NeLS) [version 1; peer review: 2 approved]. F1000Res. 2018;7: ELIXIR–968. 10.12688/f1000research.15119.1 PubMed DOI PMC
The Gene Ontology Consortium: The gene ontology resource: 20 years and still going strong. Nucleic Acids Res. 2019;47(D1):D330–D338. 10.1093/nar/gky1055 PubMed DOI PMC
Thiele I, Swainston N, Fleming RMT, et al. : A community-driven global reconstruction of human metabolism. Nat Biotechnol. 2013;31(5):419–425. 10.1038/nbt.2488 PubMed DOI PMC
Tiwari K, Kananathan S, Roberts MG, et al. : Reproducibility in systems biology modelling. Mol Syst Biol. 2021;17(2): e9982. 10.15252/msb.20209982 PubMed DOI PMC
Uhlen M, Oksvold P, Fagerberg L, et al. : Towards a knowledge-based human protein atlas. Nat Biotechnol. 2010;28(12):1248–1250. 10.1038/nbt1210-1248 PubMed DOI
van Iersel MP, Pico AR, Kelder T, et al. : The Bridgedb framework: standardized access to gene, protein and metabolite identifier mapping services. BMC Bioinformatics. 2010;11: 5. 10.1186/1471-2105-11-5 PubMed DOI PMC
Waltemath D, Golebiewski M, Blinov ML, et al. : The first 10 years of the international coordination network for standards in systems and synthetic biology (COMBINE). J Integr Bioinforma. 2020;17(2–3): 20200005. 10.1515/jib-2020-0005 PubMed DOI PMC
Waltemath D, Karr JR, Bergmann FT, et al. : Toward community standards and software for whole-cell modeling. IEEE Trans Biomed Eng. 2016;63(10):2007–2014. 10.1109/TBME.2016.2560762 PubMed DOI PMC
Wehrs M, Tanjore D, Eng T, et al. : Engineering robust production microbes for large-scale cultivation. Trends Microbiol. 2019;27(6):524–537. 10.1016/j.tim.2019.01.006 PubMed DOI
Wilkinson MD, Dumontier M, Aalbersberg IJJ, et al. : The FAIR guiding principles for scientific data management and stewardship. Sci Data. 2016;3:160018. 10.1038/sdata.2016.18 PubMed DOI PMC
Willighagen EL, Mayfield JW, Alvarsson J, et al. : The Chemistry Development Kit (CDK) v2.0: atom typing, depiction, molecular formulas, and substructure searching. J Cheminform. 2017;9(1): 33. 10.1186/s13321-017-0220-4 PubMed DOI PMC
Wimalaratne SM, Juty N, Kunze J, et al. : Uniform resolution of compact identifiers for biomedical data. Sci Data. 2018;5: 180029. 10.1038/sdata.2018.29 PubMed DOI PMC
Wittig U, Rey M, Weidemann A, et al. : SABIO-RK: an updated resource for manually curated biochemical reaction kinetics. Nucleic Acids Res. 2018;46(D1):D656–D660. 10.1093/nar/gkx1065 PubMed DOI PMC
Wolkenhauer O: Systems medicine: integrative, qualitative and computational approaches. Academic Press,2020. Reference Source
Wolstencroft K, Krebs O, Snoep JL, et al. : FAIRDOMHub: a repository and collaboration environment for sharing systems biology research. Nucleic Acids Res. 2017;45(D1):D404–D407. 10.1093/nar/gkw1032 PubMed DOI PMC
Wolstencroft K, Owen S, Krebs O, et al. : SEEK: a systems biology data and model management platform. BMC Syst Biol. 2015;9: 33. 10.1186/s12918-015-0174-y PubMed DOI PMC
Zanin M, Aitya NAA, Basilio J, et al. : An early stage researcher’s primer on systems medicine terminology. Netw Syst Med. 2021;4(1):2–50. 10.1089/nsm.2020.0003 PubMed DOI PMC
Zhao P: Report from the EMA workshop on qualification and reporting of Physiologically Based Pharmacokinetic (PBPK) modeling and simulation. CPT Pharmacomet Syst Pharmacol. 2017;6(2):71–72. 10.1002/psp4.12166 PubMed DOI PMC
Making PBPK models more reproducible in practice