Epithelial to mesenchymal transition and microRNA expression are associated with spindle and apocrine cell morphology in triple-negative breast cancer

. 2021 Mar 04 ; 11 (1) : 5145. [epub] 20210304

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid33664322
Odkazy

PubMed 33664322
PubMed Central PMC7933252
DOI 10.1038/s41598-021-84350-2
PII: 10.1038/s41598-021-84350-2
Knihovny.cz E-zdroje

Triple negative breast cancers (TNBC) are a morphologically and genetically heterogeneous group of breast cancers with uncertain prediction of biological behavior and response to therapy. Epithelial to mesenchymal transition (EMT) is a dynamic process characterized by loss of typical epithelial phenotype and acquisition of mesenchymal characteristics. Aberrant activation of EMT can aggravate the prognosis of patients with cancer, however, the mechanisms of EMT and role of microRNAs (miRNAs) in EMT activation is still unclear. The aim of our study was to analyze miRNA expression within areas of TNBCs with cellular morphology that may be related to the EMT process and discuss possible associations. Out of all 3953 re-examined breast cancers, 460 breast cancers were diagnosed as TNBC (11.64%). With regard to complete tumor morphology preservation, the tissue samples obtained from core-cut biopsies and influenced by previous neoadjuvant therapy were excluded. We assembled a set of selected 25 cases to determine miRNA expression levels in relation to present focal spindle cell and apocrine cell morphology within individual TNBCs. We used descriptive (histological typing and morphology), morphometric, molecular (microdissection of tumor and non-tumor morphologies, RNA isolation and purification, microchip analysis) and bioinformatic analysis (including pathway analysis). The results were verified by quantitative real-time PCR (RT-qPCR) on an extended set of 70 TNBCs. The majority of TNBCs were represented by high-grade invasive carcinomas of no special type (NST) with medullary features characterized by well-circumscribed tumors with central necrosis or fibrosis and frequent tendency to spindle-cell and/or apocrine cell transformation. Apocrine and spindle cell transformation showed a specific miRNA expression profile in comparison to other tumor parts, in situ carcinoma or non-tumor structures, particularly down-regulated expression of hsa-miRNA-143-3p and hsa-miRNA-205-5p and up-regulated expression of hsa-miR-22-3p, hsa-miRNA-185-5p, and hsa-miR-4443. Apocrine cell tumor morphology further revealed decreased expression of hsa-miR-145-5p and increased expression of additional 14 miRNAs (e.g. hsa-miR-182-5p, hsa-miR-3135b and hsa-miR-4417). Pathway analysis for target genes of these miRNAs revealed several shared biological processes (i.e. Wnt signaling, ErbB signaling, MAPK signaling, endocytosis and axon guidance), which may in part contribute to the EMT and tumor progression. We provide the first miRNA expression profiling of specific tissue morphologies in TNBC. Our results demonstrate a specific miRNA expression profile of apocrine and spindle cell morphology which can exhibit a certain similarity with the EMT process and may also be relevant for prognosis and therapy resistance of TNBC.

Zobrazit více v PubMed

Ribatti D, Tamma R, Annese T. Epithelial-mesenchymal transition in cancer: a historical overview. Transl. Oncol. 2020;13(6):100773. doi: 10.1016/j.tranon.2020.100773. PubMed DOI PMC

Jia D, Li X, Bocci F, et al. Quantifying cancer epithelial-mesenchymal plasticity and its association with stemness and immune response. J. Clin. Med. 2019;8(5):725. doi: 10.3390/jcm8050725. PubMed DOI PMC

Georgakopoulos-Soares I, Chartoumpekis DV, Kyriazopoulou V, et al. EMT factors and metabolic pathways in cancer. Front. Oncol. 2020;10:499. doi: 10.3389/fonc.2020.00499. PubMed DOI PMC

Vijay GV, Zhao N, Den Hollander P, et al. GSK3β regulates epithelial-mesenchymal transition and cancer stem cell properties in triple-negative breast cancer. Breast Cancer Res. 2019;21(1):37. doi: 10.1186/s13058-019-1125-0. PubMed DOI PMC

Sun L, Fang J. Epigenetic regulation of epithelial-mesenchymal transition. Cell Mol. Life Sci. 2016;73(23):4493–4515. doi: 10.1007/s00018-016-2303-1. PubMed DOI PMC

Tam WL, Weinberg RA. The epigenetics of epithelial-mesenchymal plasticity in cancer. Nat. Med. 2013;19(11):1438–1449. doi: 10.1038/nm.3336. PubMed DOI PMC

Van Marck VL, Bracke ME. Epithelial-Mesenchymal Transitions in Human Cancer. Austin (TX): Landes Bioscience; 2000–2013.

Lakhtakia R, Aljarrah A, Furrukh M, et al. Epithelial mesenchymal transition (EMT) in metastatic breast cancer in omani women. Cancer Microenviron. 2017;10:25–37. doi: 10.1007/s12307-017-0194-9. PubMed DOI PMC

Shi Y, Jin J, Ji W, Guan X. Therapeutic landscape in mutational triple negative breast cancer. Mol. Cancer. 2018;17(1):99. doi: 10.1186/s12943-018-0850-9. PubMed DOI PMC

Weisman PS, Ng CK, Brogi E, et al. Genetic alterations of triple negative breast cancer by targeted next-generation sequencing and correlation with tumor morphology. Mod. Pathol. 2016;29(5):476–488. doi: 10.1038/modpathol.2016.39. PubMed DOI PMC

Wu S, Zhang H, Fouladdel S, et al. Cellular, transcriptomic and isoform heterogeneity of breast cancer cell line revealed by full-length single-cell RNA sequencing. Comput. Struct. Biotechnol. J. 2020;18:676–685. doi: 10.1016/j.csbj.2020.03.005. PubMed DOI PMC

Lehmann BD, Bauer JA, Chen X. Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J. Clin. Invest. 2011;121(7):2750–2767. doi: 10.1172/JCI45014. PubMed DOI PMC

Wahdan-Alaswad R, Harrell JC, Fan Z, et al. Metformin attenuates transforming growth factor beta (TGF-β) mediated oncogenesis in mesenchymal stem-like/claudin-low triple negative breast cancer. Cell Cycle. 2016;15(8):1046–1059. doi: 10.1080/15384101.2016.1152432. PubMed DOI PMC

Dias K, Dvorkin-Gheva A, Hallett RM, et al. Claudin-low breast cancer; clinical & pathological characteristics. PLoS ONE. 2017;12(1):e0168669. doi: 10.1371/journal.pone.0168669. PubMed DOI PMC

Ding L, Gu H, Xiong X, et al. MicroRNAs Involved in carcinogenesis, prognosis, therapeutic resistance and applications in human triple-negative breast cancer. Cells. 2019;8(12):1492. doi: 10.3390/cells8121492. PubMed DOI PMC

Deepak KGK, Vempati R, Nagaraju GP, et al. Tumor microenvironment: challenges and opportunities in targeting metastasis of triple negative breast cancer. Pharmacol. Res. 2020;153:104683. doi: 10.1016/j.phrs.2020.104683. PubMed DOI

Gupta I, Sareyeldin RM, Al-Hashimi I, et al. Triple negative breast cancer profile, from gene to microRNA, in relation to ethnicity. Cancers (Basel). 2019;11(3):363. doi: 10.3390/cancers11030363. PubMed DOI PMC

Jorgensen CLT, Forsare C, Bendahl PO, et al. Expression of epithelial-mesenchymal transition-related markers and phenotypes during breast cancer progression. Breast Cancer Res. Treat. 2020;181(2):369–381. doi: 10.1007/s10549-020-05627-0. PubMed DOI PMC

Lokuhetty D, White WA, Watanabe R, et al. Breast Tumours. WHO Classification of Tumours (5th edition). Lyon: IARC, 2019. ISBN: 978–92–832 -4500–1.

Chen Y, Wang X. MiRDB: an online database for prediction of functional microRNA targets. Nucleic Acids Res. 2020;48(D1):D127–D131. doi: 10.1093/nar/gkz757. PubMed DOI PMC

Agarwal V, Bell GW, Nam J, et al. Predicting effective microRNA target sites in mammalian mRNAs. eLife. 2015;4:e05005. doi: 10.7554/eLife.05005. PubMed DOI PMC

Zhao, S., Guo, Y., & Shyr, Y. KEGGprofile: an annotation and visualization package for multi-types and multi-groups expression data in KEGG pathway. R package version 1.20.0 (2017).

Yu G, Wang LG, Han Y, et al. ClusterProfiler: an R package for comparing biological themes among gene clusters. OMICS A J. Integr. Biol. 2012;16(5):284–287. doi: 10.1089/omi.2011.0118. PubMed DOI PMC

Nedeljković M, Damjanović A. Mechanisms of chemotherapy resistance in triple-negative breast cancer-how we can rise to the challenge. Cells. 2019;8(9):957. doi: 10.3390/cells8090957. PubMed DOI PMC

Sun X, Wang M, Wang M, et al. Metabolic reprogramming in triple-negative breast cancer. Front. Oncol. 2020;10:428. doi: 10.3389/fonc.2020.00428. PubMed DOI PMC

Salgado R, Denkert C, Demaria S, et al. The evaluation of tumor-infiltrating lymphocytes (TILs) in breast cancer: recommendations by an International TILs Working Group 2014. Ann. Oncol. 2015;26(2):259–271. doi: 10.1093/annonc/mdu450. PubMed DOI PMC

Yin C, Zhang G, Sun R, et al. miR-185-5p inhibits F-actin polymerization and reverses epithelial mesenchymal transition of human breast cancer cells by modulating RAGE. Mol. Med. Rep. 2018;18(3):2621–2630. PubMed PMC

Wang Q, Li C, Zhu Z, et al. MiR-155-5p antagonizes the apoptotic effect of bufalin in triple-negative breast cancer cells. Anticancer Drugs. 2016;27:9–16. doi: 10.1097/CAD.0000000000000296. PubMed DOI

Landgraf P, Rusu M, Sheridan R, et al. A mammalian microRNA expression atlas based on small RNA library sequencing. Cell. 2007;129(7):1401–1414. doi: 10.1016/j.cell.2007.04.040. PubMed DOI PMC

Jang MH, Kim HJ, Gwak JM, et al. Prognostic value of microRNA-9 and microRNA-155 expression in triple-negative breast cancer. Hum. Pathol. 2017;68:69–78. doi: 10.1016/j.humpath.2017.08.026. PubMed DOI

Deng YW, Hao WJ, Li YW, et al. Hsa-miRNA-143-3p reverses multidrug resistance of triple-negative breast cancer by inhibiting the expression of its target protein cytokine-induced apoptosis inhibitor 1 in vivo. J. Breast Cancer. 2018;21(3):251–258. doi: 10.4048/jbc.2018.21.e40. PubMed DOI PMC

Wang Q, Cheng Y, Wang Y, et al. Tamoxifen reverses epithelial-mesenchymal transition by demethylating miR-200c in triple-negative breast cancer cells. BMC Cancer. 2017;17:492. doi: 10.1186/s12885-017-3457-4. PubMed DOI PMC

Gregory PA, Bert A, Paterson EL, et al. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat. Cell Biol. 2008;10:593–601. doi: 10.1038/ncb1722. PubMed DOI

Foroni C, Broggini M, Generali D, et al. Epithelial-mesenchymal transition and breast cancer: role, molecular mechanisms and clinical impact. Cancer Treat. Rev. 2012;38(6):689–697. doi: 10.1016/j.ctrv.2011.11.001. PubMed DOI

Liu S, Zhou F, Shen Y, et al. Fluid shear stress induces epithelial-mesenchymal transition (EMT) in Hep-2 cells. Oncotarget. 2016;7(22):32876–32892. doi: 10.18632/oncotarget.8765. PubMed DOI PMC

Expósito-Villén A, Aránega E, A, Franco D. Functional role of non-coding rnas during epithelial-to-mesenchymal transition. Noncoding RNA. 2018;4(2):14. PubMed PMC

Mathe A, Scott RJ, Avery-Kiejda KA. MiRNAs and other epigenetic changes as biomarkers in triple negative breast cancer. Int. J. Mol. Sci. 2015;16(12):28347–28376. doi: 10.3390/ijms161226090. PubMed DOI PMC

Díaz-López A, Moreno-Bueno G, Cano A. Role of microRNA in epithelial to mesenchymal transition and metastasis and clinical perspectives. Cancer Manag. Res. 2014;6:205–216. PubMed PMC

Hu Y, Tang H. MicroRNAs regulate the epithelial to mesenchymal transition (EMT) in cancer progression. Microrna. 2014;3(2):108–117. doi: 10.2174/2211536603666141010115102. PubMed DOI

Deng L, Shang L, Bai S, et al. MicroRNA100 inhibits self-renewal of breast cancer stem-like cells and breast tumor development. Cancer Res. 2014;74(22):6648–6660. doi: 10.1158/0008-5472.CAN-13-3710. PubMed DOI PMC

Wolff AC, Hammond ME, Hicks DG, et al. Recommendations for human epidermal growth factor receptor 2 testing in breast cancer: American Society of Clinical Oncology/College of American Pathologists clinical practice guideline update. Arch. Pathol. Lab. Med. 2014;138(2):241–256. doi: 10.5858/arpa.2013-0953-SA. PubMed DOI PMC

Stankevicins L, Barat A, Dessen P, et al. The microRNA-205-5p is correlated to metastatic potential of 21T series: a breast cancer progression model. PLoS ONE. 2017;12(3):e0173756. doi: 10.1371/journal.pone.0173756. PubMed DOI PMC

Yang F, Zhang W, Shen Y, et al. Identification of dysregulated microRNAs in triple-negative breast cancer (review) Int. J. Oncol. 2015;46(3):927–932. doi: 10.3892/ijo.2015.2821. PubMed DOI

Wang H, Tan Z, Hu H, et al. microRNA-21 promotes breast cancer proliferation and metastasis by targeting LZTFL1. BMC Cancer. 2019;19(1):738. doi: 10.1186/s12885-019-5951-3. PubMed DOI PMC

Wu Y, Shi W, Tang T, et al. miR-29a contributes to breast cancer cells epithelial-mesenchymal transition, migration, and invasion via down-regulating histone H4K20 trimethylation through directly targeting SUV420H2. Cell Death Dis. 2019;10(3):176. doi: 10.1038/s41419-019-1437-0. PubMed DOI PMC

Zhang N, Wang X, Huo Q, et al. MicroRNA-30a suppresses breast tumor growth and metastasis by targeting metadherin. Oncogene. 2014;33(24):3119–3128. doi: 10.1038/onc.2013.286. PubMed DOI

Zhan Y, Li X, Liang X, et al. MicroRNA-182 drives colonization and macroscopic metastasis via targeting its suppressor SNAI1 in breast cancer. Oncotarget. 2017;8(3):4629–4641. doi: 10.18632/oncotarget.13542. PubMed DOI PMC

Bockhorn J, Yee K, Chang YF, et al. MicroRNA-30c targets cytoskeleton genes involved in breast cancer cell invasion. Breast Cancer Res. Treat. 2013;137(2):373–382. doi: 10.1007/s10549-012-2346-4. PubMed DOI PMC

Li N, Miao Y, Shan Y, et al. MiR-106b and miR-93 regulate cell progression by suppression of PTEN via PI3K/Akt pathway in breast cancer. Cell Death Dis. 2017;8(5):e2796. doi: 10.1038/cddis.2017.119. PubMed DOI PMC

Chandra Mangalhara K, Manvati S, Saini SK, et al. ERK2-ZEB1-miR-101-1 axis contributes to epithelial-mesenchymal transition and cell migration in cancer. Cancer Lett. 2010;391:59–73. doi: 10.1016/j.canlet.2017.01.016. PubMed DOI

Afshar E, Hashemi-Arabi M, Salami S, et al. Screening of acetaminophen-induced alterations in epithelial-to-mesenchymal transition-related expression of microRNAs in a model of stem-like triple-negative breast cancer cells: the possible function and impacts. Gene. 2019;702:46–55. doi: 10.1016/j.gene.2019.02.106. PubMed DOI

Hwang MS, Yu N, Stinson SY, et al. miR-221/222 targets adiponectin receptor 1 to promote the epithelial-to-mesenchymal transition in breast cancer. PLoS ONE. 2013;8(6):e66502. doi: 10.1371/journal.pone.0066502. PubMed DOI PMC

Chen D, Dang BL, Huang JZ, et al. MiR-373 drives the epithelial-to-mesenchymal transition and metastasis via the miR-373-TXNIP-HIF1α-TWIST signaling axis in breast cancer. Oncotarget. 2015;6(32):32701–32712. doi: 10.18632/oncotarget.4702. PubMed DOI PMC

Zhou J, Zhu J, Jiang G, et al. Downregulation of microRNA-4324 promotes the EMT of esophageal squamous-cell carcinoma cells via upregulating FAK. OncoTargets Ther. 2019;12:4595–4604. doi: 10.2147/OTT.S198333. PubMed DOI PMC

Klinge CM, Piell KM, Tooley CS, et al. HNRNPA2/B1 is upregulated in endocrine-resistant LCC9 breast cancer cells and alters the miRNA transcriptome when overexpressed in MCF-7 cells. Sci. Rep. 2019;9(1):9430. doi: 10.1038/s41598-019-45636-8. PubMed DOI PMC

Stinson S, Lackner MR, Adai AT, et al. MiR-221/222 targeting of trichorhinophalangeal 1 (TRPS1) promotes epithelial-to-mesenchymal transition in breast cancer. Sci. Signal. 2011;4:pt5. doi: 10.1126/scisignal.2001798. PubMed DOI

Neves R, Scheel C, Weinhold S, et al. Role of DNA methylation in miR-200c/141 cluster silencing in invasive breast cancer cells. BMC Res. Notes. 2010;3:219. doi: 10.1186/1756-0500-3-219. PubMed DOI PMC

Ding X, Park SI, McCauley LK, et al. Signaling between transforming growth factor β (TGF-β) and transcription factor SNAI2 represses expression of microRNA miR-203 to promote epithelial-mesenchymal transition and tumor metastasis. J. Biol. Chem. 2013;288(15):10241–10253. doi: 10.1074/jbc.M112.443655. PubMed DOI PMC

Lodygin D, Tarasov V, Epanchintsev A, et al. Inactivation of miR-34a by aberrant CpG methylation in multiple types of cancer. Cell Cycle. 2008;7:2591–2600. doi: 10.4161/cc.7.16.6533. PubMed DOI

Imani S, Wei C, Cheng J, et al. MicroRNA-34a targets epithelial to mesenchymal transition-inducing transcription factors (EMT-TFs) and inhibits breast cancer cell migration and invasion. Oncotarget. 2017;8(13):21362–21379. doi: 10.18632/oncotarget.15214. PubMed DOI PMC

Chen JH, Huang WC, Bamodu OA, et al. Monospecific antibody targeting of CDH11 inhibits epithelial-to-mesenchymal transition and represses cancer stem cell-like phenotype by up-regulating miR-335 in metastatic breast cancer, in vitro and in vivo. BMC Cancer. 2019;19(1):634. doi: 10.1186/s12885-019-5811-1. PubMed DOI PMC

Zheng L, Zhang Y, Fu Y, et al. Long non-coding RNA MALAT1 regulates BLCAP mRNA expression through binding to miR-339–5p and promotes poor prognosis in breast cancer. Biosci. Rep. 2019; 39 (2): BSR20181284. PubMed PMC

Zhang Y, Wang F, Wang L, et al. MiR-363 suppresses cell migration, invasion, and epithelial-mesenchymal transition of osteosarcoma by binding to NOB1. World J. Surg. Oncol. 2020;18(1):83. doi: 10.1186/s12957-020-01859-y. PubMed DOI PMC

Hong S, Noh H, Teng Y, et al. SHOX2 is a direct miR-375 target and a novel epithelial-to-mesenchymal transition inducer in breast cancer cells. Neoplasia. 2014;16(4):279–290. doi: 10.1016/j.neo.2014.03.010. PubMed DOI PMC

Li Z, Meng Q, Pan A, et al. MicroRNA-455-3p promotes invasion and migration in triple negative breast cancer by targeting tumor suppressor EI24. Oncotarget. 2017;8(12):19455–19466. doi: 10.18632/oncotarget.14307. PubMed DOI PMC

Nandy SB, Subramani R, Rajamanickam V, et al. microRNA alterations in ALDH positive mammary epithelial cells: a crucial contributing factor towards breast cancer risk reduction in case of early pregnancy. BMC Cancer. 2014;14:644. doi: 10.1186/1471-2407-14-644. PubMed DOI PMC

Chi Y, Wang F, Zhang T, et al. miR-516a-3p inhibits breast cancer cell growth and EMT by blocking the Pygo2/Wnt signalling pathway. J. Cell Mol. Med. 2019;87(9):6295–6307. doi: 10.1111/jcmm.14515. PubMed DOI PMC

Wang W, Nag SA, Zhang R. Targeting the NFκB signalling pathways for breast cancer prevention and therapy. Curr. Med. Chem. 2015;22(2):264–289. doi: 10.2174/0929867321666141106124315. PubMed DOI PMC

Persson H, Kvist A, Rego N, et al. Identification of new microRNAs in paired normal and tumor breast tissue suggests a dual role for the ERBB2/Her2 gene. Cancer Res. 2011;71(1):78–86. doi: 10.1158/0008-5472.CAN-10-1869. PubMed DOI

Rizzo S, Cangemi A, Galvano A, et al. Analysis of miRNA expression profile induced by short term starvation in breast cancer cells treated with doxorubicin. Oncotarget. 2017;8:71924–71932. doi: 10.18632/oncotarget.18028. PubMed DOI PMC

Zheng M, Wu Z, Wu A, et al. MiR-145 promotes TNF-alpha-induced apoptosis by facilitating the formation of RIP1-FADDcaspase-8 complex in triple-negative breast cancer. Tumour Biol. 2016;37:8599–8607. doi: 10.1007/s13277-015-4631-4. PubMed DOI

Chen X, Zhong SL, Lu P, et al. miR-4443 participates in the malignancy of breast cancer. PLoS ONE. 2016;11(8):e0160780. doi: 10.1371/journal.pone.0160780. PubMed DOI PMC

Wong CK, Gromisch C, Ozturk S, et al. MicroRNA-4417 is a tumor suppressor and prognostic biomarker for triple-negative breast cancer. Cancer Biol. Ther. 2019;20(8):1113–1120. doi: 10.1080/15384047.2019.1595285. PubMed DOI PMC

Wu H, Wang Q, Zhong H, et al. Differentially expressed microRNAs in exosomes of patients with breast cancer revealed by next-generation sequencing. Oncol. Rep. 2020;43:240–250. PubMed PMC

Krishnan P, Ghosh S, Wang B, et al. Next generation sequencing profiling identifies miR-574-3p and miR-660-5p as potential novel prognostic markers for breast cancer. BMC Genomics. 2015;16:735. doi: 10.1186/s12864-015-1899-0. PubMed DOI PMC

Piasecka D, Braun M, Kordek R, et al. MicroRNAs in regulation of triple-negative breast cancer progression. J. Cancer Res. Clin. Oncol. 2018;144(8):1401–1411. doi: 10.1007/s00432-018-2689-2. PubMed DOI PMC

Li D, Hu J, Song H, et al. miR-143-3p targeting LIM domain kinase 1 suppresses the progression of triple-negative breast cancer cells. Am. J. Transl. Res. 2017;9(5):2276–2285. PubMed PMC

Sugita B, Gill M, Mahajan A, et al. Differentially expressed miRNAs in triple negative breast cancer between African–American and non-Hispanic white women. Oncotarget. 2016;7(48):79274–79291. doi: 10.18632/oncotarget.13024. PubMed DOI PMC

Nygren MK, Tekle C, Ingebrigtsen VA, et al. Identifying microRNAs regulating B7–H3 in breast cancer: the clinical impact of microRNA-29c. Br. J. Cancer. 2014;110(8):2072–2080. doi: 10.1038/bjc.2014.113. PubMed DOI PMC

Wang B, Li D, Filkowski J, et al. A dual role of miR-22 modulated by RelA/p65 in resensitizing fulvestrant-resistant breast cancer cells to fulvestrant by targeting FOXP1 and HDAC4 and constitutive acetylation of p53 at Lys382. Oncogenesis. 2018;7:54. doi: 10.1038/s41389-018-0063-5. PubMed DOI PMC

Ujihira T, Ikeda K, Suzuki T, et al. MicroRNA-574-3p, identified by microRNA library-based functional screening, modulates tamoxifen response in breast cancer. Sci. Rep. 2015;5:7641. doi: 10.1038/srep07641. PubMed DOI PMC

Kanehisa, M., Furumichi, M., Sato, Y., Ishiguro-Watanabe, M., and Tanabe, M.; KEGG: integrating viruses and cellular organisms. Nucleic Acids Res. 49 (2021). PubMed PMC

Benoist GE, van Oort IM, Boerrigter E, et al. Prognostic value of novel liquid biomarkers in patients with metastatic castration-resistant prostate cancer treated with enzalutamide: a prospective observational study. Clin. Chem. 2020;66(6):842–851. doi: 10.1093/clinchem/hvaa095. PubMed DOI

Nakamura J, Furuya S, Hagio K, et al. Differential miRNA expression in basaloid squamous cell carcinoma of the oesophagus: miR-3687 targets PGRMC2. Anticancer Res. 2019;39(12):6471–6478. doi: 10.21873/anticanres.13861. PubMed DOI

Wu CH, Hsiao YM, Yeh KT, et al. Upregulation of microRNA-4417 and its target genes contribute to nickel chloride-promoted lung epithelial cell fibrogenesis and tumorigenesis. Sci. Rep. 2017;7(1):15320. doi: 10.1038/s41598-017-14610-7. PubMed DOI PMC

Murria R, Palanca S, de Juan I, et al. Immunohistochemical, genetic and epigenetic profiles of hereditary and triple negative breast cancers. Relevance in personalized medicine. Am. J. Cancer Res. 2015;5(7):2330–2343. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...