Synthesis of New Brassinosteroid 24-Norcholane Type Analogs Conjugated in C-3 with Benzoate Groups
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
1191330
Fondo Nacional de Desarrollo Científico y Tecnológico
CZ.02.1.01/0.0/0.0/16_019/0000827
European Regional Development Fund
PubMed
33671806
PubMed Central
PMC7927124
DOI
10.3390/molecules26041173
PII: molecules26041173
Knihovny.cz E-zdroje
- Klíčová slova
- 24-norcholane, Rice Lamina Inclination Test, analogs, benzoate esters, brassinosteroids, conjugated in C-3, synthesis,
- MeSH
- benzoáty chemie farmakologie MeSH
- brassinosteroidy chemická syntéza chemie farmakologie MeSH
- molekulární konformace MeSH
- regulátory růstu rostlin chemická syntéza chemie farmakologie MeSH
- rýže (rod) účinky léků metabolismus MeSH
- stereoizomerie MeSH
- vztah mezi dávkou a účinkem léčiva MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- benzoáty MeSH
- brassinosteroidy MeSH
- regulátory růstu rostlin MeSH
The metabolism of brassinosteroid leads to structural modifications in the ring skeleton or the side alkyl chain. The esterification and glycosylation at C-3 are the most common metabolic pathways, and it has been suggested that conjugate brassinosteroids are less active or inactive. In this way, plants regulate the content of active brassinosteroids. In this work, the synthesis of brassinosteroid 24-norcholane type analogs conjugated at C-3 with benzoate groups, carrying electron donor and electron attractant substituents on the aromatic ring, is described. Additionally, their growth-promoting activities were evaluated using the Rice Lamina Inclination Test (RLIT) and compared with that exhibited by brassinolide (used as positive control) and non-conjugated analogs. The results indicate that at the lowest tested concentrations (10-8-10-7 M), all analogs conjugated at C-3 exhibit similar or higher activities than brassinolide, and the diasteroisomers with S configuration at C-22 are the more active ones. Increasing concentration (10-6 M) reduces the biological activities of analogs as compared to brassinolide.
Zobrazit více v PubMed
Oh M.-H., Honey S.H., Tax F.E. The Control of Cell Expansion, Cell Division, and Vascular Development by Brassinosteroids: A Historical Perspective. Int. J. Mol. Sci. 2020;21:1743. doi: 10.3390/ijms21051743. PubMed DOI PMC
Clouse S.D., Sasse J.M. Brassinosteroids: Essential regulators of plant growth and development. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1998;49:427–451. doi: 10.1146/annurev.arplant.49.1.427. PubMed DOI
Yokota T. Chapter 12-Brassinosteroids. In: Hooykaas P.J.J., Hall M.A., Libbenga K.R., editors. New Comprehensive Biochemistry. Volume 33. Elsevier; New York, NY, USA: 1999. p. 277293.
Sasse J.M. Physiological actions of brassinosteroids: An update. J. Plant Growth Regul. 2003;22:276–288. doi: 10.1007/s00344-003-0062-3. PubMed DOI
Müssig C. Brassinosteroid-promoted growth. Plant Biol. 2005;7:110–117. doi: 10.1055/s-2005-837493. PubMed DOI
Grove M.D., Spencer G.F., Rohwedder W.K., Mandava N., Worley J.F., Warthen J.D., Steffens G.L., Flippenanderson J.L., Cook J.C. Brassinolide, a Plant Growth-Promoting Steroid Isolated from Brassica-Napus Pollen. Nature. 1979;281:216–217. doi: 10.1038/281216a0. DOI
Khripach V., Zhabinskii V., de Groot A. Twenty years of brassinosteroids: Steroidal plant hormones warrant better crops for the XXI century. Ann. Bot. 2000;86:441–447. doi: 10.1006/anbo.2000.1227. DOI
Bajguz A. Metabolism of brassinosteroids in plants. Plant Physiol. Biochem. 2007;45:95–107. doi: 10.1016/j.plaphy.2007.01.002. PubMed DOI
Abe H., Honjo C., Kyokawa Y., Asakawa S., Natsume M., Narushima M. 3-Oxoteasterone and the Epimerization of Teasterone: Identification in Lily Anthers and Distylium racemosum Leaves and Its Biotransformation into Typhasterol. Biosci. Biotechnol. Biochem. 1994;58:986–989. doi: 10.1271/bbb.58.986. DOI
Kolbe A., Schneider B., Porzel A., Adam G. Metabolism of 24-epi-castasterone and 24-epi-brassinolide in cell suspension cultures of Ornithopus sativus. Phytochemistry. 1996;41:163–167. doi: 10.1016/0031-9422(95)00546-3. DOI
Kolbe A., Schneider B., Porzel A., Schmidt J., Adam G. Acyl-conjugated metabolites of brassinosteroids in cell suspension cultures of Ornithopus sativus. Phytochemistry. 1995;38:633–636. doi: 10.1016/0031-9422(94)00742-C. DOI
Kolbe A., Schneider B., Porzel A., Voigt B., Krauss G., Adam G. Pregnane-type metabolites of brassinosteroids in cell suspension cultures of Ornithopus sativus. Phytochemistry. 1994;36:671–673. doi: 10.1016/S0031-9422(00)89794-0. DOI
Soeno K., Asakawa S., Natsume M., Abe H. Reversible Conversion between Teasterone and Its Ester Conjugates in Lily Cell Cultures. J. Pestic. Sci. 2000;25:117–122. doi: 10.1584/jpestics.25.117. DOI
Soeno K., Kyokawa Y., Natsume M., Abe H. Teasterone-3-O-β-d-glucopyranoside, A New Conjugated Brassinosteroid Metabolite from Lily Cell Suspension Cultures and Its Identification in Lily Anthers. Biosci. Biotechnol. Biochem. 2000;64:702–709. doi: 10.1271/bbb.64.702. PubMed DOI
Hai T., Schneider B., Adam G. Metabolic conversion of 24-epi-brassinolide into pentahydroxylated brassinosteroid glucosides in tomato cell cultures. Phytochemistry. 1995;40:443–448. doi: 10.1016/0031-9422(95)00224-U. DOI
Hai T., Schneider B., Porzel A., Adam G. Metabolism of 24-epi-castasterone in cell suspension cultures of Lycopersicon esculentum. Phytochemistry. 1996;41:197–201. doi: 10.1016/0031-9422(95)00585-4. DOI
Kolbe A., Porzel A., Schneider B., Adam G. Diglycosidic metabolites of 24-epi-teasterone in cell suspension cultures of Lycopersicon esculentum L. Phytochemistry. 1997;46:1019–1022. doi: 10.1016/S0031-9422(97)00390-7. DOI
Kolbe A., Schneider B., Porzel A., Adam G. Metabolic inversion of the 3-hydroxy function of brassinosteroids. Phytochemistry. 1998;48:467–470. doi: 10.1016/S0031-9422(98)00037-5. DOI
Schneider B., Kolbe A., Porzel A., Adam G. A metabolite of 24-epi-brassinolide in cell suspension cultures of Lycopersicon esculentum. Phytochemistry. 1994;36:319–321. doi: 10.1016/S0031-9422(00)97068-7. DOI
Suzuki H., Kim S.-K., Takahashi N., Yokota T. Metabolism of castasterone and brassinolide in mung bean explant. Phytochemistry. 1993;33:1361–1367. doi: 10.1016/0031-9422(93)85091-5. DOI
Khripach V.A., Zhabinskii V.N., Tsavlovskii D.V. Synthesis of fatty acyl derivatives of 24-epibrassinolide. J. Steroid Biochem. Mol. Biol. 2013;137:345–354. doi: 10.1016/j.jsbmb.2013.01.016. PubMed DOI
Kvasnica M., Oklestkova J., Bazgier V., Rarova L., Berka K., Strnad M. Biological activities of new monohydroxylated brassinosteroid analogues with a carboxylic group in the side chain. Steroids. 2014;85:58–64. doi: 10.1016/j.steroids.2014.04.007. PubMed DOI
Liu J., Zhang D., Sun X., Ding T., Lei B., Zhang C. Structure-activity relationship of brassinosteroids and their agricultural practical usages. Steroids. 2017;124:1–17. doi: 10.1016/j.steroids.2017.05.005. PubMed DOI
Thompson M.J., Meudt W.J., Mandava N.B., Dutky S.R., Lusby W.R., Spaulding D.W. Synthesis of Brassinosteroids and Relationship of Structure to Plant Growth-Promoting Effects. Steroids. 1982;39:89–105. doi: 10.1016/0039-128X(82)90129-5. PubMed DOI
Takatsuto S., Ikekawa N., Morishita T., Abe H. Structure Activity Relationship of Brassinosteroids with Respect to the A/B-Ring Functional-Groups. Chem. Pharm. Bull. 1987;35:211–216. doi: 10.1248/cpb.35.211. DOI
Takatsuto S., Yazawa N., Ikekawa N., Takematsu T., Takeuchi Y., Koguchi M. Structure Activity Relationship of Brassinosteroids. Phytochemistry. 1983;22:2437–2441. doi: 10.1016/0031-9422(83)80135-6. DOI
Zullo M.A.T., Adam G. Brassinosteroid phytohormones: Structure, bioactivity and applications. Braz. J. Plant Physiol. 2002;14:143–181. doi: 10.1590/S1677-04202002000300001. DOI
Peres A.L.G.L., Soares J.S., Tavares R.G., Righetto G., Zullo M.A.T., Mandava N.B., Menossi M. Brassinosteroids, the Sixth Class of Phytohormones: A Molecular View from the Discovery to Hormonal Interactions in Plant Development and Stress Adaptation. Int. J. Mol. Sci. 2019;20:331. doi: 10.3390/ijms20020331. PubMed DOI PMC
Ferrer-Pertuz K., Espinoza L., Mella J. Insights into the Structural Requirements of Potent Brassinosteroids as Vegetable Growth Promoters Using Second-Internode Elongation as Biological Activity: CoMFA and CoMSIA Studies. Int. J. Mol. Sci. 2017;18:2734. doi: 10.3390/ijms18122734. PubMed DOI PMC
Wang Q., Xu J., Liu X., Gong W., Zhang C. Synthesis of brassinosteroids analogues from laxogenin and their plant growth promotion. Nat. Prod. Res. 2015;29:149–157. doi: 10.1080/14786419.2014.968151. PubMed DOI
Duran M.I., Gonzalez C., Acosta A., Olea A.F., Diaz K., Espinoza L. Synthesis of Five Known Brassinosteroid Analogs from Hyodeoxycholic Acid and Their Activities as Plant-Growth Regulators. Int. J. Mol. Sci. 2017;18:516. doi: 10.3390/ijms18030516. PubMed DOI PMC
Kvasnica M., Oklestkova J., Bazgier V., Rárová L., Korinkova P., Mikulík J., Budesinsky M., Béres T., Berka K., Lu Q., et al. Design, synthesis and biological activities of new brassinosteroid analogues with a phenyl group in the side chain. Org. Biomol. Chem. 2016;14:8691–8701. doi: 10.1039/C6OB01479H. PubMed DOI
Iglesias-Arteaga M.A., Gil R.P., Martinez C.S.P., Manchado F.C. Spirostanic analogues of teasterone. Synthesis, characterisation and biological activity of laxogenin, (23S)-hydroxylaxogenin and 23-ketolaxogenin (23-oxolaxogenin) J. Chem. Soc. Perkin Trans. 1. 2001:261–266. doi: 10.1039/b007656m. DOI
Romero-Avila M., de Dios-Bravo G., Mendez-Stivalet J.M., Rodriguez-Sotres R., Iglesias-Arteaga M.A. Synthesis and biological activity of furostanic analogues of brassinosteroids bearing the 5 alpha-hydroxy-6-oxo moiety. Steroids. 2007;72:955–959. doi: 10.1016/j.steroids.2007.08.007. PubMed DOI
Gomes M.d.M.d.A., Torres Netto A., Campostrini E., Bressan-Smith R., Zullo M.A.T., Ferraz T.M., Siqueira L.d.N., Leal N.R., Núñez-Vázquez M. Brassinosteroid analogue affects the senescence in two papaya genotypes submitted to drought stress. Exp. Plant Physiol. 2013;25:186–195. doi: 10.1590/S2197-00252013000300003. DOI
Brosa C., Soca L., Terricabras E., Ferrer J.C., Alsina A. New synthetic brassinosteroids: A 5 alpha-hydroxy-6-ketone analog with strong plant growth promoting activity. Tetrahedron. 1998;54:12337–12348. doi: 10.1016/S0040-4020(98)00743-1. DOI
Brosa C., Capdevila J.M., Zamora I. Brassinosteroids: A new way to define the structural requirements. Tetrahedron. 1996;52:2435–2448. doi: 10.1016/0040-4020(95)01065-3. DOI
Diaz K., Espinoza L., Carvajal R., Conde-Gonzalez M., Niebla V., Olea A.F., Coll Y. Biological Activities and Molecular Docking of Brassinosteroids 24-Norcholane Type Analogs. Int. J. Mol. Sci. 2020;21:1832. doi: 10.3390/ijms21051832. PubMed DOI PMC
Back T., Pharis R. Structure-Activity Studies of Brassinosteroids and the Search for Novel Analogues and Mimetics with Improved Bioactivity. J. Plant Growth Regul. 2004;22:350–361. doi: 10.1007/s00344-003-0057-0. PubMed DOI
Back T.G., Janzen L., Pharis R.P., Yan Z. Synthesis and bioactivity of C-2 and C-3 methyl ether derivatives of brassinolide. Phytochemistry. 2002;59:627–634. doi: 10.1016/S0031-9422(02)00019-5. PubMed DOI
Carvajal R., Gonzalez C., Olea A.F., Fuentealba M., Espinoza L. Synthesis of 2-Deoxybrassinosteroids Analogs with 24-nor, 22(S)-23-Dihydroxy-Type Side Chains from Hyodeoxycholic Acid. Molecules. 2018;23:1306. doi: 10.3390/molecules23061306. PubMed DOI PMC
Oyarce J., Aitken V., Gonzalez C., Ferrer K., Olea A.F., Parella T., Espinoza L. Synthesis and structural determination of new brassinosteroid 24-nor-5α-cholane type analogs. Molecules. 2019;24:4612. doi: 10.3390/molecules24244612. PubMed DOI PMC
Huang L.F., Zhou W.S. Studies on Steroidal Plant-Growth Regulators. Part 33. Novel Method for Construction of the Side-Chain of 23-Arylbrassinosteroids Via Heck Arylation and Asymmetric Dihydroxylation As Key Steps. J. Chem. Soc. Perkin Trans. 1. 1994:3579–3585. doi: 10.1039/p19940003579. DOI
Zhou W.S., Tian W.S. Studies on Steroidal Plant-Growth Hormones. 2. Stereoselective Synthesis of (22S, 23S)-Typhasterol from Hyodeoxycholic Acid. Acta Chim. Sin. 1985;43:1060–1067.
Tian W.S., Zhou W.S., Jiang B., Pan X.F. Studies on Steroidal Plant-Growth Regulator. 9. The Preparation of 22R-Penta-Nor-Brassinolides and 22S-24,25,26,27,28-Penta-Nor-Brassinolides. Acta Chim. Sin. 1989;47:1017–1021.
Yang Y.X., Zheng L.T., Shi J.J., Gao B., Chen Y.K., Yang H.C., Chen H.L., Li Y.C., Zhen X.C. Synthesis of 5 alpha-cholestan-6-one derivatives and their inhibitory activities of NO production in activated microglia: Discovery of a novel neuroinflammation inhibitor. Bioorg. Med. Chem. Lett. 2014;24:1222–1227. doi: 10.1016/j.bmcl.2013.12.055. PubMed DOI
Zhou W.S., Tian W.S. The Synthesis of Steroids Containing Structural Unit of A, B Ring of Brassinolide and Ecdysone from Hyodeoxycholic Acid. Acta Chim. Sin. 1984;42:1173–1177.
Zhou W.S. The Synthesis of Brassinosteroid. Pure Appl. Chem. 1989;61:431–434. doi: 10.1351/pac198961030431. DOI
Herrera H., Carvajal R., Olea A.F., Espinoza L. Structural modifications of deoxycholic acid to obtain three known brassinosteroid analogues and full NMR spectroscopic characterization. Molecules. 2016;21:1139. doi: 10.3390/molecules21091139. PubMed DOI PMC
Huang B., Du D., Zhang R., Wu X., Xing Z., He Y., Huang W. Synthesis, characterization and biological studies of diosgenyl analogues. Bioorg Med. Chem Lett. 2012;22:7330–7334. doi: 10.1016/j.bmcl.2012.10.086. PubMed DOI
Jones S.R., Selinsky B.S., Rao M.N., Zhang X., Kinney W.A., Tham F.S. Efficient Route to 7α-(Benzoyloxy)-3-dioxolane Cholestan-24(R)-ol, a Key Intermediate in the Synthesis of Squalamine. J. Org. Chem. 1998;63:3786–3789. doi: 10.1021/jo971405d. DOI
Li H., Wang H., Jang S. Rice Lamina Joint Inclination Assay. Bio-Protocol. 2017;7:e2409. doi: 10.21769/BioProtoc.2409. PubMed DOI PMC
Jang S., An G., Li H.-Y. Rice Leaf Angle and Grain Size Are Affected by the OsBUL1 Transcriptional Activator Complex. Plant Physiol. 2017;173:688–702. doi: 10.1104/pp.16.01653. PubMed DOI PMC
Bajguz A., Tretyn A. The chemical characteristic and distribution of brassinosteroids in plants. Phytochemistry. 2003;62:1027–1046. doi: 10.1016/S0031-9422(02)00656-8. PubMed DOI
Wada K., Marumo S. Synthesis and Plant Growth-Promoting Activity of Brassinolide Analogs. Agric. Biol. Chem. 1981;45:2579–2585.
Han K.S., Ko K.W., Nam S.J., Park S.H., Kim S.K. Optimization of a rice lamina inclination assay for detection of brassinosteroids: I. effect of phytohormones on the inclination activity. J. Plant Biol. 1997;40:240–244. doi: 10.1007/BF03030454. DOI