Synthesis of New Brassinosteroid 24-Norcholane Type Analogs Conjugated in C-3 with Benzoate Groups

. 2021 Feb 22 ; 26 (4) : . [epub] 20210222

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33671806

Grantová podpora
1191330 Fondo Nacional de Desarrollo Científico y Tecnológico
CZ.02.1.01/0.0/0.0/16_019/0000827 European Regional Development Fund

The metabolism of brassinosteroid leads to structural modifications in the ring skeleton or the side alkyl chain. The esterification and glycosylation at C-3 are the most common metabolic pathways, and it has been suggested that conjugate brassinosteroids are less active or inactive. In this way, plants regulate the content of active brassinosteroids. In this work, the synthesis of brassinosteroid 24-norcholane type analogs conjugated at C-3 with benzoate groups, carrying electron donor and electron attractant substituents on the aromatic ring, is described. Additionally, their growth-promoting activities were evaluated using the Rice Lamina Inclination Test (RLIT) and compared with that exhibited by brassinolide (used as positive control) and non-conjugated analogs. The results indicate that at the lowest tested concentrations (10-8-10-7 M), all analogs conjugated at C-3 exhibit similar or higher activities than brassinolide, and the diasteroisomers with S configuration at C-22 are the more active ones. Increasing concentration (10-6 M) reduces the biological activities of analogs as compared to brassinolide.

Zobrazit více v PubMed

Oh M.-H., Honey S.H., Tax F.E. The Control of Cell Expansion, Cell Division, and Vascular Development by Brassinosteroids: A Historical Perspective. Int. J. Mol. Sci. 2020;21:1743. doi: 10.3390/ijms21051743. PubMed DOI PMC

Clouse S.D., Sasse J.M. Brassinosteroids: Essential regulators of plant growth and development. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1998;49:427–451. doi: 10.1146/annurev.arplant.49.1.427. PubMed DOI

Yokota T. Chapter 12-Brassinosteroids. In: Hooykaas P.J.J., Hall M.A., Libbenga K.R., editors. New Comprehensive Biochemistry. Volume 33. Elsevier; New York, NY, USA: 1999. p. 277293.

Sasse J.M. Physiological actions of brassinosteroids: An update. J. Plant Growth Regul. 2003;22:276–288. doi: 10.1007/s00344-003-0062-3. PubMed DOI

Müssig C. Brassinosteroid-promoted growth. Plant Biol. 2005;7:110–117. doi: 10.1055/s-2005-837493. PubMed DOI

Grove M.D., Spencer G.F., Rohwedder W.K., Mandava N., Worley J.F., Warthen J.D., Steffens G.L., Flippenanderson J.L., Cook J.C. Brassinolide, a Plant Growth-Promoting Steroid Isolated from Brassica-Napus Pollen. Nature. 1979;281:216–217. doi: 10.1038/281216a0. DOI

Khripach V., Zhabinskii V., de Groot A. Twenty years of brassinosteroids: Steroidal plant hormones warrant better crops for the XXI century. Ann. Bot. 2000;86:441–447. doi: 10.1006/anbo.2000.1227. DOI

Bajguz A. Metabolism of brassinosteroids in plants. Plant Physiol. Biochem. 2007;45:95–107. doi: 10.1016/j.plaphy.2007.01.002. PubMed DOI

Abe H., Honjo C., Kyokawa Y., Asakawa S., Natsume M., Narushima M. 3-Oxoteasterone and the Epimerization of Teasterone: Identification in Lily Anthers and Distylium racemosum Leaves and Its Biotransformation into Typhasterol. Biosci. Biotechnol. Biochem. 1994;58:986–989. doi: 10.1271/bbb.58.986. DOI

Kolbe A., Schneider B., Porzel A., Adam G. Metabolism of 24-epi-castasterone and 24-epi-brassinolide in cell suspension cultures of Ornithopus sativus. Phytochemistry. 1996;41:163–167. doi: 10.1016/0031-9422(95)00546-3. DOI

Kolbe A., Schneider B., Porzel A., Schmidt J., Adam G. Acyl-conjugated metabolites of brassinosteroids in cell suspension cultures of Ornithopus sativus. Phytochemistry. 1995;38:633–636. doi: 10.1016/0031-9422(94)00742-C. DOI

Kolbe A., Schneider B., Porzel A., Voigt B., Krauss G., Adam G. Pregnane-type metabolites of brassinosteroids in cell suspension cultures of Ornithopus sativus. Phytochemistry. 1994;36:671–673. doi: 10.1016/S0031-9422(00)89794-0. DOI

Soeno K., Asakawa S., Natsume M., Abe H. Reversible Conversion between Teasterone and Its Ester Conjugates in Lily Cell Cultures. J. Pestic. Sci. 2000;25:117–122. doi: 10.1584/jpestics.25.117. DOI

Soeno K., Kyokawa Y., Natsume M., Abe H. Teasterone-3-O-β-d-glucopyranoside, A New Conjugated Brassinosteroid Metabolite from Lily Cell Suspension Cultures and Its Identification in Lily Anthers. Biosci. Biotechnol. Biochem. 2000;64:702–709. doi: 10.1271/bbb.64.702. PubMed DOI

Hai T., Schneider B., Adam G. Metabolic conversion of 24-epi-brassinolide into pentahydroxylated brassinosteroid glucosides in tomato cell cultures. Phytochemistry. 1995;40:443–448. doi: 10.1016/0031-9422(95)00224-U. DOI

Hai T., Schneider B., Porzel A., Adam G. Metabolism of 24-epi-castasterone in cell suspension cultures of Lycopersicon esculentum. Phytochemistry. 1996;41:197–201. doi: 10.1016/0031-9422(95)00585-4. DOI

Kolbe A., Porzel A., Schneider B., Adam G. Diglycosidic metabolites of 24-epi-teasterone in cell suspension cultures of Lycopersicon esculentum L. Phytochemistry. 1997;46:1019–1022. doi: 10.1016/S0031-9422(97)00390-7. DOI

Kolbe A., Schneider B., Porzel A., Adam G. Metabolic inversion of the 3-hydroxy function of brassinosteroids. Phytochemistry. 1998;48:467–470. doi: 10.1016/S0031-9422(98)00037-5. DOI

Schneider B., Kolbe A., Porzel A., Adam G. A metabolite of 24-epi-brassinolide in cell suspension cultures of Lycopersicon esculentum. Phytochemistry. 1994;36:319–321. doi: 10.1016/S0031-9422(00)97068-7. DOI

Suzuki H., Kim S.-K., Takahashi N., Yokota T. Metabolism of castasterone and brassinolide in mung bean explant. Phytochemistry. 1993;33:1361–1367. doi: 10.1016/0031-9422(93)85091-5. DOI

Khripach V.A., Zhabinskii V.N., Tsavlovskii D.V. Synthesis of fatty acyl derivatives of 24-epibrassinolide. J. Steroid Biochem. Mol. Biol. 2013;137:345–354. doi: 10.1016/j.jsbmb.2013.01.016. PubMed DOI

Kvasnica M., Oklestkova J., Bazgier V., Rarova L., Berka K., Strnad M. Biological activities of new monohydroxylated brassinosteroid analogues with a carboxylic group in the side chain. Steroids. 2014;85:58–64. doi: 10.1016/j.steroids.2014.04.007. PubMed DOI

Liu J., Zhang D., Sun X., Ding T., Lei B., Zhang C. Structure-activity relationship of brassinosteroids and their agricultural practical usages. Steroids. 2017;124:1–17. doi: 10.1016/j.steroids.2017.05.005. PubMed DOI

Thompson M.J., Meudt W.J., Mandava N.B., Dutky S.R., Lusby W.R., Spaulding D.W. Synthesis of Brassinosteroids and Relationship of Structure to Plant Growth-Promoting Effects. Steroids. 1982;39:89–105. doi: 10.1016/0039-128X(82)90129-5. PubMed DOI

Takatsuto S., Ikekawa N., Morishita T., Abe H. Structure Activity Relationship of Brassinosteroids with Respect to the A/B-Ring Functional-Groups. Chem. Pharm. Bull. 1987;35:211–216. doi: 10.1248/cpb.35.211. DOI

Takatsuto S., Yazawa N., Ikekawa N., Takematsu T., Takeuchi Y., Koguchi M. Structure Activity Relationship of Brassinosteroids. Phytochemistry. 1983;22:2437–2441. doi: 10.1016/0031-9422(83)80135-6. DOI

Zullo M.A.T., Adam G. Brassinosteroid phytohormones: Structure, bioactivity and applications. Braz. J. Plant Physiol. 2002;14:143–181. doi: 10.1590/S1677-04202002000300001. DOI

Peres A.L.G.L., Soares J.S., Tavares R.G., Righetto G., Zullo M.A.T., Mandava N.B., Menossi M. Brassinosteroids, the Sixth Class of Phytohormones: A Molecular View from the Discovery to Hormonal Interactions in Plant Development and Stress Adaptation. Int. J. Mol. Sci. 2019;20:331. doi: 10.3390/ijms20020331. PubMed DOI PMC

Ferrer-Pertuz K., Espinoza L., Mella J. Insights into the Structural Requirements of Potent Brassinosteroids as Vegetable Growth Promoters Using Second-Internode Elongation as Biological Activity: CoMFA and CoMSIA Studies. Int. J. Mol. Sci. 2017;18:2734. doi: 10.3390/ijms18122734. PubMed DOI PMC

Wang Q., Xu J., Liu X., Gong W., Zhang C. Synthesis of brassinosteroids analogues from laxogenin and their plant growth promotion. Nat. Prod. Res. 2015;29:149–157. doi: 10.1080/14786419.2014.968151. PubMed DOI

Duran M.I., Gonzalez C., Acosta A., Olea A.F., Diaz K., Espinoza L. Synthesis of Five Known Brassinosteroid Analogs from Hyodeoxycholic Acid and Their Activities as Plant-Growth Regulators. Int. J. Mol. Sci. 2017;18:516. doi: 10.3390/ijms18030516. PubMed DOI PMC

Kvasnica M., Oklestkova J., Bazgier V., Rárová L., Korinkova P., Mikulík J., Budesinsky M., Béres T., Berka K., Lu Q., et al. Design, synthesis and biological activities of new brassinosteroid analogues with a phenyl group in the side chain. Org. Biomol. Chem. 2016;14:8691–8701. doi: 10.1039/C6OB01479H. PubMed DOI

Iglesias-Arteaga M.A., Gil R.P., Martinez C.S.P., Manchado F.C. Spirostanic analogues of teasterone. Synthesis, characterisation and biological activity of laxogenin, (23S)-hydroxylaxogenin and 23-ketolaxogenin (23-oxolaxogenin) J. Chem. Soc. Perkin Trans. 1. 2001:261–266. doi: 10.1039/b007656m. DOI

Romero-Avila M., de Dios-Bravo G., Mendez-Stivalet J.M., Rodriguez-Sotres R., Iglesias-Arteaga M.A. Synthesis and biological activity of furostanic analogues of brassinosteroids bearing the 5 alpha-hydroxy-6-oxo moiety. Steroids. 2007;72:955–959. doi: 10.1016/j.steroids.2007.08.007. PubMed DOI

Gomes M.d.M.d.A., Torres Netto A., Campostrini E., Bressan-Smith R., Zullo M.A.T., Ferraz T.M., Siqueira L.d.N., Leal N.R., Núñez-Vázquez M. Brassinosteroid analogue affects the senescence in two papaya genotypes submitted to drought stress. Exp. Plant Physiol. 2013;25:186–195. doi: 10.1590/S2197-00252013000300003. DOI

Brosa C., Soca L., Terricabras E., Ferrer J.C., Alsina A. New synthetic brassinosteroids: A 5 alpha-hydroxy-6-ketone analog with strong plant growth promoting activity. Tetrahedron. 1998;54:12337–12348. doi: 10.1016/S0040-4020(98)00743-1. DOI

Brosa C., Capdevila J.M., Zamora I. Brassinosteroids: A new way to define the structural requirements. Tetrahedron. 1996;52:2435–2448. doi: 10.1016/0040-4020(95)01065-3. DOI

Diaz K., Espinoza L., Carvajal R., Conde-Gonzalez M., Niebla V., Olea A.F., Coll Y. Biological Activities and Molecular Docking of Brassinosteroids 24-Norcholane Type Analogs. Int. J. Mol. Sci. 2020;21:1832. doi: 10.3390/ijms21051832. PubMed DOI PMC

Back T., Pharis R. Structure-Activity Studies of Brassinosteroids and the Search for Novel Analogues and Mimetics with Improved Bioactivity. J. Plant Growth Regul. 2004;22:350–361. doi: 10.1007/s00344-003-0057-0. PubMed DOI

Back T.G., Janzen L., Pharis R.P., Yan Z. Synthesis and bioactivity of C-2 and C-3 methyl ether derivatives of brassinolide. Phytochemistry. 2002;59:627–634. doi: 10.1016/S0031-9422(02)00019-5. PubMed DOI

Carvajal R., Gonzalez C., Olea A.F., Fuentealba M., Espinoza L. Synthesis of 2-Deoxybrassinosteroids Analogs with 24-nor, 22(S)-23-Dihydroxy-Type Side Chains from Hyodeoxycholic Acid. Molecules. 2018;23:1306. doi: 10.3390/molecules23061306. PubMed DOI PMC

Oyarce J., Aitken V., Gonzalez C., Ferrer K., Olea A.F., Parella T., Espinoza L. Synthesis and structural determination of new brassinosteroid 24-nor-5α-cholane type analogs. Molecules. 2019;24:4612. doi: 10.3390/molecules24244612. PubMed DOI PMC

Huang L.F., Zhou W.S. Studies on Steroidal Plant-Growth Regulators. Part 33. Novel Method for Construction of the Side-Chain of 23-Arylbrassinosteroids Via Heck Arylation and Asymmetric Dihydroxylation As Key Steps. J. Chem. Soc. Perkin Trans. 1. 1994:3579–3585. doi: 10.1039/p19940003579. DOI

Zhou W.S., Tian W.S. Studies on Steroidal Plant-Growth Hormones. 2. Stereoselective Synthesis of (22S, 23S)-Typhasterol from Hyodeoxycholic Acid. Acta Chim. Sin. 1985;43:1060–1067.

Tian W.S., Zhou W.S., Jiang B., Pan X.F. Studies on Steroidal Plant-Growth Regulator. 9. The Preparation of 22R-Penta-Nor-Brassinolides and 22S-24,25,26,27,28-Penta-Nor-Brassinolides. Acta Chim. Sin. 1989;47:1017–1021.

Yang Y.X., Zheng L.T., Shi J.J., Gao B., Chen Y.K., Yang H.C., Chen H.L., Li Y.C., Zhen X.C. Synthesis of 5 alpha-cholestan-6-one derivatives and their inhibitory activities of NO production in activated microglia: Discovery of a novel neuroinflammation inhibitor. Bioorg. Med. Chem. Lett. 2014;24:1222–1227. doi: 10.1016/j.bmcl.2013.12.055. PubMed DOI

Zhou W.S., Tian W.S. The Synthesis of Steroids Containing Structural Unit of A, B Ring of Brassinolide and Ecdysone from Hyodeoxycholic Acid. Acta Chim. Sin. 1984;42:1173–1177.

Zhou W.S. The Synthesis of Brassinosteroid. Pure Appl. Chem. 1989;61:431–434. doi: 10.1351/pac198961030431. DOI

Herrera H., Carvajal R., Olea A.F., Espinoza L. Structural modifications of deoxycholic acid to obtain three known brassinosteroid analogues and full NMR spectroscopic characterization. Molecules. 2016;21:1139. doi: 10.3390/molecules21091139. PubMed DOI PMC

Huang B., Du D., Zhang R., Wu X., Xing Z., He Y., Huang W. Synthesis, characterization and biological studies of diosgenyl analogues. Bioorg Med. Chem Lett. 2012;22:7330–7334. doi: 10.1016/j.bmcl.2012.10.086. PubMed DOI

Jones S.R., Selinsky B.S., Rao M.N., Zhang X., Kinney W.A., Tham F.S. Efficient Route to 7α-(Benzoyloxy)-3-dioxolane Cholestan-24(R)-ol, a Key Intermediate in the Synthesis of Squalamine. J. Org. Chem. 1998;63:3786–3789. doi: 10.1021/jo971405d. DOI

Li H., Wang H., Jang S. Rice Lamina Joint Inclination Assay. Bio-Protocol. 2017;7:e2409. doi: 10.21769/BioProtoc.2409. PubMed DOI PMC

Jang S., An G., Li H.-Y. Rice Leaf Angle and Grain Size Are Affected by the OsBUL1 Transcriptional Activator Complex. Plant Physiol. 2017;173:688–702. doi: 10.1104/pp.16.01653. PubMed DOI PMC

Bajguz A., Tretyn A. The chemical characteristic and distribution of brassinosteroids in plants. Phytochemistry. 2003;62:1027–1046. doi: 10.1016/S0031-9422(02)00656-8. PubMed DOI

Wada K., Marumo S. Synthesis and Plant Growth-Promoting Activity of Brassinolide Analogs. Agric. Biol. Chem. 1981;45:2579–2585.

Han K.S., Ko K.W., Nam S.J., Park S.H., Kim S.K. Optimization of a rice lamina inclination assay for detection of brassinosteroids: I. effect of phytohormones on the inclination activity. J. Plant Biol. 1997;40:240–244. doi: 10.1007/BF03030454. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...