Digitally-Compensated Wideband 60 GHz Test-Bed for Power Amplifier Predistortion Experiments
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
17-18675S
Grantová Agentura České Republiky
FEKT-S-20-6325
Brno university of technology, internal projects
PubMed
33672523
PubMed Central
PMC7923809
DOI
10.3390/s21041473
PII: s21041473
Knihovny.cz E-resources
- Keywords
- I/Q mismatch compensation, RF impairments, digital predistortion, millimeter-wave systems,
- Publication type
- Journal Article MeSH
Millimeter waves will play an important role in communication systems in the near future. On the one hand, the bandwidths available at millimeter-wave frequencies allow for elevated data rates, but on the other hand, the wide bandwidth accentuates the effects of wireless front-end impairments on transmitted waveforms and makes their compensation more difficult. Research into front-end impairment compensation in millimeter-wave frequency bands is currently being carried out, mainly using expensive laboratory setups consisting of universal signal generators, spectral analyzers and high-speed oscilloscopes. This paper presents a detailed description of an in-house built MATLAB-controlled 60 GHz measurement test-bed developed using relatively inexpensive hardware components that are available on the market and equipped with digital compensation for the most critical front-end impairments, including the digital predistortion of the power amplifier. It also demonstrates the potential of digital predistortion linearization on two distinct 60 GHz power amplifiers: one integrated in a direct-conversion transceiver and an external one with 24 dBm output power.
See more in PubMed
Weiler R.J., Peter M., Keusgen W., Calvanese-Strinati E., De Domenico A., Filippini I., Capone A., Siaud I., Ulmer-Moll A., Maltsev A., et al. Enabling 5G backhaul and access with millimeter-waves; Proceedings of the 2014 European Conference on Networks and Communications (EuCNC); Bologna, Italy. 23–26 June 2014; pp. 1–5. DOI
Azpilicueta L., Lopez-Iturri P., Zuñiga-Mejia J., Celaya-Echarri M., Rodríguez-Corbo F.A., Vargas-Rosales C., Aguirre E., Michelson D.G., Falcone F. Fifth-Generation (5G) mm Wave Spatial Channel Characterization for Urban Environments’ System Analysis. Sensors. 2020;20:5360. doi: 10.3390/s20185360. PubMed DOI PMC
Blazek T., Zöchmann E., Mecklenbräuker C. Millimeter Wave Vehicular Channel Emulation: A Framework for Balancing Complexity and Accuracy. Sensors. 2018;18:3997. doi: 10.3390/s18113997. PubMed DOI PMC
Shimodaira H., Kim J., Sadri A.S. Enhanced Next Generation Millimeter-Wave Multicarrier System with Generalized Frequency Division Multiplexing. Int. J. Antennas Propag. 2016;2016:9269567. doi: 10.1155/2016/9269567. DOI
3GPP TR 38.808 V0.2.0 (2020) 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Study on supporting NR from 52.6 GHz to 71 GHz (Release 17) [(accessed on 15 December 2020)]; Available online: https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3735.
El-Absi M., Zheng F., Abuelhaija A., Al-haj Abbas A., Solbach K., Kaiser T. Indoor Large-Scale MIMO-Based RSSI Localization with Low-Complexity RFID Infrastructure. Sensors. 2020;20:3933. doi: 10.3390/s20143933. PubMed DOI PMC
Bellanger M. Filter banks and OFDM-OQAM for high throughput wireless LAN; Proceedings of the 2008 3rd International Symposium on Communications, Control and Signal Processing; Saint Julian’s, Malta. 12–14 March 2008; pp. 758–761. DOI
Michailow N., Matthé M., Gaspar I.S., Caldevilla A.N., Mendes L.L., Festag A., Fettweis G. Generalized Frequency Division Multiplexing for 5th Generation Cellular Networks. IEEE Trans. Commun. 2014;62:3045–3061. doi: 10.1109/TCOMM.2014.2345566. DOI
Jayati A.E., Suryani T. Nonlinear Distortion Cancellation using Predistorter in MIMO-GFDM Systems. Electronics. 2019;8:620. doi: 10.3390/electronics8060620. DOI
Zhang X., Jia M., Chen L., Ma J., Qiu J. Filtered-OFDM—Enabler for Flexible Waveform in the 5th Generation Cellular Networks; Proceedings of the 2015 IEEE Global Communications Conference (GLOBECOM); San Diego, CA, USA. 6–10 December 2015; pp. 1–6. DOI
Choi H. Class-C Linearized Amplifier for Portable Ultrasound Instruments. Sensors. 2019;19:898. doi: 10.3390/s19040898. PubMed DOI PMC
Gotthans T., Maršálek R., Blumenstein J., Baudoin G. Experimental evaluation of digital predistortion with FBMC and OFDM signals; Proceedings of the 2015 IEEE 16th Annual Wireless and Microwave Technology Conference (WAMICON); Cocoa Beach, FL, USA. 13–15 April 2015; pp. 1–3. DOI
Zayani R., Shaiek H., Alexandre C., Kielys A., Cheng X., Fu X., Roviras D. A Testbed for Experimental Performance Evaluation of Multicarrier Waveforms in Presence of RF PA; Proceedings of the 2018 15th International Symposium on Wireless Communication Systems (ISWCS); Lisbon, Portugal. 28–31 August 2018; pp. 1–6. DOI
Zayani R., Shaiek H., Cheng X., Fu X., Alexandre C., Roviras D. Experimental Testbed of Post-OFDM Waveforms Toward Future Wireless Networks. IEEE Access. 2018;6:67665–67680. doi: 10.1109/ACCESS.2018.2879375. DOI
Nissel R., Zöchmann E., Lerch M., Caban S., Rupp M. Low-latency MISO FBMC-OQAM: It works for millimeter waves! In Proceedings of the 2017 IEEE MTT-S International Microwave Symposium (IMS), Honololu, HI, USA, 4–9 June 2017; pp. 673–676. DOI
Duarte L., Gomes R., Ribeiro C., Caldeirinha R.F.S. A Software-Defined Radio for Future Wireless Communication Systems at 60 GHz. Electronics. 2019;8:1490. doi: 10.3390/electronics8121490. DOI
Gomes R., Reis J., Al-Daher Z., Hammoudeh A., Caldeirinha R.F.S. 5G: performance and evaluation of FS-FBMC against OFDM for high data rate applications at 60 GHz. IET Signal Process. 2018;12:620–628. doi: 10.1049/iet-spr.2016.0671. DOI
Choi H., Woo P.C., Yeom J.Y., Yoon C. Power MOSFET Linearizer of a High-Voltage Power Amplifier for High-Frequency Pulse-Echo Instrumentation. Sensors. 2017;17:764. doi: 10.3390/s17040764. PubMed DOI PMC
Gharaibeh K.M., Gard K.G., Steer M.B. Accurate estimation of digital communication system metrics—SNR, EVM and /spl rho/ in a nonlinear amplifier environment; Proceedings of the 64th ARFTG Microwave Measurements Conference, Fall 2004; Orlando, FL, USA. 2–3 December 2004; pp. 41–44. DOI
Suryasarman P.M., Springer A. A Comparative Analysis of Adaptive Digital Predistortion Algorithms for Multiple Antenna Transmitters. IEEE Trans. Circuits Syst. I Regul. Pap. 2015;62:1412–1420. doi: 10.1109/TCSI.2015.2403034. DOI
Aquino G., Guimarães D., Mendes L., Pimenta T. Combined Pre-Distortion and Censoring for Bandwidth-Efficient and Energy-Efficient Fusion of Spectrum Sensing Information. Sensors. 2017;17:654. doi: 10.3390/s17030654. PubMed DOI PMC
Vasjanov A., Barzdenas V. A Review of Advanced CMOS RF Power Amplifier Architecture Trends for Low Power 5G Wireless Networks. Electronics. 2018;7:271. doi: 10.3390/electronics7110271. DOI
Tsai J., Huang T. 35–65-GHz CMOS Broadband Modulator and Demodulator With Sub-Harmonic Pumping for MMW Wireless Gigabit Applications. IEEE Trans. Microw. Theory Tech. 2007;55:2075–2085. doi: 10.1109/TMTT.2007.905497. DOI
Krone S., Fettweis G. Capacity Analysis for OFDM Systems with Transceiver I/Q Imbalance; Proceedings of the IEEE GLOBECOM 2008—2008 IEEE Global Telecommunications Conference; New Orleans, LA, USA. 30 November–4 December 2008; pp. 1–6. DOI
Marsalek R., Blumenstein J., Pospisil M., Rupp M. Measured Capacity of mm-Wave Radio Link Under IQ Imbalance; Proceedings of the 2018 IEEE 29th Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC); Bologna, Italy. 9–12 September 2018; pp. 1124–1125. DOI
Choi H., Yoon C., Yeom J.Y. A Wideband High-Voltage Power Amplifier Post-Linearizer for Medical Ultrasound Transducers. Appl. Sci. 2017;7:354. doi: 10.3390/app7040354. DOI
Bogdan R., Balsara P. All-Digital Frequency Synthesizer in Deep-Submicron CMOS. John Wiley and Sons; Hoboken, NJ, USA: 2006.
Garcia Armada A. Understanding the effects of phase noise in orthogonal frequency division multiplexing (OFDM) IEEE Trans. Broadcast. 2001;47:153–159. doi: 10.1109/11.948268. DOI
Mallet C., Duvanaud C., Carré L., Bachir S. Analog predistortion for high power amplifier over the Ku-band (13,75–14,5 GHz); Proceedings of the 2017 47th European Microwave Conference (EuMC); Nuremberg, Germany. 10–12 October 2017; pp. 848–851. DOI
Li J. Millimetre-wave beam steering with analog-resolution and minimised distortion based on liquid crystals tunable delay lines with enhanced signal-to-noise ratios. In: Salmon N.A., Gumbmann F., editors. Millimetre Wave and Terahertz Sensors and Technology XIII. Volume 11541. International Society for Optics and Photonics, SPIE; Edinburgh, UK: 2020. pp. 68–73. DOI
Razavi B. Challenges in portable RF transceiver design. IEEE Circuits Devices Mag. 1996;12:12–25. doi: 10.1109/101.537352. DOI
Chung A., Ben Rejeb M., Beltagy Y., Darwish A.M., Hung H.A., Boumaiza S. IQ Imbalance Compensation and Digital Predistortion for Millimeter-Wave Transmitters Using Reduced Sampling Rate Observations. IEEE Trans. Microw. Theory Tech. 2018;66:3433–3442. doi: 10.1109/TMTT.2018.2817224. DOI
Beltagy Y., Chung A., Mitran P., Boumaiza S. On the calibration of the feedback receiver using reduced sampling rate and its application to digital predistortion of 5G power amplifiers; Proceedings of the 2017 IEEE MTT-S International Microwave Symposium (IMS); Honololu, HI, USA. 4–9 June 2017; pp. 1549–1552. DOI
Kovacic S. Wideband Millimeter Wave Test Bed for 60 GHz Power Amplifier Digital Predistortion. [(accessed on 25 December 2020)];Microw. J. 2017 Available online: https://www.microwavejournal.com/articles/28302-wideband-millimeter-wave-test-bed-for-60-ghz-power-amplifier-digital-predistortion.
Campo P.P., Brihuega A., Anttila L., Turunen M., Korpi D., Allén M., Valkama M. Gradient-Adaptive Spline-Interpolated LUT Methods for Low-Complexity Digital Predistortion. IEEE Trans. Circuits Syst. I Regul. Pap. 2021;68:336–349. doi: 10.1109/TCSI.2020.3034825. DOI
Miyanaga K., Kobayashi M., Saito N., Shirakata N., Takinami K. A Wideband Asymmetric Digital Predistortion Architecture for 60 GHz Short Range Wireless Transmitters. IEICE Trans. Electron. 2016;E99.C:1190–1199. doi: 10.1587/transele.E99.C.1190. DOI
Vychodil J., Pospisil M., Prokes A., Blumenstein J. Millimetre wave band time domain channel sounder. IET Commun. 2019;13:331–338. doi: 10.1049/iet-com.2018.5453. DOI
Quadri A., Zeng H., Hou Y.T. A Real-Time mmWave Communication Testbed with Phase Noise Cancellation; Proceedings of the IEEE INFOCOM 2019—IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS); Paris, France. 29 April–2 May 2019; pp. 455–460. DOI
Maršálek R., Pospíšil M., Gotthans T., Urbanec T. Digital Calibration of 60 GHz Setup for Use in Power Amplifier Predistortion; Proceedings of the 2019 IEEE 20th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC); Cannes, France. 2–5 July 2019; pp. 1–4. DOI
Kral J., Gotthans T., Marsalek R., Harvanek M., Rupp M. On Feedback Sample Selection Methods Allowing Lightweight Digital Predistorter Adaptation. IEEE Trans. Circuits Syst. I: Regul. Pap. 2020;67:1976–1988. doi: 10.1109/TCSI.2020.2975532. DOI
Maršálek R., Pospíšil M., Gotthans T., Urbanec T. 60 GHz Setup for RF Components Impairments Compensation; Proceedings of the 2018 IEEE MTT-S International Microwave Workshop Series on 5G Hardware and System Technologies (IMWS-5G); Dublin, Ireland. 30–31 August 2018; pp. 1–3. DOI
Infineon Technologies AG Single-Chip SiGe Transceiver Chipset for V-band Backhaul Applications from 57 to 64 GHz, Application note AN 376, Revision: Rev. 1.0. [(accessed on 12 December 2020)]; Available online: https://www.infineon.com/dgdl/Infineon--AN-v01_00-NA.pdf?fileId=5546d4624ad04ef9014aed1c06120a5e.
Urbanec T., Maršálek R. Single plane V-band directional coupler for predistortion compensation; Proceedings of the 2018 28th International Conference Radioelektronika (RADIOELEKTRONIKA); Prague, Czech Republic. 19–20 April 2018; pp. 1–4. DOI
Kobayashi H., Morimura M., Kobayashi K., Onaya Y. Aperture jitter effects in wideband sampling systems; Proceedings of the 16th IEEE Instrumentation and Measurement Technology Conference (Cat. No.99CH36309); Venice, Italy. 24–26 May 1999; pp. 880–884. DOI
Kral J., Gothans T., Marsalek R., Harvanek M. Digital Predistorter with Real-Valued Feedback Employing Forward Model Estimation; Proceedings of the 2018 25th International Conference on Telecommunications (ICT); Saint-Malo, France. 26–28 June 2018; pp. 471–475. DOI
Song Z., Liu X., Zhao X., Liu Q., Jin Z., Chi B. A Low-Power NB-IoT Transceiver with Digital-Polar Transmitter in 180-nm CMOS. IEEE Trans. Circuits Syst. I Regul. Pap. 2017;64:2569–2581. doi: 10.1109/TCSI.2017.2707412. DOI
Kim M., Maruichi Y., Takada J. Parametric Method of Frequency-Dependent I/Q Imbalance Compensation for Wideband Quadrature Modulator. IEEE Trans. Microw. Theory Tech. 2013;61:270–280. doi: 10.1109/TMTT.2012.2228215. DOI
Kim J., Konstantinou K. Digital predistortion of wideband signals based on power amplifier model with memory. Electron. Lett. 2001;37:1417–1418. doi: 10.1049/el:20010940. DOI
Schmidl T.M., Cox D.C. Robust frequency and timing synchronization for OFDM. IEEE Trans. Commun. 1997;45:1613–1621. doi: 10.1109/26.650240. DOI
Kral J., Gotthans T., Harvanek M. Analytical method of fractional sample period synchronisation for digital predistortion systems; Proceedings of the 2017 27th International Conference Radioelektronika (RADIOELEKTRONIKA); Brno, Czech Republic. 19–20 April 2017; pp. 1–5. DOI
M.Bellanger FBMC Physical Layer: A Primer. [(accessed on 15 December 2020)]; Available online: http://www.ict-phydyas.org/teamspace/internal-folder/FBMC-Primer_06-2010.pdf.
National Instruments Introduction to WLAN Testing. [(accessed on 15 December 2020)]; Available online: http://download.ni.com/evaluation/rf/Introduction_to_WLAN_Testing.pdf.
Grannemann L., Ichkov A., Mähönen P., Simić L. Urban Outdoor Measurement Study of Phased Antenna Array Impact on Millimeter-Wave Link Opportunities and Beam Misalignment. IEEE Trans. Wirel. Commun. 2020:1. doi: 10.1109/TWC.2020.3035683. DOI