Extracellular Protein Aggregates Colocalization and Neuronal Dystrophy in Comorbid Alzheimer's and Creutzfeldt-Jakob Disease: A Micromorphological Pilot Study on 20 Brains
Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
VFN64165
Ministry of Health, Czech Republic (Conceptual development of research organization, the General University Hospital, Prague)
TN64190
Ministry of Health, Czech Republic (Conceptual development of research organization, the Thomayer Hospital, Prague)
NV19-04-00090 and NV18-04-00179
the Grants Agency of the Ministry of Health
Q27/LF1
Charles University (Project Progress)
142120
Charles University (GAUK)
PubMed
33672582
PubMed Central
PMC7924045
DOI
10.3390/ijms22042099
PII: ijms22042099
Knihovny.cz E-resources
- Keywords
- Alzheimer’s disease, Aβ, Creutzfeldt–Jakob disease, colocalization, confocal microscopy, plaques, prion protein, tau protein,
- MeSH
- Alzheimer Disease pathology MeSH
- Amyloid beta-Peptides genetics metabolism MeSH
- Plaque, Amyloid pathology MeSH
- Creutzfeldt-Jakob Syndrome pathology MeSH
- Extracellular Space chemistry MeSH
- Polymorphism, Single Nucleotide genetics MeSH
- Codon genetics MeSH
- Comorbidity MeSH
- Middle Aged MeSH
- Humans MeSH
- Brain pathology MeSH
- Neurons pathology MeSH
- Pilot Projects MeSH
- Protein Aggregates * MeSH
- tau Proteins metabolism MeSH
- PrPSc Proteins genetics metabolism MeSH
- Aged, 80 and over MeSH
- Aged MeSH
- Check Tag
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Aged, 80 and over MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Amyloid beta-Peptides MeSH
- Codon MeSH
- Protein Aggregates * MeSH
- tau Proteins MeSH
- PrPSc Proteins MeSH
Alzheimer's disease (AD) and sporadic Creutzfeldt-Jakob disease (sCJD) are both characterized by extracellular pathologically conformed aggregates of amyloid proteins-amyloid β-protein (Aβ) and prion protein (PrPSc), respectively. To investigate the potential morphological colocalization of Aβ and PrPSc aggregates, we examined the hippocampal regions (archicortex and neocortex) of 20 subjects with confirmed comorbid AD and sCJD using neurohistopathological analyses, immunohistochemical methods, and confocal fluorescent microscopy. Our data showed that extracellular Aβ and PrPSc aggregates tended to be, in most cases, located separately, and "compound" plaques were relatively rare. We observed PrPSc plaque-like structures in the periphery of the non-compact parts of Aβ plaques, as well as in tau protein-positive dystrophic structures. The AD ABC score according to the NIA-Alzheimer's association guidelines, and prion protein subtype with codon 129 methionine-valine (M/V) polymorphisms in sCJD, while representing key characteristics of these diseases, did not correlate with the morphology of the Aβ/PrPSc co-aggregates. However, our data showed that PrPSc aggregation could dominate during co-aggregation with non-compact Aβ in the periphery of Aβ plaques.
See more in PubMed
Huang W.-J., Chen W.-W., Zhang X. Prions mediated neurodegenerative disorders. Eur. Rev. Med. Pharmacol. Sci. 2015;19:4028–4034. PubMed
Thal D.R., Walter J., Saido T.C., Fändrich M. Neuropathology and biochemistry of Aβ and its aggregates in Alzheimer’s disease. Acta Neuropathol. 2015;129:167–182. doi: 10.1007/s00401-014-1375-y. PubMed DOI
Obeng R. Amyloid Beta and Amyloid Beta Precursor Protein. [(accessed on 12 November 2020)]; Available online: https://www.pathologyoutlines.com/topic/stainsamyloidbetaapp.html.
Litak J., Mazurek M., Kulesza B., Szmygin P., Litak J., Kamieniak P., Grochowski C. Cerebral Small Vessel Disease. Int. J. Mol. Sci. 2020;21:9729. doi: 10.3390/ijms21249729. PubMed DOI PMC
Ben Halima S., Mishra S., Raja K.M.P., Willem M., Baici A., Simons K., Brüstle O., Koch P., Haass C., Caflisch A., et al. Specific Inhibition of β-Secretase Processing of the Alzheimer Disease Amyloid Precursor Protein. Cell Rep. 2016;14:2127–2141. doi: 10.1016/j.celrep.2016.01.076. PubMed DOI
Singh J., Udgaonkar J.B. Molecular Mechanism of the Misfolding and Oligomerization of the Prion Protein: Current Understanding and Its Implications. Biochemistry. 2015;54:4431–4442. doi: 10.1021/acs.biochem.5b00605. PubMed DOI
Van Der Kant R., Goldstein L.S. Cellular Functions of the Amyloid Precursor Protein from Development to Dementia. Dev. Cell. 2015;32:502–515. doi: 10.1016/j.devcel.2015.01.022. PubMed DOI
Gamez P., Caballero A.B. Copper in Alzheimer’s disease: Implications in amyloid aggregation and neurotoxicity. AIP Adv. 2015;5:092503. doi: 10.1063/1.4921314. DOI
Atwood C.S., Scarpa R.C., Huang X., Moir R.D., Jones W.D., Fairlie D.P., Tanzi R.E., Bush A.I. Characterization of Copper Interactions with Alzheimer Amyloid β Peptides. J. Neurochem. 2008;75:1219–1233. doi: 10.1046/j.1471-4159.2000.0751219.x. PubMed DOI
Watts J.C., Bourkas M.E.C., Arshad H. The function of the cellular prion protein in health and disease. Acta Neuropathol. 2017;135:159–178. doi: 10.1007/s00401-017-1790-y. PubMed DOI
Gunther E.C., Strittmatter S.M. β-amyloid oligomers and cellular prion protein in Alzheimer’s disease. J. Mol. Med. 2010;88:331–338. doi: 10.1007/s00109-009-0568-7. PubMed DOI PMC
Parkin E.T., Watt N.T., Hussain I., Eckman E.A., Eckman C.B., Manson J.C., Baybutt H.N., Turner A.J., Hooper N.M. Cellular prion protein regulates beta-secretase cleavage of the Alzheimer’s amyloid precursor protein. Proc. Natl. Acad. Sci. USA. 2007;104:11062–11067. doi: 10.1073/pnas.0609621104. PubMed DOI PMC
Ezpeleta J., Baudouin V., Arellano-Anaya Z.E., Boudet-Devaud F., Pietri M., Baudry A., Haeberlé A.-M., Bailly Y., Kellermann O., Launay J.-M., et al. Production of seedable Amyloid-β peptides in model of prion diseases upon PrPSc-induced PDK1 overactivation. Nat. Commun. 2019;10:1–13. doi: 10.1038/s41467-019-11333-3. PubMed DOI PMC
Plant L.D., Boyle J.P., Smith I.F., Peers C., Pearson H.A. The Production of Amyloid β Peptide Is a Critical Requirement for the Viability of Central Neurons. J. Neurosci. 2003;23:5531–5535. doi: 10.1523/JNEUROSCI.23-13-05531.2003. PubMed DOI PMC
Vincent B., Sunyach C., Orzechowski H.-D., George-Hyslop P.S., Checler F. p53-Dependent Transcriptional Control of Cellular Prion by Presenilins. J. Neurosci. 2009;29:6752–6760. doi: 10.1523/JNEUROSCI.0789-09.2009. PubMed DOI PMC
Zhang Y., Zhao Y., Zhang L., Yu W., Wang Y., Chang W. Cellular Prion Protein as a Receptor of Toxic Amyloid-β42 Oligomers Is Important for Alzheimer’s Disease. Front. Cell. Neurosci. 2019;13:339. doi: 10.3389/fncel.2019.00339. PubMed DOI PMC
Liberski P.P. Axonal changes in experimental prion diseases recapitulate those following constriction of postganglionic branches of the superior cervical ganglion: A comparison 40 years later. Prion. 2019;13:83–93. doi: 10.1080/19336896.2019.1595315. PubMed DOI PMC
Gomes L.A., Hipp S.A., Upadhaya A.R., Balakrishnan K., Ospitalieri S., Koper M.J., Largo-Barrientos P., Uytterhoeven V., Reichwald J., Rabe S., et al. Aβ-induced acceleration of Alzheimer-related τ-pathology spreading and its association with prion protein. Acta Neuropathol. 2019;138:913–941. doi: 10.1007/s00401-019-02053-5. PubMed DOI
Ondrejcak T., Klyubin I., Corbett G.T., Fraser G., Hong W., Mably A.J., Gardener M., Hammersley J., Perkinton M.S., Billinton A., et al. Cellular Prion Protein Mediates the Disruption of Hippocampal Synaptic Plasticity by Soluble Tau In Vivo. J. Neurosci. 2018;38:10595–10606. doi: 10.1523/JNEUROSCI.1700-18.2018. PubMed DOI PMC
Jankovska N., Olejar T., Matej R. Extracellular Amyloid Deposits in Alzheimer’s and Creutzfeldt–Jakob Disease: Similar Behavior of Different Proteins? Int. J. Mol. Sci. 2020;22:7. doi: 10.3390/ijms22010007. PubMed DOI PMC
Jankovska N., Olejar T., Kukal J., Matej R. Different Morphology of Neuritic Plaques in the Archicortex of Alzheimer’s Disease with Comorbid Synucleinopathy: A Pilot Study. Curr. Alzheimer Res. 2021;17:948–958. doi: 10.2174/1875692117999201215162043. PubMed DOI
Rossi M., Kai H., Baiardi S., Bartoletti-Stella A., Carlà B., Zenesini C., Capellari S., Kitamoto T., Parchi P. The characterization of AD/PART co-pathology in CJD suggests independent pathogenic mechanisms and no cross-seeding between misfolded Aβ and prion proteins. Acta Neuropathol. Commun. 2019;7:53. doi: 10.1186/s40478-019-0706-6. PubMed DOI PMC
Furukawa F., Sanjo N., Kobayashi A., Hamaguchi T., Yamada M., Kitamoto T., Mizusawa H., Yokota T. Specific amyloid-β42 deposition in the brain of a Gerstmann-Sträussler-Scheinker disease patient with a P105L mutation on the prion protein gene. Prion. 2018;12:315–319. doi: 10.1080/19336896.2018.1541689. PubMed DOI PMC
Miyazono M., Kitamoto T., Iwaki T., Tateishi J. Colocalization of prion protein and beta protein in the same amyloid plaques in patients with Gerstmann-Sträussler Syndrome. Acta Neuropathol. 1992;83:333–339. doi: 10.1007/BF00713522. PubMed DOI
Hainfellner J.A., Wanschitz J., Jellinger K., Liberski P.P., Gullotta F., Budka H. Coexistence of Alzheimer-type neuropathology in Creutzfeldt-Jakob disease. Acta Neuropathol. 1998;96:116–122. doi: 10.1007/s004010050870. PubMed DOI
Ferrer I., Blanco R., Carmona M., Puig B., Ribera R., Rey M.J., Ribalta T. Prion protein expression in senile plaques in Alzheimer’s disease. Acta Neuropathol. 2001;101:49–56. doi: 10.1007/s004010000271. PubMed DOI
Duyckaerts C., Dickson D.W. Neurodegeneration: The Molecular Pathology of Dementia and Movement Disorders. 2nd ed. Wiley-Blackwell; Hoboken, NJ, USA: 2011. pp. 62–68.
Han J., Zhang J., Yao H., Wang X., Li F., Chen L., Gao C., Gao J., Nie K., Zhou W., et al. Study on interaction between microtubule associated protein tau and prion protein. Sci. China Ser. C Life Sci. 2006;49:473–479. doi: 10.1007/s11427-006-2019-9. PubMed DOI
Dlouhy S.R., Hsiao K., Farlow M.R., Foroud T., Conneally P.M., Johnson P., Prusiner S.B., Hodes M.E., Ghetti B. Linkage of the Indiana kindred of Gerstmann-Sträussler-Scheinker disease to the prion protein gene. Nat. Genet. 1992;1:64–67. doi: 10.1038/ng0492-64. PubMed DOI
Ishizawa K., Mitsufuji T., Shioda K., Kobayashi A., Komori T., Nakazato Y., Kitamoto T., Araki N., Yamamoto T., Sasaki A. An autopsy report of three kindred in a Gerstmann-Sträussler-Scheinker disease P105L family with a special reference to prion protein, tau, and beta-amyloid. Brain Behav. 2018;8:e01117. doi: 10.1002/brb3.1117. PubMed DOI PMC
Race B., Phillips K., Kraus A., Chesebro B. Phosphorylated human tau associates with mouse prion protein amyloid in scrapie-infected mice but does not increase progression of clinical disease. Prion. 2016;10:319–330. doi: 10.1080/19336896.2016.1199313. PubMed DOI PMC
Montine T.J., Phelps C.H., Beach T.G., Bigio E.H., Cairns N.J., Dickson D.W., Duyckaerts C., Frosch M.P., Masliah E., Mirra S.S., et al. National Institute on Aging–Alzheimer’s Association guidelines for the neuropathologic assessment of Alzheimer’s disease: A practical approach. Acta Neuropathol. 2011;123:1–11. doi: 10.1007/s00401-011-0910-3. PubMed DOI PMC
Hyman B.T., Phelps C.H., Beach T.G., Bigio E.H., Cairns N.J., Carrillo M.C., Dickson D.W., Duyckaerts C., Frosch M.P., Masliah E., et al. National Institute on Aging-Alzheimer’s Association guidelines for the neuropathologic assessment of Alzheimer’s disease. Alzheimer Dement. 2012;8:1–13. doi: 10.1016/j.jalz.2011.10.007. PubMed DOI PMC
Parchi P., De Boni L., Saverioni D., Cohen M.L., Ferrer I., Gambetti P., Gelpi E., Giaccone G., Hauw J.-J., Höftberger R., et al. Consensus classification of human prion disease histotypes allows reliable identification of molecular subtypes: An inter-rater study among surveillance centres in Europe and USA. Acta Neuropathol. 2012;124:517–529. doi: 10.1007/s00401-012-1002-8. PubMed DOI PMC
Autopsy. Netherlands Brain Bank. [(accessed on 14 February 2021)]; Available online: https://www.brainbank.nl/brain-tissue/autopsy/