Stress-Dependent Particle Interactions of Magnesium Aluminometasilicates as Their Performance Factor in Powder Flow and Compaction Applications
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
33672812
PubMed Central
PMC7918335
DOI
10.3390/ma14040900
PII: ma14040900
Knihovny.cz E-zdroje
- Klíčová slova
- formulation development, glidant, magnesium aluminometasilicates, particle interactions, threshold behavior,
- Publikační typ
- časopisecké články MeSH
In the pharmaceutical industry, silicates are commonly used excipients with different application possibilities. They are especially utilized as glidants in low concentrations, but they can be used in high concentrations as porous carriers and coating materials in oral solid drug delivery systems. The desirable formulations of such systems must exhibit good powder flow but also good compactibility, which brings opposing requirements on inter-particle interactions. Since magnesium aluminometasilicates (MAS) are known for their interesting flow behavior reported as "negative cohesivity" yet they can be used as binders for tablet compression, the objective of this experimental study was to investigate their particle interactions within a broad range of mechanical stress from several kPa to hundreds of MPa. Magnesium aluminometasilicate (Neusilin® US2 and Neusilin® S2)-microcrystalline cellulose (Avicel® PH102) physical powder mixtures with varying silicate concentrations were prepared and examined during their exposure to different pressures using powder rheology and compaction analysis. The results revealed that MAS particles retain their repulsive character and small contact surface area under normal conditions. If threshold pressure is applied, the destruction of MAS particles and formation of new surfaces leading to particle interactions are observed. The ability of MAS particles to form interactions intensifies with increasing pressure and their amount in a mixture. This "function switching" makes MAS suitable for use as multifunctional excipients since they can act as a glidant or a binder depending on the applied pressure.
Zobrazit více v PubMed
Jarmolińska S., Feliczak-Guzik A., Nowak I. Synthesis, characterization and use of mesoporous silicas of the following types sba-1, sba-2, hmm-1 and hmm-2. Materials. 2020;13:4385. doi: 10.3390/ma13194385. PubMed DOI PMC
Gan Y., Cui S., Ma X., Guo H., Wang Y. Preparation of cu-al/sio2 porous material and its effect on no decomposition in a cement kiln. Materials. 2020;13:145. doi: 10.3390/ma13010145. PubMed DOI PMC
Wang L., Wang K., Santra S., Zhao X., Hilliard L.R., Smith J.E., Wu Y., Tan W. Watching silica nanoparticles glow in the biological world. Anal. Chem. 2006;78:646–654. doi: 10.1021/ac0693619. DOI
Razzaque S., Hussain S.Z., Hussain I., Tan B. Design and utility of metal/metal oxide nanoparticles mediated by thioether end-functionalized polymeric ligands. Polymers. 2016;8:156. doi: 10.3390/polym8040156. PubMed DOI PMC
Mahmoud M.E., Amira M.F., Zaghloul A.A., Ibrahim G.A.A. High performance microwave-enforced solid phase extraction of heavy metals from aqueous solutions using magnetic iron oxide nanoparticles-protected-nanosilica. Sep. Purif. Technol. 2016;163:169–172. doi: 10.1016/j.seppur.2016.02.039. DOI
Huang C.-L. A study of the optical properties and fabrication of coatings made of three-dimensional photonic glass. Coatings. 2020;10:781. doi: 10.3390/coatings10080781. DOI
Augsburger L.L., Shangraw R.F. Effect of glidants in tableting. J. Pharm. Sci. 1966;55:418–423. doi: 10.1002/jps.2600550414. PubMed DOI
Gold G., Duvall R.N., Palermo B.T., Slater J.G. Powder flow studies ii: Effect of glidants on flow rate and angle of repose. J. Pharm. Sci. 1966;55:1291–1295. doi: 10.1002/jps.2600551125. PubMed DOI
Zimmermann I., Eber M., Meyer K. Nanomaterials as flow regulators in dry powders. Z. Phys. Chem. 2004;218:102–151. doi: 10.1524/zpch.218.1.51.25388. DOI
Jonat S., Albers P., Gray A., Schmidt P.C. Investigation of the glidant properties of compacted colloidal silicon dioxide by angle of repose and x-ray photoelectron spectroscopy. Eur. J. Pharm. Biopharm. 2006;63:356–359. doi: 10.1016/j.ejpb.2005.11.005. PubMed DOI
Müller A.-K., Ruppel J., Drexel C.-P., Zimmermann I. Precipitated silica as flow regulator. Eur. J. Pharm. Sci. 2008;34:303–308. doi: 10.1016/j.ejps.2008.05.003. PubMed DOI
Meyer K., Zimmermann I. Effect of glidants in binary powder mixtures. Powder Technol. 2004;139:40–54. doi: 10.1016/j.powtec.2003.09.007. DOI
Rumpf H. Die wissenschaft des agglomerierens. Chem. Ing. Tech. 1974;46:1–11. doi: 10.1002/cite.330460102. DOI
Jonat S., Hasenzahl S., Drechsler M., Albers P., Wagner K.G., Schmidt P.C. Investigation of compacted hydrophilic and hydrophobic colloidal silicon dioxides as glidants for pharmaceutical excipients. Powder Technol. 2004;141:31–43. doi: 10.1016/j.powtec.2004.01.020. DOI
Ramlakhan M., Wu C.Y., Watano S., Dave R.N., Pfeffer R. Dry particle coating using magnetically assisted impaction coating: Modification of surface properties and optimization of system and operating parameters. Powder Technol. 2000;112:137–148. doi: 10.1016/S0032-5910(99)00314-9. DOI
Pfeffer R., Dave R.N., Wei D., Ramlakhan M. Synthesis of engineered particulates with tailored properties using dry particle coating. Powder Technol. 2001;117:40–67.
Yang J., Sliva A., Banerjee A., Dave R.N., Pfeffer R. Dry particle coating for improving the flowability of cohesive powders. Powder Technol. 2005;158:21–33. doi: 10.1016/j.powtec.2005.04.032. DOI
Mullarney M.P., Beach L.E., Davé R.N., Langdon B.A., Polizzi M., Blackwood D.O. Applying dry powder coatings to pharmaceutical powders using a comil for improving powder flow and bulk density. Powder Technol. 2011;212:397–402. doi: 10.1016/j.powtec.2011.06.008. DOI
Hentzschel C.M., Alnaief M., Smirnova I., Sakmann A., Leopold C.S. Tableting properties of silica aerogel and other silicates. Drug Dev. Ind. Pharm. 2012;38:462–467. doi: 10.3109/03639045.2011.611806. PubMed DOI
Chattoraj S., Shi L., Sun C.C. Profoundly improving flow properties of a cohesive cellulose powder by surface coating with nano-silica through comilling. J. Pharm. Sci. 2011;100:4943–4952. doi: 10.1002/jps.22677. PubMed DOI
Jallo L.J., Ghoroi C., Gurumurthy L., Patel U., Davé R.N. Improvement of flow and bulk density of pharmaceutical powders using surface modification. Int. J. Pharm. 2012;423:213–225. doi: 10.1016/j.ijpharm.2011.12.012. PubMed DOI
Smirnova I., Suttiruengwong S., Seiler M., Arlt W. Dissolution rate enhancement by adsorption of poorly soluble drugs on hydrophilic silica aerogels. Pharm. Dev. Technol. 2005;9:443–452. doi: 10.1081/PDT-200035804. PubMed DOI
Smirnova I., Suttiruengwong S., Arlt W. Feasibility study of hydrophilic and hydrophobic silica aerogels as drug delivery systems. J. Non-Cryst. Solids. 2004;350:54–60. doi: 10.1016/j.jnoncrysol.2004.06.031. DOI
Limnell T., Santos H.A., Mäkilä E., Heikkilä T., Salonen J., Murzin D.Y., Kumar N., Laaksonen T., Peltonen L., Hirvonen J. Drug delivery formulations of ordered and nonordered mesoporous silica: Comparison of three drug loading methods. J. Pharm. Sci. 2011;100:3294–3306. doi: 10.1002/jps.22577. PubMed DOI
Bolko Seljak K., Ilić I.G., Gašperlin M., Zvonar Pobirk A. Self-microemulsifying tablets prepared by direct compression for improved resveratrol delivery. Int. J. Pharm. 2018;548:263–275. doi: 10.1016/j.ijpharm.2018.06.065. PubMed DOI
Mura P., Valleri M., Cirri M., Mennini N. New solid self-microemulsifying systems to enhance dissolution rate of poorly water soluble drugs. Pharm. Dev. Technol. 2012;17:277–284. doi: 10.3109/10837450.2010.535825. PubMed DOI
Gumaste S.G., Pawlak S.A., Dalrymple D.M., Nider C.J., Trombetta L.D., Serajuddin A.T.M. Development of solid sedds, iv: Effect of adsorbed lipid and surfactant on tableting properties and surface structures of different silicates. Pharm. Res. 2013;30:3170–3185. doi: 10.1007/s11095-013-1114-4. PubMed DOI PMC
Tiong N., Elkordy A.A. Effects of liquisolid formulations on dissolution of naproxen. Eur. J. Pharm. Biopharm. 2009;73:373–384. doi: 10.1016/j.ejpb.2009.08.002. PubMed DOI
Hentzschel C.M., Sakmann A., Leopold C.S. Suitability of various excipients as carrier and coating materials for liquisolid compacts. Drug Dev. Ind. Pharm. 2011;37:1200–1207. doi: 10.3109/03639045.2011.564184. PubMed DOI
Chen B., Wang Z., Quan G., Peng X., Pan X., Wang R., Xu Y., Li G., Wu C. In vitro and in vivo evaluation of ordered mesoporous silica as a novel adsorbent in liquisolid formulation. Int. J. Nanomed. 2012;7:199. PubMed PMC
El-Houssieny B.M., Wahman L., Arafa N.M. Bioavailability and biological activity of liquisolid compact formula of repaglinide and its effect on glucose tolerance in rabbits. Biosci. Trends. 2010;4:17–24. PubMed
Basalious E.B., El-Sebaie W., El-Gazayerly O. Rapidly absorbed orodispersible tablet containing molecularly dispersed felodipine for management of hypertensive crisis: Development, optimization and in vitro/in vivo studies. Pharm. Dev. Technol. 2013;18:407–416. doi: 10.3109/10837450.2012.659258. PubMed DOI
Fuji Chemical Industry Co., Ltd. [(accessed on 25 September 2020)]; Available online: http://www.fujichemical.co.jp/english/medical/medicine/neusilin/neusilin_brochure.pdf.
Shete A., Salunkhe A., Yadav A., Sakhare S., Doijad R. Neusilin based liquisolid compacts of albendazole: Design, development, characterization and in vitro anthelmintic activity. J. Res. Pharm. 2019;23:441–456. doi: 10.12991/jrp.2019.151. DOI
Vranikova B., Gajdziok J. Evaluation of sorptive properties of various carriers and coating materials for liquisolid systems. Acta Pol. Pharm. 2015;72:539–549. PubMed
Dias R.J., Mali K.K., Ghorpade V.S., Havaldar V.D., Mohite V.R. Formulation and evaluation of carbamazepine liquisolid compacts using novel carriers. Indian J. Pharm. Educ. Res. 2017;51:S69–s78. doi: 10.5530/ijper.51.2s.52. DOI
Krupa A., Szlęk J., Jany B.R., Jachowicz R. Preformulation studies on solid self-emulsifying systems in powder form containing magnesium aluminometasilicate as porous carrier. AAPS PharmSciTech. 2015;16:623–635. PubMed PMC
Cirri M., Mura P., Valleri M., Brunetti L. Development and characterization of liquisolid tablets based on mesoporous clays or silicas for improving glyburide dissolution. Pharmaceutics. 2020;12:503. doi: 10.3390/pharmaceutics12060503. PubMed DOI PMC
Omar T.A., Oka S., Muzzio F.J., Glasser B.J. Manufacturing of pharmaceuticals by impregnation of an active pharmaceutical ingredient onto a mesoporous carrier: Impact of solvent and loading. J. Pharm. Innov. 2019;14:194–205. doi: 10.1007/s12247-018-9349-6. DOI
Juneja P., Kaur B., Odeku O.A., Singh I. Development of corn starch-neusilin ufl2 conjugate as tablet superdisintegrant: Formulation and evaluation of fast disintegrating tablets. J. Drug Deliv. 2014;2014:1–13. doi: 10.1155/2014/827035. PubMed DOI PMC
Helmis M., Mohamad B., Kumpugdee-Vollrath M. Influence of several excipients on drug release of tablets containing resveratrol. Mathews J. Pharm. Sci. 2016;1:7.
Fuji Chemical Industry Co., Ltd. [(accessed on 25 September 2020)]; Available online: http://www.fujichemical.co.jp/english/medical/medicine/neusilin/index.html.
Maclean J., Medina C., Daurio D., Alvarez-Nunez F., Jona J., Munson E., Nagapudi K. Manufacture and performance evaluation of a stable amorphous complex of an acidic drug molecule and neusilin. J. Pharm. Sci. 2011;100:3332–3344. doi: 10.1002/jps.22583. PubMed DOI
Kamel R., Basha M. Preparation and in vitro evaluation of rutin nanostructured liquisolid delivery system. Bull. Fac. Pharm. Cairo Univ. 2013;51:261–272. doi: 10.1016/j.bfopcu.2013.08.002. DOI
Gupta M.K., Tseng Y.-C., Goldman D., Bogner R.H. Hydrogen bonding with adsorbent during storage governs drug dissolution from solid-dispersion granules. Pharm. Res. 2002;19:1663–1672. doi: 10.1023/A:1020905412654. PubMed DOI
Gupta M.K., Goldman D., Bogner R.H., Tseng Y.-C. Enhanced drug dissolution and bulk properties of solid dispersions granulated with a surface adsorbent. Pharm. Dev. Technol. 2001;6:563–572. PubMed
Gupta M.K., Vanwert A., Bogner R.H. Formation of physically stable amorphous drugs by milling with neusilin. J. Pharm. Sci. 2003;92:536–551. doi: 10.1002/jps.10308. PubMed DOI
Jones T. The effect of glidant addition on the flowability of bulk particulate solids. J. Soc. Cosmet. Chem. 1970;21:483–500.
Sindel U., Schweiger A., Zimmermann I. Determination of the optimum mixing time for a mixture of lactose and colloidal silicon dioxide. J. Pharm. Sci. 1998;87:524–526. PubMed
Lumay G., Pillitteri S., Marck M., Monsuur F., Pauly T., Ribeyre Q., Francqui F., Vandewalle N. Influence of mesoporous silica on powder flow and electrostatic properties on short and long term. J. Drug Deliv. Sci. Technol. 2019;53:101192. doi: 10.1016/j.jddst.2019.101192. DOI
Sunkara D., Capece M. Influence of material properties on the effectiveness of glidants used to improve the flowability of cohesive pharmaceutical powders. AAPS PharmSciTech. 2018;19:1920–1930. doi: 10.1208/s12249-018-1006-3. PubMed DOI
Tran D.T., Majerová D., Veselý M., Kulaviak L., Ruzicka M.C., Zámostný P. On the mechanism of colloidal silica action to improve flow properties of pharmaceutical excipients. Int. J. Pharm. 2019;556:383–394. doi: 10.1016/j.ijpharm.2018.11.066. PubMed DOI
Ono T., Yonemochi E. Evaluation of the physical properties of dry surface-modified ibuprofen using a powder rheometer (ft4) and analysis of the influence of pharmaceutical additives on improvement of the powder flowability. Int. J. Pharm. 2020;579:119165. doi: 10.1016/j.ijpharm.2020.119165. PubMed DOI
Jonat S., Hasenzahl S., Gray A., Schmidt P.C. Mechanism of glidants: Investigation of the effect of different colloidal silicon dioxide types on powder flow by atomic force and scanning electron microscopy. J. Pharm. Sci. 2004;93:2635–2644. PubMed
Hurychová H., Kuentz M., Šklubalová Z. Fractal aspects of static and dynamic flow properties of pharmaceutical excipients. J. Pharm. Innov. 2018;13:15–26. doi: 10.1007/s12247-017-9302-0. DOI
Trpělková Ž., Hurychová H., Kuentz M., Vraníková B., Šklubalová Z. Introduction of the energy to break an avalanche as a promising parameter for powder flowability prediction. Powder Technol. 2020;375:33–41. doi: 10.1016/j.powtec.2020.07.095. DOI
Naiserova M., Kubova K., Vyslouzil J., Pavlokova S., Vetchy D., Urbanova M., Brus J., Vyslouzil J., Kulich P. Investigation of dissolution behavior hpmc/eudragit®/magnesium aluminometasilicate oral matrices based on nmr solid-state spectroscopy and dynamic characteristics of gel layer. AAPS PharmSciTech. 2018;19:681–692. doi: 10.1208/s12249-017-0870-6. PubMed DOI
Tran D.T., Komínová P., Kulaviak L., Zámostný P. Evaluation of multifunctional magnesium aluminosilicate materials as novel family of glidants in solid dosage products. Int. J. Pharm. 2020;592:120054. doi: 10.1016/j.ijpharm.2020.120054. PubMed DOI
Freeman R.E., Cooke J.R., Schneider L.C.R. Measuring shear properties and normal stresses generated within a rotational shear cell for consolidated and non-consolidated powders. Powder Technol. 2009;190:65–69.
Freeman R.E. Measuring the flow properties of consolidated, conditioned and aerated powders—A comparative study using a powder rheometer and a rotational shear cell. Powder Technol. 2007;174:25–33. doi: 10.1016/j.powtec.2006.10.016. DOI
Schulze D. Powders and Bulk Solids: Behavior, Characterization, Storage and Flow. 1st ed. Springer; Berlin/Heidelberg, Germany: 2007.
Fell J.T., Newton J.M. Determination of tablet strength by the diametral-compression test. J. Pharm. Sci. 1970;59:688–691. PubMed
Dean R.B., Dixon W.J. Simplified statistics for small numbers of observations. Anal. Chem. 1951;23:636–638. doi: 10.1021/ac60052a025. DOI
Armstrong R.A. When to use the bonferroni correction. Ophthalmic Physiol. Opt. 2014;34:502–508. doi: 10.1111/opo.12131. PubMed DOI
Alderborn G., Pasanen K., Nyström C. Studies on direct compression of tablets. Xl characterization of particle fragmentation during compaction by permeametry measurements of tablets. Int. J. Pharm. 1985;23:79–86. doi: 10.1016/0378-5173(85)90224-8. DOI
Olsson H., Nyström C. Assessing tablet bond types from structural features that affect tablet tensile strength. Pharm. Res. 2001;18:203–210. doi: 10.1023/A:1011036603006. PubMed DOI
Adolfsson Å., Olsson H., Nyström C. Effect of particle size and compaction load on interparticulate bonding structure for some pharmaceutical materials studied by compaction and strength characterisation in butanol. Eur. J. Pharm. Biopharm. 1997;44:243–251. doi: 10.1016/S0939-6411(97)00136-7. DOI
Adolfsson Å., Caramella C., Nyström C. The effect of milling and addition of dry binder on the interparticulate bonding mechanisms in sodium chloride tablets. Int. J. Pharm. 1998;160:187–195. doi: 10.1016/S0378-5173(97)00307-4. DOI
Nyström C., Alderborn G., Duberg M., Karehill P.-G. Bonding surface area and bonding mechanism-two important factors fir the understanding of powder comparability. Drug Dev. Ind. Pharm. 1993;19:2143–2196. doi: 10.3109/03639049309047189. DOI