Variant recurrence confirms the existence of a FBXO31-related spastic-dystonic cerebral palsy syndrome
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu kazuistiky, časopisecké články, práce podpořená grantem
Grantová podpora
R00 HL143036
NHLBI NIH HHS - United States
PubMed
33675180
PubMed Central
PMC8045898
DOI
10.1002/acn3.51335
Knihovny.cz E-zdroje
- MeSH
- dítě MeSH
- dystonie etiologie genetika patofyziologie MeSH
- F-box proteiny genetika MeSH
- lidé MeSH
- mozková obrna komplikace genetika patofyziologie MeSH
- nádorové supresorové proteiny genetika MeSH
- svalová spasticita etiologie genetika patofyziologie MeSH
- syndrom MeSH
- Check Tag
- dítě MeSH
- lidé MeSH
- mužské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- kazuistiky MeSH
- práce podpořená grantem MeSH
- Názvy látek
- F-box proteiny MeSH
- FBXO31 protein, human MeSH Prohlížeč
- nádorové supresorové proteiny MeSH
The role of genetics in the causation of cerebral palsy has become the focus of many studies aiming to unravel the heterogeneous etiology behind this frequent neurodevelopmental disorder. A recent paper reported two unrelated children with a clinical diagnosis of cerebral palsy, who carried the same de novo c.1000G > A (p.Asp334Asn) variant in FBXO31, encoding a widely studied tumor suppressor not previously implicated in monogenic disease. We now identified a third individual with the recurrent FBXO31 de novo missense variant, featuring a spastic-dystonic phenotype. Our data confirm a link between variant FBXO31 and an autosomal dominant neurodevelopmental disorder characterized by prominent motor dysfunction.
Department of Genetics Pitié Salpêtrière Hospital APHP Sorbonne Université Paris France
Department of Genetics Washington University School of Medicine St Louis Missouri USA
Department of Neurology P J Safarik University Kosice Slovak Republic
Department of Neurology University Hospital of L Pasteur Kosice Slovak Republic
Institute of Human Genetics Technical University of Munich Munich Germany
Institute of Neurogenomics Helmholtz Zentrum München Munich Germany
Lehrstuhl für Neurogenetik Technische Universität München Munich Germany
Zobrazit více v PubMed
Christensen D, Van Naarden BK, Doernberg NS, et al. Prevalence of cerebral palsy, co‐occurring autism spectrum disorders, and motor functioning ‐ Autism and Developmental Disabilities Monitoring Network, USA, 2008. Dev Med Child Neurol 2014;56:59–65. PubMed PMC
Oskoui M, Coutinho F, Dykeman J, et al. An update on the prevalence of cerebral palsy: a systematic review and meta‐analysis. Dev Med Child Neurol 2013;55:509–519. PubMed
Sadowska M, Sarecka‐Hujar B, Kopyta I. Cerebral palsy: current opinions on definition, epidemiology, risk factors, classification and treatment options. Neuropsychiatr Dis Treat 2020;16:1505–1518. PubMed PMC
Korzeniewski SJ, Slaughter J, Lenski M, et al. The complex aetiology of cerebral palsy. Nat Rev Neurol 2018;14:528–543. PubMed
Jin SC, Lewis SA, Bakhtiari S, et al. Mutations disrupting neuritogenesis genes confer risk for cerebral palsy. Nat Genet 2020;52:1046–1056. PubMed PMC
Zech M, Jech R, Boesch S, et al. Monogenic variants in dystonia: an exome‐wide sequencing study. Lancet Neurol 2020;19:908–918. PubMed PMC
Tan Y, Liu D, Gong J, et al. The role of F‐box only protein 31 in cancer. Oncol Lett 2018;15:4047–4052. PubMed PMC
Richards S, Aziz N, Bale S, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 2015;17:405–424. PubMed PMC
Zech M, Lam DD, Weber S, et al. A unique de novo gain‐of‐function variant in CAMK4 associated with intellectual disability and hyperkinetic movement disorder. Cold Spring Harb Mol Case Stud 2018;4(6):a003293. PubMed PMC
Wiel L, Baakman C, Gilissen D, et al. MetaDome: pathogenicity analysis of genetic variants through aggregation of homologous human protein domains. Hum Mutat 2019;40:1030–1038. PubMed PMC
Li Y, Jin K, Bunker E, et al. Structural basis of the phosphorylation‐independent recognition of cyclin D1 by the SCF(FBXO31) ubiquitin ligase. Proc Natl Acad Sci USA 2018;115:319–324. PubMed PMC
Deshaies RJ, Joazeiro CA. RING domain E3 ubiquitin ligases. Annu Rev Biochem 2009;78:399–434. PubMed
Skaar JR, Pagan JK, Pagano M. SCF ubiquitin ligase‐targeted therapies. Nat Rev Drug Discov 2014;13:889–903. PubMed PMC
Gregor A, Sadleir LG, Asadollahi R, et al. De novo variants in the F‐box protein FBXO11 in 20 individuals with a variable neurodevelopmental disorder. Am J Hum Genet 2018;103:305–316. PubMed PMC
Shojaee S, Sina F, Banihosseini SS, et al. Genome‐wide linkage analysis of a Parkinsonian‐pyramidal syndrome pedigree by 500 K SNP arrays. Am J Hum Genet 2008;82:1375–1384. PubMed PMC
Di Fonzo A, Dekker MC, Montagna P, et al. FBXO7 mutations cause autosomal recessive, early‐onset parkinsonian‐pyramidal syndrome. Neurology 2009;72:240–245. PubMed
Vadhvani M, Schwedhelm‐Domeyer N, Mukherjee C, Stegmüller J. The centrosomal E3 ubiquitin ligase FBXO31‐SCF regulates neuronal morphogenesis and migration. PLoS One 2013;8:e57530. PubMed PMC