The energy sensor AMPK orchestrates metabolic and translational adaptation in expanding T helper cells
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
33715236
PubMed Central
PMC8252394
DOI
10.1096/fj.202001763rr
Knihovny.cz E-zdroje
- Klíčová slova
- AMPK, T cell, cellular metabolism, translation,
- MeSH
- adenylátkinasa genetika metabolismus MeSH
- aktivace lymfocytů MeSH
- buňky Th17 fyziologie MeSH
- CD4-pozitivní T-lymfocyty MeSH
- DNA vazebné proteiny genetika metabolismus MeSH
- fyziologická adaptace MeSH
- kolitida imunologie MeSH
- messenger RNA genetika metabolismus MeSH
- myši knockoutované MeSH
- myši MeSH
- převzatá imunita MeSH
- regulace genové exprese enzymů MeSH
- regulační T-lymfocyty fyziologie MeSH
- T-lymfocyty pomocné-indukující fyziologie MeSH
- Th1 buňky fyziologie MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- adenylátkinasa MeSH
- DNA vazebné proteiny MeSH
- messenger RNA MeSH
- Rag2 protein, mouse MeSH Prohlížeč
The importance of cellular metabolic adaptation in inducing robust T cell responses is well established. However, the mechanism by which T cells link information regarding nutrient supply to clonal expansion and effector function is still enigmatic. Herein, we report that the metabolic sensor adenosine monophosphate-activated protein kinase (AMPK) is a critical link between cellular energy demand and translational activity and, thus, orchestrates optimal expansion of T cells in vivo. AMPK deficiency did not affect T cell fate decision, activation, or T effector cell generation; however, the magnitude of T cell responses in murine in vivo models of T cell activation was markedly reduced. This impairment was global, as all T helper cell subsets were similarly sensitive to loss of AMPK which resulted in reduced T cell accumulation in peripheral organs and reduced disease severity in pathophysiologically as diverse models as T cell transfer colitis and allergic airway inflammation. T cell receptor repertoire analysis confirmed similar clonotype frequencies in different lymphoid organs, thereby supporting the concept of a quantitative impairment in clonal expansion rather than a skewed qualitative immune response. In line with these findings, in-depth metabolic analysis revealed a decrease in T cell oxidative metabolism, and gene set enrichment analysis indicated a major reduction in ribosomal biogenesis and mRNA translation in AMPK-deficient T cells. We, thus, provide evidence that through its interference with these delicate processes, AMPK orchestrates the quantitative, but not the qualitative, manifestation of primary T cell responses in vivo.
Central European Institute of Technology Masaryk University Brno Czech Republic
Core Facilities Medical University of Vienna Vienna Austria
Department of Laboratory Medicine Medical University of Vienna Vienna Austria
Zobrazit více v PubMed
Bantug GR, Galluzzi L, Kroemer G, Hess C. The spectrum of T cell metabolism in health and disease. Nat Rev Immunol. 2018;18:19‐34. PubMed
Ron‐Harel N, Santos D, Ghergurovich JM, et al. Mitochondrial biogenesis and proteome remodeling promote one‐carbon metabolism for T cell activation. Cell Metab. 2016;24:104‐117. PubMed PMC
van der Windt GJW, Everts B, Chang C‐H, et al. Mitochondrial respiratory capacity is a critical regulator of CD8+ T cell memory development. Immunity. 2012;36:68‐78. PubMed PMC
Michalek RD, Gerriets VA, Jacobs SR, et al. Cutting edge: distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4+ T cell subsets. J Immunol. 2011;186:3299‐3303. PubMed PMC
Macintyre AN, Gerriets VA, Nichols AG, et al. The glucose transporter Glut1 is selectively essential for CD4 T cell activation and effector function. Cell Metab. 2014;20:61‐72. PubMed PMC
Jacobs SR, Herman CE, Maciver NJ, et al. Glucose uptake is limiting in T cell activation and requires CD28‐mediated Akt‐dependent and independent pathways. J Immunol. 2008;180:4476‐4486. PubMed PMC
Wei J, Raynor J, Nguyen T‐LM, Chi H. Nutrient and metabolic sensing in T cell responses. Front Immunol. 2017;8:247. 10.3389/fimmu.2017.00247 PubMed DOI PMC
Sinclair LV, Rolf J, Emslie E, Shi Y‐B, Taylor PM, Cantrell DA. Control of amino‐acid transport by antigen receptors coordinates the metabolic reprogramming essential for T cell differentiation. Nat Immunol. 2013;14:500‐508. PubMed PMC
Johnson MO, Wolf MM, Madden MZ, et al. Distinct regulation of Th17 and Th1 cell differentiation by glutaminase‐dependent metabolism. Cell. 2018;175:1780‐1795.e19. PubMed PMC
Ma EH, Bantug G, Griss T, et al. Serine is an essential metabolite for effector T cell expansion. Cell Metab. 2017;25:345‐357. PubMed
Ron‐Harel N, Ghergurovich JM, Notarangelo G, et al. T cell activation depends on extracellular alanine. Cell Rep. 2019;28:3011‐3021.e4. PubMed PMC
Berod L, Friedrich C, Nandan A, et al. De novo fatty acid synthesis controls the fate between regulatory T and T helper 17 cells. Nat Med. 2014;20:1327‐1333. PubMed
Raud B, Roy DG, Divakaruni AS, et al. Etomoxir actions on regulatory and memory T cells are independent of Cpt1a‐mediated fatty acid oxidation. Cell Metab. 2018;28:504‐515.e7. PubMed PMC
Gualdoni GA, Mayer KA, Göschl L, Boucheron N, Ellmeier W, Zlabinger GJ. The AMP analog AICAR modulates the Treg/Th17 axis through enhancement of fatty acid oxidation. FASEB J. 2016;30:3800‐3809. PubMed
Carr EL, Kelman A, Wu GS, et al. Glutamine uptake and metabolism are coordinately regulated by ERK/MAPK during T lymphocyte activation. J Immunol. 2010;185:1037‐1044. PubMed PMC
Yin Y, Choi S‐C, Xu Z, et al. Normalization of CD4+ T cell metabolism reverses lupus. Sci Transl Med. 2015;7:274ra18. PubMed PMC
Lin S‐C, Hardie DG. AMPK: sensing glucose as well as cellular energy status. Cell Metab. 2018;27:299‐313. PubMed
Blagih J, Coulombe F, Vincent EE, et al. The energy sensor AMPK Regulates T cell metabolic adaptation and effector responses in vivo. Immunity. 2015;42:41‐54. PubMed
Hardie DG. Molecular pathways: is AMPK a friend or a foe in cancer? Clin Cancer Res. 2015;21:3836‐3840. PubMed PMC
Chiche J, Reverso‐Meinietti J, Mouchotte A, et al. GAPDH expression predicts the response to R‐CHOP, the tumor metabolic status, and the response of DLBCL patients to metabolic inhibitors. Cell Metab. 2019;29:1243‐1257.e10. PubMed
Guma M, Wang Y, Viollet B, Liu‐Bryan R. AMPK activation by A‐769662 controls IL‐6 expression in inflammatory arthritis. PLoS ONE. 2015;10:e0140452. PubMed PMC
Kang KY, Kim Y‐K, Yi H, et al. Metformin downregulates Th17 cells differentiation and attenuates murine autoimmune arthritis. Int Immunopharmacol. 2013;16:85‐92. PubMed
Nath N, Giri S, Prasad R, Salem ML, Singh AK, Singh I. 5‐aminoimidazole‐4‐carboxamide ribonucleoside: a novel immunomodulator with therapeutic efficacy in experimental autoimmune encephalomyelitis. J Immunol. 2005;175:566‐574. PubMed
Gualdoni GA, Mayer KA, Kapsch A‐M, et al. Rhinovirus induces an anabolic reprogramming in host cell metabolism essential for viral replication. Proc Natl Acad Sci. 2018;115:E7158‐E7165. PubMed PMC
Eri R, McGuckin MA, Wadley R. T cell transfer model of colitis: a great tool to assess the contribution of T cells in chronic intestinal inflammation. In: Ashman, RB , ed. Leucocytes. Totowa, NJ: Humana Press; 2012:261‐275, vol. 844. PubMed
Wirtz S, Neufert C, Weigmann B, Neurath MF. Chemically induced mouse models of intestinal inflammation. Nat Protoc. 2007;2:541‐546. PubMed
Bouladoux N, Harrison OJ, Belkaid Y. The mouse model of infection with Citrobacter rodentium . Curr Protoc Immunol. 2017;119:19.15.1‐19.15.25. PubMed PMC
Smole U, Gour N, Phelan J, et al. Serum amyloid A is a soluble pattern recognition receptor that drives type 2 immunity. Nat Immunol. 2020;21:756‐765. PubMed PMC
Dobin A, Davis CA, Schlesinger F, et al. STAR: ultrafast universal RNA‐seq aligner. Bioinformatics. 2013;29:15‐21. PubMed PMC
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA‐seq data with DESeq2. Genome Biol. 2014;15:550. PubMed PMC
Shugay M, Britanova OV, Merzlyak EM, et al. Towards error‐free profiling of immune repertoires. Nat Methods. 2014;11:653‐655. PubMed
Bolotin DA, Poslavsky S, Mitrophanov I, et al. MiXCR: software for comprehensive adaptive immunity profiling. Nat Methods. 2015;12:380‐381. PubMed
Shugay M, Bagaev DV, Turchaninova MA, et al. VDJtools: unifying post‐analysis of T Cell receptor repertoires. PLoS Comput Biol. 2015;11:e1004503. PubMed PMC
Inoki K, Zhu T, Guan K‐L. TSC2 mediates cellular energy response to control cell growth and survival. Cell. 2003;115:577‐590. PubMed
Gwinn DM, Shackelford DB, Egan DF, et al. AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol Cell. 2008;30:214‐226. PubMed PMC
Huang J, Manning BD. The TSC1‐TSC2 complex: a molecular switchboard controlling cell growth. Biochem J. 2008;412:179‐190. PubMed PMC
Lee PP, Fitzpatrick DR, Beard C, et al. A critical role for Dnmt1 and DNA methylation in T cell development, function, and survival. Immunity. 2001;15:763‐774. PubMed
Tamás P, Hawley SA, Clarke RG, et al. Regulation of the energy sensor AMP‐activated protein kinase by antigen receptor and Ca2+ in T lymphocytes. J Exp Med. 2006;203:1665‐1670. PubMed PMC
MacIver NJ, Blagih J, Saucillo DC, et al. The liver kinase B1 Is a central regulator of T cell development, activation, and metabolism. J Immunol. 2011;187:4187‐4198. PubMed PMC
Lanna A, Henson SM, Escors D, Akbar AN. The kinase p38 activated by the metabolic regulator AMPK and scaffold TAB1 drives the senescence of human T cells. Nat Immunol. 2014;15:965‐972. PubMed PMC
Lindqvist LM, Tandoc K, Topisirovic I, Furic L. Cross‐talk between protein synthesis, energy metabolism and autophagy in cancer. Curr Opin Genet Dev. 2018;48:104‐111. PubMed PMC
Piccirillo CA, Bjur E, Topisirovic I, Sonenberg N, Larsson O. Translational control of immune responses: from transcripts to translatomes. Nat Immunol. 2014;15:503‐511. PubMed
Araki K, Morita M, Bederman AG, et al. Translation is actively regulated during the differentiation of CD8+ effector T cells. Nat Immunol. 2017;18:1046‐1057. PubMed PMC
Katzman SD, Hoyer KK, Dooms H, et al. Opposing functions of IL‐2 and IL‐7 in the regulation of immune responses. Cytokine. 2011;56:116‐121. PubMed PMC
Kumase F, Takeuchi K, Morizane Y, et al. AMPK‐activated protein kinase suppresses Ccr2 expression by inhibiting the NF‐κB pathway in RAW264.7 macrophages. PLoS ONE. 2016;11:e0147279. PubMed PMC
Yoo HS, Lee K, Na K, et al. Mesenchymal stromal cells inhibit CD25 expression via the mTOR pathway to potentiate T‐cell suppression. Cell Death Dis. 2017;8:e2632. PubMed PMC
Rao E, Zhang Y, Li Q, et al. AMPK‐dependent and independent effects of AICAR and compound C on T‐cell responses. Oncotarget. 2016;7:33783‐33795. PubMed PMC
Ma EH, Verway MJ, Johnson RM, et al. Metabolic profiling using stable isotope tracing reveals distinct patterns of glucose utilization by physiologically activated CD8+ T cells. Immunity. 2019;51:856‐870.e5. PubMed
Wherry EJ, Ha S‐J, Kaech SM, et al. Molecular signature of CD8+ T cell exhaustion during chronic viral infection. Immunity. 2007;27:670‐684. PubMed
Tan H, Yang K, Li Y, et al. Integrative proteomics and phosphoproteomics profiling reveals dynamic signaling networks and bioenergetics pathways underlying T cell activation. Immunity. 2017;46:488‐503. PubMed PMC
Delgoffe GM, Kole TP, Zheng Y, et al. The mTOR kinase differentially regulates effector and regulatory T cell lineage commitment. Immunity. 2009;30:832‐844. PubMed PMC
Yang K, Shrestha S, Zeng H, et al. T cell exit from quiescence and differentiation into Th2 cells depend on Raptor‐mTORC1‐mediated metabolic reprogramming. Immunity. 2013;39:1043‐1056. PubMed PMC
Zeng H, Yang K, Cloer C, Neale G, Vogel P, Chi H. mTORC1 couples immune signals and metabolic programming to establish T(reg)‐cell function. Nature. 2013;499:485‐490. PubMed PMC
Zeng H, Chi H. mTOR signaling in the differentiation and function of regulatory and effector T cells. Curr Opin Immunol. 2017;46:103‐111. PubMed PMC
Yang K, Blanco DB, Neale G, et al. Homeostatic control of metabolic and functional fitness of Treg cells by LKB1 signalling. Nature. 2017;548:602‐606. PubMed PMC
Tamás P, Macintyre A, Finlay D, et al. LKB1 is essential for the proliferation of T‐cell progenitors and mature peripheral T cells. Eur J Immunol. 2010;40:242‐253. PubMed PMC
Xie M, Zhang D, Dyck JRB, et al. A pivotal role for endogenous TGF‐beta‐activated kinase‐1 in the LKB1/AMP‐activated protein kinase energy‐sensor pathway. Proc Natl Acad Sci USA. 2006;103:17378‐17383. PubMed PMC
Momcilovic M, Hong S‐P, Carlson M. Mammalian TAK1 activates Snf1 protein kinase in yeast and phosphorylates AMP‐activated protein kinase in vitro. J Biol Chem. 2006;281:25336‐25343. PubMed
Rao E, Zhang Y, Zhu G, et al. Deficiency of AMPK in CD8+ T cells suppresses their anti‐tumor function by inducing protein phosphatase‐mediated cell death. Oncotarget. 2015;6:7944‐7958. PubMed PMC
Mayer A, Denanglaire S, Viollet B, Leo O, Andris F. AMP‐activated protein kinase regulates lymphocyte responses to metabolic stress but is largely dispensable for immune cell development and function. Eur J Immunol. 2008;38:948‐956. PubMed
Vincent EE, Coelho PP, Blagih J, Griss T, Viollet B, Jones RG. Differential effects of AMPK agonists on cell growth and metabolism. Oncogene. 2015;34:3627‐3639. PubMed PMC