Kleine-Levin syndrome is associated with birth difficulties and genetic variants in the TRANK1 gene loci
Language English Country United States Media print
Document type Journal Article, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't
Grant support
R01 MH080957
NIMH NIH HHS - United States
S10 OD023452
NIH HHS - United States
PubMed
33737391
PubMed Central
PMC7999876
DOI
10.1073/pnas.2005753118
PII: 2005753118
Knihovny.cz E-resources
- Keywords
- GWAS, Kleine-Levin syndrome, bipolar disorder, birth difficulties, hypersomnia,
- MeSH
- Bipolar Disorder etiology MeSH
- Cytokines genetics MeSH
- Genetic Predisposition to Disease MeSH
- Genetic Variation * MeSH
- Genetic Association Studies MeSH
- Risk Assessment MeSH
- Kleine-Levin Syndrome complications epidemiology genetics MeSH
- Obstetric Labor Complications epidemiology etiology MeSH
- Humans MeSH
- Disease Susceptibility * MeSH
- Odds Ratio MeSH
- Polymorphism, Genetic MeSH
- Disorders of Excessive Somnolence etiology MeSH
- Risk Factors MeSH
- Pregnancy MeSH
- Check Tag
- Humans MeSH
- Male MeSH
- Pregnancy MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, N.I.H., Extramural MeSH
- Names of Substances
- Cytokines MeSH
- TRANK1 protein, human MeSH Browser
Kleine-Levin syndrome (KLS) is a rare disorder characterized by severe episodic hypersomnia, with cognitive impairment accompanied by apathy or disinhibition. Pathophysiology is unknown, although imaging studies indicate decreased activity in hypothalamic/thalamic areas during episodes. Familial occurrence is increased, and risk is associated with reports of a difficult birth. We conducted a worldwide case-control genome-wide association study in 673 KLS cases collected over 14 y, and ethnically matched 15,341 control individuals. We found a strong genome-wide significant association (rs71947865, Odds Ratio [OR] = 1.48, P = 8.6 × 10-9) within the 3'region of TRANK1 gene locus, previously associated with bipolar disorder and schizophrenia. Strikingly, KLS cases with rs71947865 variant had significantly increased reports of a difficult birth. As perinatal outcomes have dramatically improved over the last 40 y, we further stratified our sample by birth years and found that recent cases had a significantly reduced rs71947865 association. While the rs71947865 association did not replicate in the entire follow-up sample of 171 KLS cases, rs71947865 was significantly associated with KLS in the subset follow-up sample of 59 KLS cases who reported birth difficulties (OR = 1.54, P = 0.01). Genetic liability of KLS as explained by polygenic risk scores was increased (pseudo R2 = 0.15; P < 2.0 × 10-22 at P = 0.5 threshold) in the follow-up sample. Pathway analysis of genetic associations identified enrichment of circadian regulation pathway genes in KLS cases. Our results suggest links between KLS, circadian regulation, and bipolar disorder, and indicate that the TRANK1 polymorphisms in conjunction with reported birth difficulties may predispose to KLS.
Center for Sleep Sciences and Medicine Stanford University School of Medicine Palo Alto CA 94304
Center for Sleep Sciences and Medicine Stanford University School of Medicine Palo Alto CA 94304;
Department of Biomedical and Clinical Sciences Linköping University Linköping 581 83 Sweden
Department of Biomedical and Neuromotor Sciences University of Bologna 40139 Bologna Italy
Department of Child Psychiatry Chang Gung Memorial Hospital and University Taoyuan 33305 Taiwan
Department of Neurology and Neurological Sciences Stanford University Stanford CA 94305
Department of Neurology Emory University Atlanta GA 30322
Department of Neurology Innsbruck Medical University 6020 Innsbruck Austria
Department of Neurology Maynei Hayeshua Medical Center 5154475 Bnei Barak Israel
Department of Neuropharmacology Nagoya City University Nagoya 467 8601 Japan
Department of Neuroscience Uppsala University Uppsala 752 36 Sweden
Department of Psychiatry and Behavioral Sciences Stanford University Stanford CA 94305
Department of Pulmonary Medicine Peking University People's Hospital Beijing 100044 China
Hephata Klinik Philipps Universität Marburg 35037 Marburg Germany
Histocompatibility Department Blood Center of the Community of Madrid 28032 Madrid Spain
International Institute for Integrative Sleep Medicine University of Tsukuba Tsukuba 305 0005 Japan
Kleine Levin Syndrome Foundation Boston MA 02468
Sleep Center Chang Gung Memorial Hospital and University Taoyuan 33305 Taiwan
Sleep Disorders Center Hôpitaux Universitaires de Strasbourg 67091 Strasbourg France
Sleep Disorders Centre Guy's Hospital SE1 9RT London United Kingdom
The Sackler Faculty of Medicine Tel Aviv University 6997801 Tel Aviv Israel
See more in PubMed
Kleine D. W., Periodische Schlafsucht. Eur. Neurol. 57, 305–320 (1925).
Levin M., Periodic somnolence and morbid hunger: A new syndrome. Brain 59, 494–504 (1936).
Arnulf I., et al. ., Kleine-Levin syndrome: A systematic study of 108 patients. Ann. Neurol. 63, 482–493 (2008). PubMed
Arnulf I., Rico T. J., Mignot E., Diagnosis, disease course, and management of patients with Kleine-Levin syndrome. Lancet Neurol. 11, 918–928 (2012). PubMed
Billiard M., Jaussent I., Dauvilliers Y., Besset A., Recurrent hypersomnia: A review of 339 cases. Sleep Med. Rev. 15, 247–257 (2011). PubMed
Arnulf I., Zeitzer J. M., File J., Farber N., Mignot E., Kleine-Levin syndrome: A systematic review of 186 cases in the literature. Brain 128, 2763–2776 (2005). PubMed
Leu-Semenescu S., et al. ., Lithium therapy in Kleine-Levin syndrome: An open-label, controlled study in 130 patients. Neurology 85, 1655–1662 (2015). PubMed
Huang Y. S., et al. ., Relationship between Kleine-Levin syndrome and upper respiratory infection in Taiwan. Sleep (Basel) 35, 123–129 (2012). PubMed PMC
Nguyen Q. T., et al. ., Familial Kleine-Levin syndrome: A specific entity? Sleep (Basel) 39, 1535–1542 (2016). PubMed PMC
Peraita-Adrados R., Vicario J. L., Tafti M., García de León M., Billiard M., Monozygotic twins affected with Kleine-Levin syndrome. Sleep (Basel) 35, 595–596 (2012). PubMed PMC
Habra O., Heinzer R., Haba-Rubio J., Rossetti A. O., Prevalence and mimics of Kleine-Levin syndrome: A survey in French-speaking Switzerland. J. Clin. Sleep Med. 12, 1083–1087 (2016). PubMed PMC
Dauvilliers Y., et al. ., Kleine-Levin syndrome: An autoimmune hypothesis based on clinical and genetic analyses. Neurology 59, 1739–1745 (2002). PubMed
Lavault S., et al. ., Kleine-Levin syndrome in 120 patients: Differential diagnosis and long episodes. Ann. Neurol. 77, 529–540 (2015). PubMed
Lam M.et al. .; Schizophrenia Working Group of the Psychiatric Genomics Consortium; Indonesia Schizophrenia Consortium; Genetic REsearch on schizophreniA neTwork-China and the Netherlands (GREAT-CN) , Comparative genetic architectures of schizophrenia in East Asian and European populations. Nat. Genet. 51, 1670–1678 (2019). PubMed PMC
Stahl E. A.et al. .; eQTLGen Consortium; BIOS Consortium; Bipolar Disorder Working Group of the Psychiatric Genomics Consortium , Genome-wide association study identifies 30 loci associated with bipolar disorder. Nat. Genet. 51, 793–803 (2019). PubMed PMC
Ikeda M., et al. ., Genome-wide association study detected novel susceptibility genes for schizophrenia and shared trans-populations/diseases genetic effect. Schizophr. Bull. 45, 824–834 (2019). PubMed PMC
Stilo S. A., Murray R. M., Non-genetic factors in schizophrenia. Curr. Psychiatry Rep. 21, 100 (2019). PubMed PMC
Söderlund J., Wicks S., Jörgensen L., Dalman C., Comparing cohort incidence of schizophrenia with that of bipolar disorder and affective psychosis in individuals born in Stockholm County 1955-1967. Psychol. Med. 45, 3433–3439 (2015). PubMed
Chudal R., et al. ., Perinatal factors and the risk of bipolar disorder in Finland. J. Affect. Disord. 155, 75–80 (2014). PubMed PMC
Haukvik U. K., et al. ., Pre- and perinatal hypoxia associated with hippocampus/amygdala volume in bipolar disorder. Psychol. Med. 44, 975–985 (2014). PubMed PMC
Nosarti C., et al. ., Preterm birth and psychiatric disorders in young adult life. Arch. Gen. Psychiatry 69, E1–E8 (2012). PubMed
McGrath J., Scott J., Urban birth and risk of schizophrenia: A worrying example of epidemiology where the data are stronger than the hypotheses. Epidemiol. Psichiatr. Soc. 15, 243–246 (2006). PubMed
Cannon M., Jones P. B., Murray R. M., Obstetric complications and schizophrenia: Historical and meta-analytic review. Am. J. Psychiatry 159, 1080–1092 (2002). PubMed
Kunugi H., Nanko S., Murray R. M., Obstetric complications and schizophrenia: Prenatal underdevelopment and subsequent neurodevelopmental impairment. Br. J. Psychiatry Suppl. 40, s25–s29 (2001). PubMed
Kinney D. K., Yurgelun-Todd D. A., Tohen M., Tramer S., Pre- and perinatal complications and risk for bipolar disorder: A retrospective study. J. Affect. Disord. 50, 117–124 (1998). PubMed
Geddes J. R., Lawrie S. M., Obstetric complications and schizophrenia: A meta-analysis. Br. J. Psychiatry 167, 786–793 (1995). PubMed
McNeil T. F., Perinatal risk factors and schizophrenia: Selective review and methodological concerns. Epidemiol. Rev. 17, 107–112 (1995). PubMed
Brixey S. N., Gallagher B. J. 3rd, McFalls J. A. Jr., Parmelee L. F., Gestational and neonatal factors in the etiology of schizophrenia. J. Clin. Psychol. 49, 447–456 (1993). PubMed
Shimizu H., Hirose A., Tatsuno T., Nakamura M., Katsube J., Pharmacological properties of SM-3997: A new anxioselective anxiolytic candidate. Jpn. J. Pharmacol. 45, 493–500 (1987). PubMed
GTEx Consortium , The genotype-tissue expression (GTEx) project. Nat. Genet. 45, 580–585 (2013). PubMed PMC
Ursini G., et al. ., Convergence of placenta biology and genetic risk for schizophrenia. Nat. Med. 24, 792–801 (2018). PubMed
Peng S., et al. ., Expression quantitative trait loci (eQTLs) in human placentas suggest developmental origins of complex diseases. Hum. Mol. Genet. 26, 3432–3441 (2017). PubMed PMC
Hoffmann T. J., et al. ., Next generation genome-wide association tool: Design and coverage of a high-throughput European-optimized SNP array. Genomics 98, 79–89 (2011). PubMed PMC
Sander A., Wauer R., From single-case analysis of neonatal deaths toward a further reduction of the neonatal mortality rate. J. Perinat. Med. 47, 125–133 (2018). PubMed
Sugai M. K., Gilmour S., Ota E., Shibuya K., Trends in perinatal mortality and its risk factors in Japan: Analysis of vital registration data, 1979-2010. Sci. Rep. 7, 46681 (2017). PubMed PMC
Schneider E. B., Fetal health stagnation: Have health conditions in utero improved in the United States and Western and Northern Europe over the past 150 years? Soc. Sci. Med. 179, 18–26 (2017). PubMed
Verstraete E., et al. ., Healthcare-associated bloodstream infections in a neonatal intensive care unit over a 20-year period (1992-2011): Trends in incidence, pathogens, and mortality. Infect. Control Hosp. Epidemiol. 35, 511–518 (2014). PubMed
Glinianaia S. V., et al. ., Temporal changes in key maternal and fetal factors affecting birth outcomes: A 32-year population-based study in an industrial city. BMC Pregnancy Childbirth 8, 39 (2008). PubMed PMC
Rush D., Alvir J. M., Kenny D. A., Johnson S. S., Horvitz D. G., The National WIC evaluation: Evaluation of the special supplemental food program for women, infants, and children. III. Historical study of pregnancy outcomes. Am. J. Clin. Nutr. 48, 412–428 (1988). PubMed
Secolin R., et al. ., Family-based association study for bipolar affective disorder. Psychiatr. Genet. 20, 126–129 (2010). PubMed
Charney A. W., et al. ., Evidence for genetic heterogeneity between clinical subtypes of bipolar disorder. Transl. Psychiatry 7, e993 (2017). PubMed PMC
Hou L., et al. ., Genome-wide association study of 40,000 individuals identifies two novel loci associated with bipolar disorder. Hum. Mol. Genet. 25, 3383–3394 (2016). PubMed PMC
Mühleisen T. W., et al. ., Genome-wide association study reveals two new risk loci for bipolar disorder. Nat. Commun. 5, 3339 (2014). PubMed
Ruderfer D. M.et al. .; Schizophrenia Working Group of the Psychiatric Genomics Consortium; Bipolar Disorder Working Group of the Psychiatric Genomics Consortium; Cross-Disorder Working Group of the Psychiatric Genomics Consortium , Polygenic dissection of diagnosis and clinical dimensions of bipolar disorder and schizophrenia. Mol. Psychiatry 19, 1017–1024 (2014). PubMed PMC
Li Z., et al. ., Genome-wide association analysis identifies 30 new susceptibility loci for schizophrenia. Nat. Genet. 49, 1576–1583 (2017). PubMed
Schizophrenia Working Group of the Psychiatric Genomics Consortium , Biological insights from 108 schizophrenia-associated genetic loci. Nature 511, 421–427 (2014). PubMed PMC
Chen D. T.et al. .; BiGS , Genome-wide association study meta-analysis of European and Asian-ancestry samples identifies three novel loci associated with bipolar disorder. Mol. Psychiatry 18, 195–205 (2013). PubMed
Choi S. W., O’Reilly P. F., PRSice-2: Polygenic Risk Score software for biobank-scale data. Gigascience 8, giz082 (2019). PubMed PMC
Ruderfer D. M., et al. ., Genomic dissection of bipolar disorder and schizophrenia, including 28 subphenotypes. Cell 173, 1705–1715.e16 (2018). PubMed PMC
Jones S. E., et al. ., Genome-wide association analyses of chronotype in 697,828 individuals provides insights into circadian rhythms. Nat. Commun. 10, 343 (2019). PubMed PMC
Dashti H. S., et al. ., Genome-wide association study identifies genetic loci for self-reported habitual sleep duration supported by accelerometer-derived estimates. Nat. Commun. 10, 1100 (2019). PubMed PMC
Wang H., et al. ., Genome-wide association analysis of self-reported daytime sleepiness identifies 42 loci that suggest biological subtypes. Nat. Commun. 10, 3503 (2019). PubMed PMC
de Leeuw C. A., Mooij J. M., Heskes T., Posthuma D., MAGMA: Generalized gene-set analysis of GWAS data. PLoS Comput. Biol. 11, e1004219 (2015). PubMed PMC
Giguère V., et al. ., Isoform-specific amino-terminal domains dictate DNA-binding properties of ROR alpha, a novel family of orphan hormone nuclear receptors. Genes Dev. 8, 538–553 (1994). PubMed
Griffin P., et al. ., Circadian clock protein Rev-erbα regulates neuroinflammation. Proc. Natl. Acad. Sci. U.S.A. 116, 5102–5107 (2019). PubMed PMC
Zhang Y., et al. ., GENE REGULATION. Discrete functions of nuclear receptor Rev-erbα couple metabolism to the clock. Science 348, 1488–1492 (2015). PubMed PMC
Solt L. A., Kojetin D. J., Burris T. P., The REV-ERBs and RORs: Molecular links between circadian rhythms and lipid homeostasis. Future Med. Chem. 3, 623–638 (2011). PubMed PMC
Guillaumond F., Dardente H., Giguère V., Cermakian N., Differential control of Bmal1 circadian transcription by REV-ERB and ROR nuclear receptors. J. Biol. Rhythms 20, 391–403 (2005). PubMed
Sato T. K., et al. ., A functional genomics strategy reveals Rora as a component of the mammalian circadian clock. Neuron 43, 527–537 (2004). PubMed
Al Shareef S. M., et al. ., Kleine-Levin syndrome is associated with LMOD3 variants. J. Sleep Res. 28, e12718 (2019). PubMed
Cingolani P., et al. ., A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin) 6, 80–92 (2012). PubMed PMC
Schatz U. A., et al. ., Evidence of mild founder LMOD3 mutations causing nemaline myopathy 10 in Germany and Austria. Neurology 91, e1690–e1694 (2018). PubMed
Tillman R., Geller B., Definitions of rapid, ultrarapid, and ultradian cycling and of episode duration in pediatric and adult bipolar disorders: A proposal to distinguish episodes from cycles. J. Child Adolesc. Psychopharmacol. 13, 267–271 (2003). PubMed
Groos E., et al. ., Emerging psychiatric disorders in Kleine-Levin syndrome. J. Sleep Res. 27, e12690 (2018). PubMed
Kaplan K. A., et al. ., Hypersomnia subtypes, sleep and relapse in bipolar disorder. Psychol. Med. 45, 1751–1763 (2015). PubMed PMC
Grigolon R. B., et al. ., Hypersomnia and bipolar disorder: A systematic review and meta-analysis of proportion. J. Affect. Disord. 246, 659–666 (2019). PubMed
Pagani L., et al. ., Genetic contributions to circadian activity rhythm and sleep pattern phenotypes in pedigrees segregating for severe bipolar disorder. Proc. Natl. Acad. Sci. U.S.A. 113, E754–E761 (2016). PubMed PMC
Bora E., Neurocognitive features in clinical subgroups of bipolar disorder: A meta-analysis. J. Affect. Disord. 229, 125–134 (2018). PubMed
Lima I. M. M., Peckham A. D., Johnson S. L., Cognitive deficits in bipolar disorders: Implications for emotion. Clin. Psychol. Rev. 59, 126–136 (2018). PubMed PMC
Lane J. M., et al. ., Genome-wide association analyses of sleep disturbance traits identify new loci and highlight shared genetics with neuropsychiatric and metabolic traits. Nat. Genet. 49, 274–281 (2017). PubMed PMC
Lewis K. J. S., et al. ., Comparison of genetic liability for sleep traits among individuals with bipolar disorder I or II and control participants. JAMA Psychiatry 77, 303–310 (2019). PubMed PMC
Engström M., Latini F., Landtblom A. M., Neuroimaging in the Kleine-Levin syndrome. Curr. Neurol. Neurosci. Rep. 18, 58 (2018). PubMed PMC
Hong S. B., Neuroimaging of narcolepsy and Kleine-Levin syndrome. Sleep Med. Clin. 12, 359–368 (2017). PubMed
Kas A., Lavault S., Habert M. O., Arnulf I., Feeling unreal: A functional imaging study in patients with Kleine-Levin syndrome. Brain 137, 2077–2087 (2014). PubMed
Blume C., Garbazza C., Spitschan M., Effects of light on human circadian rhythms, sleep and mood. Somnologie (Berl.) 23, 147–156 (2019). PubMed PMC
Czeisler C. A., Zimmerman J. C., Ronda J. M., Moore-Ede M. C., Weitzman E. D., Timing of REM sleep is coupled to the circadian rhythm of body temperature in man. Sleep 2, 329–346 (1980). PubMed
Carskadon M. A., Dement W. C., Sleep studies on a 90-minute day. Electroencephalogr. Clin. Neurophysiol. 39, 145–155 (1975). PubMed
Goldbart A., et al. ., Narcolepsy and predictors of positive MSLTs in the Wisconsin sleep cohort. Sleep (Basel) 37, 1043–1051 (2014). PubMed PMC
Chen L., Huang Y.-S., “Actigraphy study and different hypersomnia disorders” in 2nd Asian Narcolepsy & Hypersomnolence Society Meeting (2019), vol. 2, p. 39.
Gold A. K., Kinrys G., Treating circadian rhythm disruption in bipolar disorder. Curr. Psychiatry Rep. 21, 14 (2019). PubMed PMC
Vreeker A., et al. ., Genetic analysis of activity, brain and behavioral associations in extended families with heavy genetic loading for bipolar disorder. Pyschol. Med., 1–9, 10.1017/S0033291719003416 (2019). PubMed DOI
Ikeda M., et al. ., A genome-wide association study identifies two novel susceptibility loci and trans population polygenicity associated with bipolar disorder. Mol. Psychiatry 23, 639–647 (2018). PubMed PMC
Psychiatric GWAS Consortium Bipolar Disorder Working Group , Large-scale genome-wide association analysis of bipolar disorder identifies a new susceptibility locus near ODZ4. Nat. Genet. 43, 977–983 (2011). PubMed PMC
Forstner A. J., et al. ., Identification of shared risk loci and pathways for bipolar disorder and schizophrenia. PLoS One 12, e0171595 (2017). PubMed PMC
Ripke S.et al. .; Multicenter Genetic Studies of Schizophrenia Consortium; Psychosis Endophenotypes International Consortium; Wellcome Trust Case Control Consortium 2 , Genome-wide association analysis identifies 13 new risk loci for schizophrenia. Nat. Genet. 45, 1150–1159 (2013). PubMed PMC
Schizophrenia Psychiatric Genome-Wide Association Study (GWAS) Consortium , Genome-wide association study identifies five new schizophrenia loci. Nat. Genet. 43, 969–976 (2011). PubMed PMC
Ward J., et al. ., Genome-wide analysis in UK Biobank identifies four loci associated with mood instability and genetic correlation with major depressive disorder, anxiety disorder and schizophrenia. Transl. Psychiatry 7, 1264 (2017). PubMed PMC
Weber G., Investigation of metal-species (Ca, Mg, Zn, Fe, Cu, Pb, Cd, Sn) in urine by HPLC-AAS. J. Trace Elem. Electrolytes Health Dis. 2, 61–65 (1988). PubMed
Tsuchiya K. J., Byrne M., Mortensen P. B., Risk factors in relation to an emergence of bipolar disorder: A systematic review. Bipolar Disord. 5, 231–242 (2003). PubMed
Lyall D. M., et al. ., Low birth weight and features of neuroticism and mood disorder in 83 545 participants of the UK Biobank cohort. BJPsych Open 2, 38–44 (2016). PubMed PMC
Kikas T., Rull K., Beaumont R. N., Freathy R. M., Laan M., The effect of genetic variation on the placental transcriptome in humans. Front. Genet. 10, 550 (2019). PubMed PMC
Brockenshire A., The “mini-mental state”: A handy tool. Perspectives 11, 7–8 (1987). PubMed
Horikoshi M.et al. .; CHARGE Consortium Hematology Working Group; Early Growth Genetics (EGG) Consortium , Genome-wide associations for birth weight and correlations with adult disease. Nature 538, 248–252 (2016). PubMed PMC
Warrington N. M.et al. .; EGG Consortium , Maternal and fetal genetic effects on birth weight and their relevance to cardio-metabolic risk factors. Nat. Genet. 51, 804–814 (2019). PubMed PMC
Beaumont R. N.et al. .; Early Growth Genetics (EGG) Consortium , Genome-wide association study of offspring birth weight in 86 577 women identifies five novel loci and highlights maternal genetic effects that are independent of fetal genetics. Hum. Mol. Genet. 27, 742–756 (2018). PubMed PMC
Zhang G., et al. ., Genetic associations with gestational duration and spontaneous preterm birth. N. Engl. J. Med. 377, 1156–1167 (2017). PubMed PMC
Srinivasan L.et al. .; Eunice Kennedy Shriver National Institute of Child Health and Human Development Neonatal Research Network , Genome-wide association study of sepsis in extremely premature infants. Arch. Dis. Child. Fetal Neonatal Ed. 102, F439–F445 (2017). PubMed PMC
Pasqualini J. R., Mercat P., Giambiagi N., Histone acetylation decreased by estradiol in the MCF-7 human mammary cancer cell line. Breast Cancer Res. Treat. 14, 101–105 (1989). PubMed
Jiang X., et al. ., Sodium valproate rescues expression of TRANK1 in iPSC-derived neural cells that carry a genetic variant associated with serious mental illness. Mol. Psychiatry 24, 613–624 (2019). PubMed PMC
Purcell S., et al. ., PLINK: A tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007). PubMed PMC
Nicolazzi E. L., Iamartino D., Williams J. L., AffyPipe: An open-source pipeline for Affymetrix Axiom genotyping workflow. Bioinformatics 30, 3118–3119 (2014). PubMed PMC
Auton A.et al. .; 1000 Genomes Project Consortium , A global reference for human genetic variation. Nature 526, 68–74 (2015). PubMed PMC
Delaneau O., Marchini J., Zagury J. F., A linear complexity phasing method for thousands of genomes. Nat. Methods 9, 179–181 (2011). PubMed
Delaneau O., Marchini J.; 1000 Genomes Project Consortium; 1000 Genomes Project Consortium , Integrating sequence and array data to create an improved 1000 Genomes Project haplotype reference panel. Nat. Commun. 5, 3934 (2014). PubMed PMC
Howie B. N., Donnelly P., Marchini J., A flexible and accurate genotype imputation method for the next generation of genome-wide association studies. PLoS Genet. 5, e1000529 (2009). PubMed PMC
Marchini J., Howie B., Myers S., McVean G., Donnelly P., A new multipoint method for genome-wide association studies by imputation of genotypes. Nat. Genet. 39, 906–913 (2007). PubMed
Watanabe K., Taskesen E., van Bochoven A., Posthuma D., Functional mapping and annotation of genetic associations with FUMA. Nat. Commun. 8, 1826 (2017). PubMed PMC
Turner S. D., qqman: An R package for visualizing GWAS results using Q-Q and manhattan plots. bioRxiv [Preprint] (2014). 10.1101/005165 (Accessed 20 March 2019). DOI
Arnold M., Raffler J., Pfeufer A., Suhre K., Kastenmüller G., SNiPA: An interactive, genetic variant-centered annotation browser. Bioinformatics 31, 1334–1336 (2015). PubMed PMC
Hormozdiari F., et al. ., Colocalization of GWAS and eQTL signals detects target genes. Am. J. Hum. Genet. 99, 1245–1260 (2016). PubMed PMC
Zheng J.et al. .; Early Genetics and Lifecourse Epidemiology (EAGLE) Eczema Consortium , LD hub: A centralized database and web interface to perform LD score regression that maximizes the potential of summary level GWAS data for SNP heritability and genetic correlation analysis. Bioinformatics 33, 272–279 (2017). PubMed PMC
Li H., Durbin R., Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009). PubMed PMC
Wang K., Li M., Hakonarson H., ANNOVAR: Functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 38, e164 (2010). PubMed PMC
Lee S., Abecasis G. R., Boehnke M., Lin X., Rare-variant association analysis: Study designs and statistical tests. Am. J. Hum. Genet. 95, 5–23 (2014). PubMed PMC
figshare
10.6084/m9.figshare.14128475.v2