Mismatch negativity-like potential (MMN-like) in the subthalamic nuclei in Parkinson's disease patients
Jazyk angličtina Země Rakousko Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
- MeSH
- akustická stimulace MeSH
- elektroencefalografie MeSH
- funkční lateralita MeSH
- kontingentní negativní variace fyziologie MeSH
- lidé středního věku MeSH
- lidé MeSH
- magnetická rezonanční tomografie MeSH
- neuropsychologické testy MeSH
- nucleus subthalamicus patofyziologie MeSH
- Parkinsonova nemoc komplikace patologie MeSH
- reakční čas fyziologie MeSH
- senioři MeSH
- sluchové evokované potenciály fyziologie MeSH
- stupeň závažnosti nemoci MeSH
- tomografy rentgenové počítačové MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
An infrequent change to an otherwise repetitive sequence of stimuli leads to the generation of mismatch negativity (MMN), even in the absence of attention. This evoked negative response occurs in the scalp-recorded electroencephalogram (EEG) over the temporal and frontal cortices, 100-250 ms after onset of the deviant stimulus. The MMN is used to detect sensory information processing. The aim of our study was to investigate whether MMN can be recorded in the subthalamic nuclei (STN) as evidence of auditory information processing on an unconscious level within this structure. To our knowledge, MMN has never been recorded in the human STN. We recorded intracerebral EEG using a MMN paradigm in five patients with Parkinson's disease (PD) who were implanted with depth electrodes in the subthalamic nuclei (STN). We found far-field MMN when intracerebral contacts were connected to an extracranial reference electrode. In all five PD patients (and nine of ten intracerebral electrodes), we also found near-field MMN-like potentials when intracerebral contacts were referenced to one another, and in some electrodes, we observed phase reversals in these potentials. The mean time-to-peak latency of the intracerebral MMN-like potentials was 214 ± 38 ms (median 219 ms). We reveal MMN-like potentials in bilateral STN. This finding provides evidence that STN receives sensory (auditory) information from other structures. The question for further research is whether STN receives such signals through a previously described hyperdirect pathway between STN and frontal cortex (a known generator of the MMN potential) and if the STN contributes to sensorimotor integration.
Zobrazit více v PubMed
Exp Brain Res. 2004 Oct;158(3):289-301 PubMed
Ear Hear. 2000 Jun;21(3):252-6 PubMed
Adv Anat Embryol Cell Biol. 2008;198:1-113, vii PubMed
Neurorehabil Neural Repair. 2011 Sep;25(7):626-35 PubMed
Brain. 2005 Apr;128(Pt 4):819-28 PubMed
J Neurosci. 2012 Jan 25;32(4):1447-52 PubMed
Acta Neurobiol Exp (Wars). 2003;63(1):55-63 PubMed
Neurobiol Aging. 2010 Jan;31(1):104-13 PubMed
Arch Neurol. 2011 Feb;68(2):165 PubMed
Electroencephalogr Clin Neurophysiol. 1992 Jul;83(1):87-90 PubMed
Mov Disord. 2010 Nov 15;25(15):2649-53 PubMed
PLoS One. 2013;8(1):e54624 PubMed
Neuroimage. 2007 Jul 1;36(3):571-80 PubMed
Neuroreport. 2000 May 15;11(7):1515-7 PubMed
Neurorehabil Neural Repair. 2012 Jul-Aug;26(6):636-45 PubMed
Prog Neurobiol. 2005 Aug;76(6):393-413 PubMed
Ear Hear. 1995 Feb;16(1):38-51 PubMed
Pain. 2011 Apr;152(4):860-865 PubMed
Electroencephalogr Clin Neurophysiol. 1987 Jun;66(6):571-8 PubMed
Trends Neurosci. 2001 May;24(5):283-8 PubMed
J Neurophysiol. 1994 Sep;72(3):1270-7 PubMed
Clin Neurophysiol. 2000 Mar;111(3):546-51 PubMed
Electroencephalogr Clin Neurophysiol. 1995 Jul;95(1):47-52 PubMed
Clin Neurophysiol. 2004 Feb;115(2):424-34 PubMed
Clin Neurophysiol. 2009 Mar;120(3):453-63 PubMed
Psychophysiology. 1992 Sep;29(5):546-50 PubMed
Clin Neurophysiol. 2012 Mar;123(3):424-58 PubMed
Exp Brain Res. 2006 Sep;173(4):650-60 PubMed
Cortex. 2009 Sep;45(8):982-90 PubMed
PLoS One. 2010 Mar 22;5(3):e9675 PubMed
Mov Disord. 2008 Mar 15;23(4):553-7 PubMed
Psychophysiology. 1990 Nov;27(6):627-40 PubMed
Brain. 2010 Sep;133(9):2656-63 PubMed
Clin Neurophysiol. 2003 Mar;114(3):463-71 PubMed
Neurodegener Dis. 2010;7(1-3):160-2 PubMed
Clin Neurophysiol. 2001 Nov;112(11):2022-30 PubMed
Acta Psychol (Amst). 1978 Jul;42(4):313-29 PubMed
Clin Neurophysiol. 2009 Nov;120(11):1883-1908 PubMed
IEEE Trans Inf Technol Biomed. 2010 Mar;14(2):436-46 PubMed
Parkinsonism Relat Disord. 2007 Aug;13(6):323-32 PubMed
Neuroreport. 2002 Dec 3;13(17):2209-12 PubMed
Brain Res Cogn Brain Res. 2001 Apr;11(2):227-33 PubMed
J Neurol Sci. 2011 Nov 15;310(1-2):96-9 PubMed
J Neural Transm (Vienna). 2011 Aug;118(8):1235-45 PubMed
J Neurol. 2009 Aug;256 Suppl 3:293-8 PubMed
Int J Geriatr Psychiatry. 2000 Jul;15(7):644-9 PubMed
Mov Disord. 2012 Apr;27(4):574-8 PubMed
Psychophysiology. 2002 May;39(3):388-96 PubMed
Clin Neurophysiol. 2001 Nov;112(11):2146-53 PubMed
Neurosci Lett. 2000 Feb 18;280(2):87-90 PubMed
Science. 1965 Nov 26;150(3700):1187-8 PubMed
J Neurol. 2005 Oct;252 Suppl 4:IV13-IV16 PubMed
J Cogn Neurosci. 1993 Summer;5(3):363-70 PubMed
Neurosci Lett. 2001 Aug 3;308(2):107-10 PubMed
Neuroimage. 1999 Jan;9(1):135-44 PubMed
Exp Brain Res. 1978 Nov 15;33(3-4):395-403 PubMed
Neuroimage. 2007 Aug 15;37(2):561-71 PubMed
Am J Phys Med Rehabil. 2012 Jan;91(1):2-11 PubMed
Neurosci Lett. 2011 May 16;495(2):144-9 PubMed
Clin Neurophysiol. 2007 Dec;118(12):2544-90 PubMed
Psychophysiology. 1995 Jul;32(4):418-22 PubMed
J Acoust Soc Am. 1994 Nov;96(5 Pt 1):2758-68 PubMed
Eur J Neurol. 2008 Apr;15 Suppl 1:14-20 PubMed
Audiol Neurootol. 2000 May-Aug;5(3-4):216-24 PubMed
Brain. 2011 Dec;134(Pt 12):3435-53 PubMed
Brain Res Cogn Brain Res. 1994 Sep;2(2):117-29 PubMed
J Neurosci. 1996 Apr 15;16(8):2671-83 PubMed
Clin Neurophysiol. 2003 Dec;114(12):2447-60 PubMed
Exp Brain Res. 2010 Jun;203(2):317-27 PubMed
J Neurosci. 2011 Mar 2;31(9):3400-6 PubMed