Specific detection of Staphylococcus aureus infection and marker for Alzheimer disease by surface enhanced Raman spectroscopy using silver and gold nanoparticle-coated magnetic polystyrene beads
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
33737512
PubMed Central
PMC7973519
DOI
10.1038/s41598-021-84793-7
PII: 10.1038/s41598-021-84793-7
Knihovny.cz E-zdroje
- MeSH
- Alzheimerova nemoc krev diagnóza genetika MeSH
- biologické markery analýza MeSH
- dopamin chemie MeSH
- kyselina askorbová chemie MeSH
- lidé MeSH
- magnetické nanočástice oxidů železa chemie ultrastruktura MeSH
- polystyreny chemie MeSH
- proteiny tau analýza krev genetika MeSH
- Ramanova spektroskopie metody MeSH
- stafylokokové infekce diagnóza mikrobiologie MeSH
- Staphylococcus aureus růst a vývoj patogenita MeSH
- streptavidin chemie MeSH
- stříbro chemie MeSH
- synoviální tekutina mikrobiologie MeSH
- velikost částic MeSH
- zlato chemie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- biologické markery MeSH
- dopamin MeSH
- kyselina askorbová MeSH
- MAPT protein, human MeSH Prohlížeč
- polystyreny MeSH
- proteiny tau MeSH
- streptavidin MeSH
- stříbro MeSH
- zlato MeSH
Targeted and effective therapy of diseases demands utilization of rapid methods of identification of the given markers. Surface enhanced Raman spectroscopy (SERS) in conjunction with streptavidin-biotin complex is a promising alternative to culture or PCR based methods used for such purposes. Many biotinylated antibodies are available on the market and so this system offers a powerful tool for many analytical applications. Here, we present a very fast and easy-to-use procedure for preparation of streptavidin coated magnetic polystyrene-Au (or Ag) nanocomposite particles as efficient substrate for surface SERS purposes. As a precursor for the preparation of SERS active and magnetically separable composite, commercially available streptavidin coated polystyrene (PS) microparticles with a magnetic core were utilized. These composites of PS particles with silver or gold nanoparticles were prepared by reducing Au(III) or Ag(I) ions using ascorbic acid or dopamine. The choice of the reducing agent influences the morphology and the size of the prepared Ag or Au particles (15-100 nm). The prepare composites were also characterized by HR-TEM images, mapping of elements and also magnetization measurements. The content of Au and Ag was determined by AAS analysis. The synthesized composites have a significantly lower density against magnetic composites based on iron oxides, which considerably decreases the tendency to sedimentation. The polystyrene shell on a magnetic iron oxide core also pronouncedly reduces the inclination to particle aggregation. Moreover, the preparation and purification of this SERS substrate takes only a few minutes. The PS composite with thorny Au particles with the size of approximately 100 nm prepared was utilized for specific and selective detection of Staphylococcus aureus infection in joint knee fluid (PJI) and tau protein (marker for Alzheimer disease).
Zobrazit více v PubMed
Kneipp K, Wang Y, Kneipp H, Perelman LT, Itzkan I, Dasari R, Feld MS. Single molecule detection using surface-enhanced Raman scattering (SERS) Phys. Rev. Lett. 1997;78:1667–1670. doi: 10.1103/PhysRevLett.78.1667. DOI
Xue JQ, Li DW, Qu LL, Long YT. Surface-imprinted core–shell Au nanoparticles for selective detection of bisphenol A based on surface-enhanced Raman scattering. Anal. Chim. Acta. 2013;777:57–62. doi: 10.1016/j.aca.2013.03.037. PubMed DOI
Guerrini L, Garcia-Ramos JV, Domingo C, Sanchez-Cortes S. Sensing polycyclic aromatic hydrocarbons with dithiocarbamate-functionalized Ag nanoparticles by surface-enhanced Raman scattering. Anal. Chem. 2009;81:953–960. doi: 10.1021/ac801709e. PubMed DOI
He LL, Lin MS, Li H, Kim NJ. Surface-enhanced Raman spectroscopy coupled with dendritic silver nanosubstrate for detection of restricted antibiotics. J. Raman Spectrosc. 2010;41:739–744.
Walter A, Maerz A, Schumacher W, Rosch P, Popp J. Towards a fast, high specific and reliable discrimination of bacteria on strain level by means of SERS in a microfluidic device. Lab Chip. 2011;11:1013–1021. doi: 10.1039/c0lc00536c. PubMed DOI
Fan C, Hu ZQ, Mustapha A, Lin MS. Rapid detection of food- and waterborne bacteria using surface-enhanced Raman spectroscopy coupled with silver nanosubstrates. Appl. Microbiol. Biotechnol. 2011;92:1053–1061. doi: 10.1007/s00253-011-3634-3. PubMed DOI
Cowcher DP, Xu Y, Goodacre R. Portable, quantitative detection of bacillus bacterial spores using surface-enhanced Raman scattering. Anal. Chem. 2013;85:3297–3302. doi: 10.1021/ac303657k. PubMed DOI
Shiohara A, Novikov SM, Solis DM, Taboada JM, Obelleiro F, Liz-Marzan LM. Plasmon modes and hot spots in gold nanostar-satellite clusters. J. Phys. Chem. C. 2015;119:10836–10843. doi: 10.1021/jp509953f. DOI
Shiohara A, Langer J, Polavarapu L, Liz-Marzan LM. Solution processed polydimethylsiloxane/gold nanostar flexible substrates for plasmonic sensing. Nanoscale. 2014;6:9817–9823. doi: 10.1039/C4NR02648A. PubMed DOI
Li SW, Xu P, Ren ZQ, Zhang B, Du YC, Han XJ, Mack NH, Wang HL. Fabrication of thorny Au nanostructures on polyaniline surfaces for sensitive surface-enhanced raman spectroscopy. ACS Appl. Mater. Interfaces. 2013;5:49–54. doi: 10.1021/am301881q. PubMed DOI
Yuan H, Ma WH, Chen CC, Zhu HY, Gao XP, Zhao JC. Controllable synthesis of 3D thorny plasmonic gold nanostructures and their tunable optical properties. J. Phys. Chem. C. 2011;115:23256–23260. doi: 10.1021/jp205565y. DOI
Yuan H, Ma WH, Chen CC, Zhao JC, Liu JW, Zhu HY, Gao XP. Shape and SPR evolution of thorny gold nanoparticles promoted by silver ions. Chem. Mat. 2007;19:1592–1600. doi: 10.1021/cm062046i. DOI
El-Said WA, Kim SU, Choi JW. Monitoring in vitro neural stem cell differentiation based on surface-enhanced Raman spectroscopy using a gold nanostar array. J. Mater. Chem. C. 2015;3:3848–3859. doi: 10.1039/C5TC00304K. DOI
Fales AM, Yuan H, Vo-Dinh T. Silica-coated gold nanostars for combined surface-enhanced Raman scattering (SERS) detection and singlet-oxygen generation: A potential nanoplatform for theranostics. Langmuir. 2011;27:12186–12190. doi: 10.1021/la202602q. PubMed DOI PMC
Van de Broek B, Devoogdt N, D'Hollander A, Gijs HL, Jans K, Lagae L, Muyldermans S, Maes G, Borghs G. Specific cell targeting with nanobody conjugated branched gold nanoparticles for photothermal therapy. ACS Nano. 2011;5:4319–4328. doi: 10.1021/nn1023363. PubMed DOI
Liu Y, Ashton JR, Moding EJ, Yuan HK, Register JK, Fales AM, Choi J, Whitley MJ, Zhao XG, Qi Y, Ma Y, Vaidyanathan G, Zalutsky MR, Kirsch DG, Badea CT, Vo-Dinh T. A plasmonic gold nanostar theranostic probe for in vivo tumor imaging and photothermal therapy. Theranostics. 2015;5:946–960. doi: 10.7150/thno.11974. PubMed DOI PMC
Chen HY, Zhang X, Dai SH, Ma YX, Cui SS, Achilefu S, Gu YQ. Multifunctional gold nanostar conjugates for tumor imaging and combined photothermal and chemo-therapy. Theranostics. 2013;3:633–649. doi: 10.7150/thno.6630. PubMed DOI PMC
Dondapati SK, Sau TK, Hrelescu C, Klar TA, Stefani FD, Feldmann J. Label-free biosensing based on single gold nanostars as plasmonic transducers. ACS Nano. 2010;4:6318–6322. doi: 10.1021/nn100760f. PubMed DOI
Ma W, Sun MZ, Xu LG, Wang LB, Kuang H, Xu CL. A SERS active gold nanostar dimer for mercury ion detection. Chem. Commun. 2013;49:4989–4991. doi: 10.1039/c3cc39087j. PubMed DOI
Indrasekara A, Meyers S, Shubeita S, Feldman LC, Gustafsson T, Fabris L. Gold nanostar substrates for SERS-based chemical sensing in the femtomolar regime. Nanoscale. 2014;6:8891–8899. doi: 10.1039/C4NR02513J. PubMed DOI
Osinkina L, Lohmuller T, Jackel F, Feldmann J. Synthesis of gold nanostar arrays as reliable, large-scale, homogeneous substrates for surface-enhanced raman scattering imaging and spectroscopy. J. Phys. Chem. C. 2013;117:22198–22202. doi: 10.1021/jp312149d. DOI
Lee J, Hua B, Park S, Ha M, Lee Y, Fan Z, Ko H. Tailoring surface plasmons of high-density gold nanostar assemblies on metal films for surface-enhanced Raman spectroscopy. Nanoscale. 2014;6:616–623. doi: 10.1039/C3NR04752K. PubMed DOI
Chen K, Han HY, Luo ZH. Streptococcus suis II immunoassay based on thorny gold nanoparticles and surface enhanced Raman scattering. Analyst. 2012;137:1259–1264. doi: 10.1039/c2an15997j. PubMed DOI
Suchomel P, Prucek R, Cerna K, Fargasova A, Panacek A, Gedanken A, Zboril R, Kvitek L. Highly efficient silver particle layers on glass substrate synthesized by the sonochemical method for surface enhanced Raman spectroscopy purposes. Ultrason. Sonochem. 2016;32:165–172. doi: 10.1016/j.ultsonch.2016.03.006. PubMed DOI
Sakho EM, Oluwafemi OS, Saha A, Thomas S, Kalarikkal N. Ultrasensitive detection of a 1-pyrenecarboxylic acid by surface enhanced Raman scattering hot spot with reduced graphene oxide/silver nanoparticles composites. Mater. Lett. 2016;171:137–141. doi: 10.1016/j.matlet.2016.02.073. DOI
Li Y, Yang J, Zhong T, Zhao N, Liu QQ, Shi HF, Xu HM. Fast and green synthesis of silver nanoparticles/reduced graphene oxide composite as efficient surface-enhanced Raman scattering substrate for bacteria detection. Mon. Chem. 2017;148:1155–1163. doi: 10.1007/s00706-017-1990-0. DOI
Han XX, Schmidt AM, Marten G, Fischer A, Weidinger IM, Hildebrandt P. Magnetic silver hybrid nanoparticles for surface-enhanced resonance Raman spectroscopic detection and decontamination of small toxic molecules. ACS Nano. 2013;7:3212–3220. doi: 10.1021/nn305892j. PubMed DOI
Chen L, Hong W, Guo ZN, Sa Y, Wang X, Jung YM, Zhao B. Magnetic assistance highly sensitive protein assay based on surface-enhanced resonance Raman scattering. J. Colloid Interface Sci. 2012;368:282–286. doi: 10.1016/j.jcis.2011.10.069. PubMed DOI
Ge M, Wei C, Xu MM, Fang CW, Yuan YX, Gu RO, Yao JL. Ultra-sensitive magnetic immunoassay of HE4 based on surface enhanced Raman spectroscopy. Anal. Methods. 2015;7:6489–6495. doi: 10.1039/C5AY00977D. DOI
Alula MT, Yang J. Photochemical decoration of gold nanoparticles on polymer stabilized magnetic microspheres for determination of adenine by surface-enhanced Raman spectroscopy. Microchim. Acta. 2015;182:1017–1024. doi: 10.1007/s00604-014-1429-9. DOI
Liu B, Bai C, Zhao D, Liu WL, Ren MM, Liu QZ, Yang ZZ, Wang XQ, Duan XL. Novel ferroferric oxide/polystyrene/silver core–shell magnetic nanocomposite microspheres as regenerable substrates for surface-enhanced Raman scattering. Appl. Surf. Sci. 2016;364:628–635. doi: 10.1016/j.apsusc.2015.12.186. DOI
Hu YX, Sun YG. Stable magnetic hot spots for simultaneous concentration and ultrasensitive surface-enhanced Raman scattering detection of solution analytes. J. Phys. Chem. C. 2012;116:13329–13335. doi: 10.1021/jp303775m. DOI
Chen M, Luo W, Zhang ZM, Zhu FW, Liao S, Yang H, Chen XQ. Sensitive surface enhanced Raman spectroscopy (SERS) detection of methotrexate by core–shell-satellite magnetic microspheres. Talanta. 2017;171:152–158. doi: 10.1016/j.talanta.2017.04.072. PubMed DOI
Guven B, Basaran-Akgul N, Temur E, Tamer U, Boyaci IH. SERS-based sandwich immunoassay using antibody coated magnetic nanoparticles for Escherichia coli enumeration. Analyst. 2011;136:740–748. doi: 10.1039/C0AN00473A. PubMed DOI
W. S. Yu, Y. Q. Huang, L. Pei, Y. X. Fan, X. H. Wang & K. Q. Lai. Magnetic Fe3O4/Ag hybrid nanoparticles as surface-enhanced raman scattering substrate for trace analysis of furazolidone in fish feeds. J. Nanomater.2014, 796575 (2014).
Sapsford KE, Algar WR, Berti L, Gemmill KB, Casey BJ, Oh E, Stewart MH, Medintz IL. Functionalizing nanoparticles with biological molecules: Developing chemistries that facilitate nanotechnology. Chem. Rev. 2013;113:1904–2074. doi: 10.1021/cr300143v. PubMed DOI
Jun BH, Noh MS, Kim G, Kang H, Kim JH, Chung WJ, Kim MS, Kim YK, Cho MH, Jeong DH, Lee YS. Protein separation and identification using magnetic beads encoded with surface-enhanced Raman spectroscopy. Anal. Biochem. 2009;391:24–30. doi: 10.1016/j.ab.2009.05.005. PubMed DOI
Balzerova A, Fargasova A, Markova Z, Ranc V, Zboril R. Magnetically-assisted surface enhanced Raman spectroscopy (MA-SERS) for label-free determination of human immunoglobulin G (IgG) in blood using Fe3O4@Ag nanocomposite. Anal. Chem. 2014;86:11107–11114. doi: 10.1021/ac503347h. PubMed DOI
Fargasova A, Balzerova A, Prucek R, Sedlakova MH, Bogdanova K, Gallo J, Kolar M, Ranc V, Zboril R. Detection of prosthetic joint infection based on magnetically assisted surface enhanced Raman spectroscopy. Anal. Chem. 2017;89:6598–6607. doi: 10.1021/acs.analchem.7b00759. PubMed DOI
Zhang H, Harpster MH, Park HJ, Johnson PA. Surface-enhanced Raman scattering detection of DNA derived from the west Nile virus genome using magnetic capture of Raman-active gold nanoparticles. Anal. Chem. 2011;83:254–260. doi: 10.1021/ac1023843. PubMed DOI
Wang YL, Ravindranath S, Irudayaraj J. Separation and detection of multiple pathogens in a food matrix by magnetic SERS nanoprobes. Anal. Bioanal. Chem. 2011;399:1271–1278. doi: 10.1007/s00216-010-4453-6. PubMed DOI
Neng J, Harpster MH, Wilson WC, Johnson PA. Surface-enhanced Raman scattering (SERS) detection of multiple viral antigens using magnetic capture of SERS-active nanoparticles. Biosens. Bioelectron. 2013;41:316–321. doi: 10.1016/j.bios.2012.08.048. PubMed DOI
Ma Q, Li YL, Gong NC, Jiang X, Huan SY. Surface enhanced Raman spectroscopy sensor based on magnetic beads-induced nanoparticles aggregation for detection of bacterial deoxyribonucleic acid. Chin. J. Anal. Chem. 2015;43:1676–1681. doi: 10.1016/S1872-2040(15)60876-3. DOI
J. Neng, J. Y. Tan, K. Jia & P. L. Sun. A fast and cost-effective detection of melamine by surface enhanced Raman spectroscopy using a novel hydrogen bonding-assisted supramolecular matrix and gold-coated magnetic nanoparticles. Appl. Sci.-Basel7(5), 475 (2017).
Chen SA, Yuan YX, Yao JL, Han SY, Gu RA. Magnetic separation and immunoassay of multi-antigen based on surface enhanced Raman spectroscopy. Chem. Commun. 2011;47:4225–4227. doi: 10.1039/c0cc05321j. PubMed DOI
Jiang HR, Zeng X, Xi ZJ, Liu M, Li CY, Li ZY, Jin L, Wang ZF, Deng Y, He NY. Improvement on controllable fabrication of streptavidin-modified three-layer core–shell Fe3O4@SiO2@Au magnetic nanocomposites with low fluorescence background. J. Biomed. Nanotechnol. 2013;9:674–684. doi: 10.1166/jbn.2013.1575. PubMed DOI
Bong KW, Kim JJ, Cho HS, Lim E, Doyle PS, Irimia D. Synthesis of cell-adhesive anisotropic multifunctional particles by stop flow lithography and streptavidin-biotin interactions. Langmuir. 2015;31:13165–13171. doi: 10.1021/acs.langmuir.5b03501. PubMed DOI PMC
Dundas CM, Demonte D, Park S. Streptavidin-biotin technology: Improvements and innovations in chemical and biological applications. Appl. Microbiol. Biotechnol. 2013;97:9343–9353. doi: 10.1007/s00253-013-5232-z. PubMed DOI
Prucek R, Panacek A, Fargasova A, Ranc V, Masek V, Kvitek L, Zboril R. Re-crystallization of silver nanoparticles in a highly concentrated NaCl environment-a new substrate for surface enhanced IR-visible Raman spectroscopy. CrystEngComm. 2011;13:2242–2248. doi: 10.1039/c0ce00776e. DOI
Prucek R, Panacek A, Soukupova J, Novotny R, Kvitek L. Reproducible synthesis of silver colloidal particles tailored for application in near-infrared surface-enhanced Raman spectroscopy. J. Mater. Chem. 2011;21:6416–6420. doi: 10.1039/c0jm03870a. DOI
Prucek R, Ranc V, Balzerova O, Panacek A, Zboril R, Kvitek L. Preparation of silver particles and its application for surface enhanced Raman scattering with near-infrared excitation. Mater. Res. Bull. 2014;50:63–67. doi: 10.1016/j.materresbull.2013.10.014. DOI
Voigt J, Mosier M, Darouiche R. Systematic review and meta-analysis of randomized controlled trials of antibiotics and antiseptics for preventing infection in people receiving primary total hip and knee prostheses. Antimicrob. Agents Chemother. 2015;59:6696–6707. doi: 10.1128/AAC.01331-15. PubMed DOI PMC
Corvec S, Portillo ME, Pasticci BM, Borens O, Trampuz A. Epidemiology and new developments in the diagnosis of prosthetic joint infection. Int. J. Artif. Organs. 2012;35:923–934. doi: 10.5301/ijao.5000168. PubMed DOI
Gelder J, Gussem K, Vandenabeele P, Moens L. Reference database of Raman spectra of biological molecules. J. Raman Spectrosc. 2007;38:1133–1147. doi: 10.1002/jrs.1734. DOI
Buee L, Bussiere T, Buee-Scherrer V, Delacourte A, Hof PR. Tau protein isoforms, phosphorylation and role in neurodegenerative disorders. Brain Res. Rev. 2000;33:95–130. doi: 10.1016/S0165-0173(00)00019-9. PubMed DOI
Guo T, Noble W, Hanger DP. Roles of tau protein in health and disease. Acta Neuropathol. 2017;133:665–704. doi: 10.1007/s00401-017-1707-9. PubMed DOI PMC
Sunderland T, Linker G, Mirza N, Putnam KT, Friedman DL, Kimmel LH, et al. Decreased beta-amyloid(1–42) and increased tau levels in cerebrospinal fluid of patients with Alzheimer disease. JAMA. 2003;289:2094–2103. doi: 10.1001/jama.289.16.2094. PubMed DOI
Prucek R, Tuček J, Kilianová M, Panáček A, Kvítek L, Filip J, Kolář M, Tománková K, Zbořil R. The targeted antibacterial and antifungal properties of magnetic nanocomposite of iron oxide and silver nanoparticles. Biomaterials. 2011;32:4704–4713. doi: 10.1016/j.biomaterials.2011.03.039. PubMed DOI
Panáček A, Kvítek L, Prucek R, Kolář M, Večeřová R, Pizúrová N, Sharma VK, Nevěčná T, Zbořil R. Silver colloid nanoparticles: Synthesis, characterization, and their antibacterial aktivity. J. Phys. Chem B. 2006;110:16248–16253. doi: 10.1021/jp063826h. PubMed DOI