Mechanical time-of-flight filter based on slotted disks and helical rotor for measurement of velocities of nanoparticles
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
20-15405Y
Grantová Agentura České Republiky
PubMed
33742023
PubMed Central
PMC7980000
DOI
10.1038/s41598-021-85533-7
PII: 10.1038/s41598-021-85533-7
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
A mechanical time-of-flight filter intended for measurement of velocities of nanoparticles exiting a gas aggregation source has been developed. Several configurations maximizing simplicity, throughput or resolution are suggested and investigated both theoretically and experimentally. It is shown that the data measured using such filters may be easily converted to the real velocity distribution with high precision. Furthermore, it is shown that properly designed filters allow for the monitoring of the velocity of nanoparticles even at the conditions with extremely low intensity of the nanoparticle beam.
Zobrazit více v PubMed
Cluster Beam Deposition of Functional Nanomaterials and Devices. (Elsevier, 2020). https://www.elsevier.com/books/cluster-beam-deposition-of-functional-nanomaterials-and-devices/milani/978-0-08-102515-4
Binns C. Nanoclusters deposited on surfaces. Surf. Sci. Rep. 2001;44:1–49. doi: 10.1016/S0167-5729(01)00015-2. DOI
Gas-Phase Synthesis of Nanoparticles (Wiley-VCH (Verlag), 2017).
Haberland H, Karrais M, Mall M. A new type of cluster and cluster ion source. Zeitschrift für Phys. D Atmos Mol. Clust. 1991;20:413–415. doi: 10.1007/BF01544025. DOI
Haberland H, Karrais M, Mall M, Thurner Y. Thin films from energetic cluster impact: A feasibility study. J. Vacuum Sci. Technol. A Vacuum Surf. Film. 1992;10:3266–3271. doi: 10.1116/1.577853. DOI
Gracia-Pinilla MÁ, Ferrer D, Mejía-Rosales S, Pérez-Tijerina E. Size-selected Ag nanoparticles with five-fold symmetry. Nanoscale Res. Lett. 2009;4:896–902. doi: 10.1007/s11671-009-9328-4. PubMed DOI PMC
Polonskyi O, et al. Nanocomposite metal/plasma polymer films prepared by means of gas aggregation cluster source. Thin Solid Films. 2012;520:4155–4162. doi: 10.1016/j.tsf.2011.04.100. DOI
Drache S, et al. Pulsed gas aggregation for improved nanocluster growth and flux. Phys. Status Solidi. 2014;211:1189–1193. doi: 10.1002/pssa.201330399. DOI
Luo Z, Woodward WH, Smith JC, Castleman AW. Growth kinetics of Al clusters in the gas phase produced by a magnetron-sputtering source. Int. J. Mass Spectrom. 2012;309:176–181. doi: 10.1016/j.ijms.2011.09.016. DOI
Drabik M, et al. Structure and composition of titanium nanocluster films prepared by a gas aggregation cluster source. J. Phys. Chem. C. 2011;115:20937–20944. doi: 10.1021/jp2059485. DOI
Drábik M, et al. Morphology of titanium nanocluster films prepared by gas aggregation cluster source. Plasma Process. Polym. 2011;8:640–650. doi: 10.1002/ppap.201000126. DOI
Nielsen RM, et al. The morphology of mass selected ruthenium nanoparticles from a magnetron-sputter gas-aggregation source. J. Nanoparticle Res. 2010;12:1249–1262. doi: 10.1007/s11051-009-9830-8. DOI
Bray KR, Jiao CQ, DeCerbo JN. Nucleation and growth of Nb nanoclusters during plasma gas condensation. J. Appl. Phys. 2013;113:234307. doi: 10.1063/1.4811448. DOI
Ayesh AI, Qamhieh N, Ghamlouche H, Thaker S, El-Shaer M. Fabrication of size-selected Pd nanoclusters using a magnetron plasma sputtering source. J. Appl. Phys. 2010;107:34317. doi: 10.1063/1.3296131. DOI
Kylián O, et al. Fabrication of Cu nanoclusters and their use for production of Cu/plasma polymer nanocomposite thin films. Thin Solid Films. 2014;550:46–52. doi: 10.1016/j.tsf.2013.10.029. DOI
Kylián O, et al. Deposition of Pt nanoclusters by means of gas aggregation cluster source. Mater. Lett. 2012;79:229–231. doi: 10.1016/j.matlet.2012.04.022. DOI
Acsente T, et al. Synthesis of flower-like tungsten nanoparticles by magnetron sputtering combined with gas aggregation. Eur. Phys. J. D. 2015;69:161. doi: 10.1140/epjd/e2015-60097-4. DOI
Shelemin A, et al. Preparation of metal oxide nanoparticles by gas aggregation cluster source. Vacuum. 2015;120:162–169. doi: 10.1016/j.vacuum.2015.07.008. DOI
Ahadi AM, Polonskyi O, Schürmann U, Strunskus T, Faupel F. Stable production of TiO x nanoparticles with narrow size distribution by reactive pulsed dc magnetron sputtering. J. Phys. D. Appl. Phys. 2015;48:35501. doi: 10.1088/0022-3727/48/3/035501. DOI
Polonskyi O, et al. Plasma based formation and deposition of metal and metal oxide nanoparticles using a gas aggregation source. Eur. Phys. J. D. 2018;72:93. doi: 10.1140/epjd/e2017-80419-8. DOI
Solař P, et al. Nanostructured thin films prepared from cluster beams. Surf. Coat. Technol. 2011;205:S42–S47. doi: 10.1016/j.surfcoat.2011.01.059. DOI
Polonskyi O, et al. Nylon-sputtered nanoparticles: Fabrication and basic properties. J. Phys. D. Appl. Phys. 2012;45:495301. doi: 10.1088/0022-3727/45/49/495301. DOI
Drábik M, et al. Deposition of fluorocarbon nanoclusters by gas aggregation cluster source. Plasma Process. Polym. 2012;9:390–397. doi: 10.1002/ppap.201100147. DOI
Solař P, et al. Nylon-sputtered plasma polymer particles produced by a semi-hollow cathode gas aggregation source. Vacuum. 2015;111:124–130. doi: 10.1016/j.vacuum.2014.09.023. DOI
Choukourov A, et al. Advances and challenges in the field of plasma polymer nanoparticles. Beilstein J. Nanotechnol. 2017;8:2002–2014. doi: 10.3762/bjnano.8.200. PubMed DOI PMC
Pleskunov P, et al. Carboxyl-functionalized nanoparticles produced by pulsed plasma polymerization of acrylic acid. J. Phys. Chem. B. 2018;122:4187–4194. doi: 10.1021/acs.jpcb.8b01648. PubMed DOI
Singh, V., Cassidy, C., Grammatikopoulos, P. & Djurabekova, F. Heterogeneous Gas-Phase Synthesis and Molecular Dynamics Modeling of Janus and Core–Satellite Si–Ag Nanoparticles. (2014). 10.1021/jp500684y.
Martínez L, et al. Generation of nanoparticles with adjustable size and controlled stoichiometry: Recent advances. Langmuir. 2012;28:11241–11249. doi: 10.1021/la3022134. PubMed DOI
Llamosa D, et al. The ultimate step towards a tailored engineering of core-shell and core-shell-shell nanoparticles. Nanoscale. 2014;6:3–6. doi: 10.1039/C4NR02913E. PubMed DOI
Xu Y-H, Wang J-P. Direct gas-phase synthesis of heterostructured nanoparticles through phase separation and surface segregation. Adv. Mater. 2008;20:994–999. doi: 10.1002/adma.200602895. DOI
Bai J, Wang JP. High-magnetic-moment core-shell-type FeCo-Au/Ag nanoparticles. Appl. Phys. Lett. 2005;87:1–3.
Benelmekki M, et al. A facile single-step synthesis of ternary multicore magneto-plasmonic nanoparticles. Nanoscale. 2014;6:3532–3535. doi: 10.1039/C3NR06114K. PubMed DOI
Bai J, Xu Y-H, Thomas J, Wang J-P. (FeCo)3 Si–SiOx core–shell nanoparticles fabricated in the gas phase. Nanotechnology. 2007;18:65701. doi: 10.1088/0957-4484/18/6/065701. DOI
Solař P, et al. Single-step generation of metal-plasma polymer multicore@shell nanoparticles from the gas phase. Sci. Rep. 2017;7:8514. doi: 10.1038/s41598-017-08274-6. PubMed DOI PMC
Solař P, et al. Composite Ni@Ti nanoparticles produced in arrow-shaped gas aggregation source. J. Phys. D. Appl. Phys. 2020;53:195303. doi: 10.1088/1361-6463/ab7353. DOI
Vahl A, et al. Single target sputter deposition of alloy nanoparticles with adjustable composition via a gas aggregation cluster source. Nanotechnology. 2017;28:175703. doi: 10.1088/1361-6528/aa66ef. PubMed DOI
Hanuš J, et al. Fabrication of Ni@Ti core–shell nanoparticles by modified gas aggregation source. J. Phys. D. Appl. Phys. 2017;50:475307. doi: 10.1088/1361-6463/aa8f25. DOI
Haberland H, Insepov Z, Moseler M. Molecular-dynamics simulation of thin-film growth by energetic cluster impact. Phys. Rev. B. 1995;51:11061–11067. doi: 10.1103/PhysRevB.51.11061. PubMed DOI
Popok VN, Kylián O. Gas-phase synthesis of functional nanomaterials. Appl. Nano. 2020;1:25–58. doi: 10.3390/applnano1010004. DOI
Popok VN, Barke I, Campbell EEB, Meiwes-Broer K-H. Cluster–surface interaction: From soft landing to implantation. Surf. Sci. Rep. 2011;66:347–377. doi: 10.1016/j.surfrep.2011.05.002. DOI
Partridge JG, et al. Templated-assembly of conducting antimony cluster wires. Nanotechnology. 2004;15:1382–1387. doi: 10.1088/0957-4484/15/9/045. DOI
Reichel R, et al. From the adhesion of atomic clusters to the fabrication of nanodevices. Appl. Phys. Lett. 2006;89:213105. doi: 10.1063/1.2387894. DOI
Reichel R, Partridge JG, Brown SA. Characterization of a template process for conducting cluster-assembled wires. Appl. Phys. A. 2009;97:315–321. doi: 10.1007/s00339-009-5385-x. DOI
Balasubramanian B, et al. Synthesis of monodisperse TiO2-paraffin core-shell nanoparticles for improved dielectric properties. ACS Nano. 2010;4:1893–1900. doi: 10.1021/nn9016422. PubMed DOI
Kylián O, et al. Core@shell Cu/hydrocarbon plasma polymer nanoparticles prepared by gas aggregation cluster source followed by in-flight plasma polymer coating. Plasma Process. Polym. 2018;15:1700109. doi: 10.1002/ppap.201700109. DOI
Kylián O, et al. Silver/plasma polymer strawberry-like nanoparticles produced by gas-phase synthesis. Mater. Lett. 2019;253:238–241. doi: 10.1016/j.matlet.2019.06.069. DOI
Cassidy C, et al. Inoculation of silicon nanoparticles with silver atoms. Sci. Rep. 2013;3:3083. doi: 10.1038/srep03083. PubMed DOI PMC
Popok VN, et al. Comparative study of antibacterial properties of polystyrene films with TiOx and Cu nanoparticles fabricated using cluster beam technique. Beilstein J. Nanotechnol. 2018;9:861–869. doi: 10.3762/bjnano.9.80. PubMed DOI PMC
Kousal J, et al. Characterization of nanoparticle flow produced by gas aggregation source. Vacuum. 2013;96:32–38. doi: 10.1016/j.vacuum.2013.02.015. DOI
Ganeva M, Kashtanov PV, Kosarim AV, Smirnov BM, Hippler R. Clusters as a diagnostics tool for gas flows. Phys. Uspekhi. 2015;58:579–588. doi: 10.3367/UFNe.0185.201506d.0619. DOI
Ganeva M, Pipa AV, Smirnov BM, Kashtanov PV, Hippler R. Velocity distribution of mass-selected nano-size cluster ions. Plasma Sources Sci. Technol. 2013;22:45011. doi: 10.1088/0963-0252/22/4/045011. DOI
Wrenger B, Meiwes-Broer KH. The application of a Wien filter to mass analysis of heavy clusters from a pulsed supersonic nozzle source. Rev. Sci. Instrum. 1997;68:2027–2030. doi: 10.1063/1.1148092. DOI
Bergmann T, Martin TP, Schaber H. High-resolution time-of-flight mass spectrometers: Part I. Effects of field distortions in the vicinity of wire meshes. Rev. Sci. Instrum. 1989;60:347–349. doi: 10.1063/1.1140436. DOI
Trottenberg T, Spethmann A, Kersten H. An interferometric force probe for beam diagnostics and the study of sputtering. EPJ Tech. Instrum. 2018;5:3. doi: 10.1140/epjti/s40485-018-0044-2. DOI
Hostettler HU, Bernstein RB. Improved slotted disk type velocity selector for molecular beams. Rev. Sci. Instrum. 1960;31:872–877. doi: 10.1063/1.1717075. DOI
van Steyn R, Verster NF. The design of slotted disc velocity selectors for molecular beams. J. Phys. E. 1972;5:691–697. doi: 10.1088/0022-3735/5/7/027. DOI
Frankl DR. Effects of angular beam dispersion on performance of slotted-disk velocity selectors. Rev. Sci. Instrum. 1974;45:1375–1377. doi: 10.1063/1.1686505. DOI
Pirani F, et al. A simple and compact mechanical velocity selector of use to analyze/select molecular alignment in supersonic seeded beams. Rev. Sci. Instrum. 2004;75:349–354. doi: 10.1063/1.1637433. DOI
Roux JF, et al. Mass selection of neutral clusters in low-energy cluster beam deposition experiments: Is it realistic? Appl. Phys. Lett. 1994;64:1212–1214. doi: 10.1063/1.110892. DOI
Gauter S, et al. Calorimetric investigations in a gas aggregation source. J. Appl. Phys. 2018;124:73301. doi: 10.1063/1.5037413. DOI
Dash JG, Sommers HS. A high transmission slow neutron velocity selector. Rev. Sci. Instrum. 1953;24:91–96. doi: 10.1063/1.1770658. DOI
Szewc C, Collier JD, Ulbricht H. Note: A helical velocity selector for continuous molecular beams. Rev. Sci. Instrum. 2010;81:106107. doi: 10.1063/1.3499254. PubMed DOI
Smirnov BM, Shyjumon I, Hippler R. Flow of nanosize cluster-containing plasma in a magnetron discharge. Phys. Rev. E. 2007;75:66402. doi: 10.1103/PhysRevE.75.066402. PubMed DOI
Ganeva M, Pipa AV, Hippler R. The influence of target erosion on the mass spectra of clusters formed in the planar DC magnetron sputtering source. Surf. Coat. Technol. 2012;213:41–47. doi: 10.1016/j.surfcoat.2012.10.012. DOI
Plasmonic Ag/Cu/PEG nanofluids prepared when solids meet liquids in the gas phase