Mechanical time-of-flight filter based on slotted disks and helical rotor for measurement of velocities of nanoparticles

. 2021 Mar 19 ; 11 (1) : 6415. [epub] 20210319

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33742023

Grantová podpora
20-15405Y Grantová Agentura České Republiky

Odkazy

PubMed 33742023
PubMed Central PMC7980000
DOI 10.1038/s41598-021-85533-7
PII: 10.1038/s41598-021-85533-7
Knihovny.cz E-zdroje

A mechanical time-of-flight filter intended for measurement of velocities of nanoparticles exiting a gas aggregation source has been developed. Several configurations maximizing simplicity, throughput or resolution are suggested and investigated both theoretically and experimentally. It is shown that the data measured using such filters may be easily converted to the real velocity distribution with high precision. Furthermore, it is shown that properly designed filters allow for the monitoring of the velocity of nanoparticles even at the conditions with extremely low intensity of the nanoparticle beam.

Zobrazit více v PubMed

Cluster Beam Deposition of Functional Nanomaterials and Devices. (Elsevier, 2020). https://www.elsevier.com/books/cluster-beam-deposition-of-functional-nanomaterials-and-devices/milani/978-0-08-102515-4

Binns C. Nanoclusters deposited on surfaces. Surf. Sci. Rep. 2001;44:1–49. doi: 10.1016/S0167-5729(01)00015-2. DOI

Gas-Phase Synthesis of Nanoparticles (Wiley-VCH (Verlag), 2017).

Haberland H, Karrais M, Mall M. A new type of cluster and cluster ion source. Zeitschrift für Phys. D Atmos Mol. Clust. 1991;20:413–415. doi: 10.1007/BF01544025. DOI

Haberland H, Karrais M, Mall M, Thurner Y. Thin films from energetic cluster impact: A feasibility study. J. Vacuum Sci. Technol. A Vacuum Surf. Film. 1992;10:3266–3271. doi: 10.1116/1.577853. DOI

Gracia-Pinilla MÁ, Ferrer D, Mejía-Rosales S, Pérez-Tijerina E. Size-selected Ag nanoparticles with five-fold symmetry. Nanoscale Res. Lett. 2009;4:896–902. doi: 10.1007/s11671-009-9328-4. PubMed DOI PMC

Polonskyi O, et al. Nanocomposite metal/plasma polymer films prepared by means of gas aggregation cluster source. Thin Solid Films. 2012;520:4155–4162. doi: 10.1016/j.tsf.2011.04.100. DOI

Drache S, et al. Pulsed gas aggregation for improved nanocluster growth and flux. Phys. Status Solidi. 2014;211:1189–1193. doi: 10.1002/pssa.201330399. DOI

Luo Z, Woodward WH, Smith JC, Castleman AW. Growth kinetics of Al clusters in the gas phase produced by a magnetron-sputtering source. Int. J. Mass Spectrom. 2012;309:176–181. doi: 10.1016/j.ijms.2011.09.016. DOI

Drabik M, et al. Structure and composition of titanium nanocluster films prepared by a gas aggregation cluster source. J. Phys. Chem. C. 2011;115:20937–20944. doi: 10.1021/jp2059485. DOI

Drábik M, et al. Morphology of titanium nanocluster films prepared by gas aggregation cluster source. Plasma Process. Polym. 2011;8:640–650. doi: 10.1002/ppap.201000126. DOI

Nielsen RM, et al. The morphology of mass selected ruthenium nanoparticles from a magnetron-sputter gas-aggregation source. J. Nanoparticle Res. 2010;12:1249–1262. doi: 10.1007/s11051-009-9830-8. DOI

Bray KR, Jiao CQ, DeCerbo JN. Nucleation and growth of Nb nanoclusters during plasma gas condensation. J. Appl. Phys. 2013;113:234307. doi: 10.1063/1.4811448. DOI

Ayesh AI, Qamhieh N, Ghamlouche H, Thaker S, El-Shaer M. Fabrication of size-selected Pd nanoclusters using a magnetron plasma sputtering source. J. Appl. Phys. 2010;107:34317. doi: 10.1063/1.3296131. DOI

Kylián O, et al. Fabrication of Cu nanoclusters and their use for production of Cu/plasma polymer nanocomposite thin films. Thin Solid Films. 2014;550:46–52. doi: 10.1016/j.tsf.2013.10.029. DOI

Kylián O, et al. Deposition of Pt nanoclusters by means of gas aggregation cluster source. Mater. Lett. 2012;79:229–231. doi: 10.1016/j.matlet.2012.04.022. DOI

Acsente T, et al. Synthesis of flower-like tungsten nanoparticles by magnetron sputtering combined with gas aggregation. Eur. Phys. J. D. 2015;69:161. doi: 10.1140/epjd/e2015-60097-4. DOI

Shelemin A, et al. Preparation of metal oxide nanoparticles by gas aggregation cluster source. Vacuum. 2015;120:162–169. doi: 10.1016/j.vacuum.2015.07.008. DOI

Ahadi AM, Polonskyi O, Schürmann U, Strunskus T, Faupel F. Stable production of TiO x nanoparticles with narrow size distribution by reactive pulsed dc magnetron sputtering. J. Phys. D. Appl. Phys. 2015;48:35501. doi: 10.1088/0022-3727/48/3/035501. DOI

Polonskyi O, et al. Plasma based formation and deposition of metal and metal oxide nanoparticles using a gas aggregation source. Eur. Phys. J. D. 2018;72:93. doi: 10.1140/epjd/e2017-80419-8. DOI

Solař P, et al. Nanostructured thin films prepared from cluster beams. Surf. Coat. Technol. 2011;205:S42–S47. doi: 10.1016/j.surfcoat.2011.01.059. DOI

Polonskyi O, et al. Nylon-sputtered nanoparticles: Fabrication and basic properties. J. Phys. D. Appl. Phys. 2012;45:495301. doi: 10.1088/0022-3727/45/49/495301. DOI

Drábik M, et al. Deposition of fluorocarbon nanoclusters by gas aggregation cluster source. Plasma Process. Polym. 2012;9:390–397. doi: 10.1002/ppap.201100147. DOI

Solař P, et al. Nylon-sputtered plasma polymer particles produced by a semi-hollow cathode gas aggregation source. Vacuum. 2015;111:124–130. doi: 10.1016/j.vacuum.2014.09.023. DOI

Choukourov A, et al. Advances and challenges in the field of plasma polymer nanoparticles. Beilstein J. Nanotechnol. 2017;8:2002–2014. doi: 10.3762/bjnano.8.200. PubMed DOI PMC

Pleskunov P, et al. Carboxyl-functionalized nanoparticles produced by pulsed plasma polymerization of acrylic acid. J. Phys. Chem. B. 2018;122:4187–4194. doi: 10.1021/acs.jpcb.8b01648. PubMed DOI

Singh, V., Cassidy, C., Grammatikopoulos, P. & Djurabekova, F. Heterogeneous Gas-Phase Synthesis and Molecular Dynamics Modeling of Janus and Core–Satellite Si–Ag Nanoparticles. (2014). 10.1021/jp500684y.

Martínez L, et al. Generation of nanoparticles with adjustable size and controlled stoichiometry: Recent advances. Langmuir. 2012;28:11241–11249. doi: 10.1021/la3022134. PubMed DOI

Llamosa D, et al. The ultimate step towards a tailored engineering of core-shell and core-shell-shell nanoparticles. Nanoscale. 2014;6:3–6. doi: 10.1039/C4NR02913E. PubMed DOI

Xu Y-H, Wang J-P. Direct gas-phase synthesis of heterostructured nanoparticles through phase separation and surface segregation. Adv. Mater. 2008;20:994–999. doi: 10.1002/adma.200602895. DOI

Bai J, Wang JP. High-magnetic-moment core-shell-type FeCo-Au/Ag nanoparticles. Appl. Phys. Lett. 2005;87:1–3.

Benelmekki M, et al. A facile single-step synthesis of ternary multicore magneto-plasmonic nanoparticles. Nanoscale. 2014;6:3532–3535. doi: 10.1039/C3NR06114K. PubMed DOI

Bai J, Xu Y-H, Thomas J, Wang J-P. (FeCo)3 Si–SiOx core–shell nanoparticles fabricated in the gas phase. Nanotechnology. 2007;18:65701. doi: 10.1088/0957-4484/18/6/065701. DOI

Solař P, et al. Single-step generation of metal-plasma polymer multicore@shell nanoparticles from the gas phase. Sci. Rep. 2017;7:8514. doi: 10.1038/s41598-017-08274-6. PubMed DOI PMC

Solař P, et al. Composite Ni@Ti nanoparticles produced in arrow-shaped gas aggregation source. J. Phys. D. Appl. Phys. 2020;53:195303. doi: 10.1088/1361-6463/ab7353. DOI

Vahl A, et al. Single target sputter deposition of alloy nanoparticles with adjustable composition via a gas aggregation cluster source. Nanotechnology. 2017;28:175703. doi: 10.1088/1361-6528/aa66ef. PubMed DOI

Hanuš J, et al. Fabrication of Ni@Ti core–shell nanoparticles by modified gas aggregation source. J. Phys. D. Appl. Phys. 2017;50:475307. doi: 10.1088/1361-6463/aa8f25. DOI

Haberland H, Insepov Z, Moseler M. Molecular-dynamics simulation of thin-film growth by energetic cluster impact. Phys. Rev. B. 1995;51:11061–11067. doi: 10.1103/PhysRevB.51.11061. PubMed DOI

Popok VN, Kylián O. Gas-phase synthesis of functional nanomaterials. Appl. Nano. 2020;1:25–58. doi: 10.3390/applnano1010004. DOI

Popok VN, Barke I, Campbell EEB, Meiwes-Broer K-H. Cluster–surface interaction: From soft landing to implantation. Surf. Sci. Rep. 2011;66:347–377. doi: 10.1016/j.surfrep.2011.05.002. DOI

Partridge JG, et al. Templated-assembly of conducting antimony cluster wires. Nanotechnology. 2004;15:1382–1387. doi: 10.1088/0957-4484/15/9/045. DOI

Reichel R, et al. From the adhesion of atomic clusters to the fabrication of nanodevices. Appl. Phys. Lett. 2006;89:213105. doi: 10.1063/1.2387894. DOI

Reichel R, Partridge JG, Brown SA. Characterization of a template process for conducting cluster-assembled wires. Appl. Phys. A. 2009;97:315–321. doi: 10.1007/s00339-009-5385-x. DOI

Balasubramanian B, et al. Synthesis of monodisperse TiO2-paraffin core-shell nanoparticles for improved dielectric properties. ACS Nano. 2010;4:1893–1900. doi: 10.1021/nn9016422. PubMed DOI

Kylián O, et al. Core@shell Cu/hydrocarbon plasma polymer nanoparticles prepared by gas aggregation cluster source followed by in-flight plasma polymer coating. Plasma Process. Polym. 2018;15:1700109. doi: 10.1002/ppap.201700109. DOI

Kylián O, et al. Silver/plasma polymer strawberry-like nanoparticles produced by gas-phase synthesis. Mater. Lett. 2019;253:238–241. doi: 10.1016/j.matlet.2019.06.069. DOI

Cassidy C, et al. Inoculation of silicon nanoparticles with silver atoms. Sci. Rep. 2013;3:3083. doi: 10.1038/srep03083. PubMed DOI PMC

Popok VN, et al. Comparative study of antibacterial properties of polystyrene films with TiOx and Cu nanoparticles fabricated using cluster beam technique. Beilstein J. Nanotechnol. 2018;9:861–869. doi: 10.3762/bjnano.9.80. PubMed DOI PMC

Kousal J, et al. Characterization of nanoparticle flow produced by gas aggregation source. Vacuum. 2013;96:32–38. doi: 10.1016/j.vacuum.2013.02.015. DOI

Ganeva M, Kashtanov PV, Kosarim AV, Smirnov BM, Hippler R. Clusters as a diagnostics tool for gas flows. Phys. Uspekhi. 2015;58:579–588. doi: 10.3367/UFNe.0185.201506d.0619. DOI

Ganeva M, Pipa AV, Smirnov BM, Kashtanov PV, Hippler R. Velocity distribution of mass-selected nano-size cluster ions. Plasma Sources Sci. Technol. 2013;22:45011. doi: 10.1088/0963-0252/22/4/045011. DOI

Wrenger B, Meiwes-Broer KH. The application of a Wien filter to mass analysis of heavy clusters from a pulsed supersonic nozzle source. Rev. Sci. Instrum. 1997;68:2027–2030. doi: 10.1063/1.1148092. DOI

Bergmann T, Martin TP, Schaber H. High-resolution time-of-flight mass spectrometers: Part I. Effects of field distortions in the vicinity of wire meshes. Rev. Sci. Instrum. 1989;60:347–349. doi: 10.1063/1.1140436. DOI

Trottenberg T, Spethmann A, Kersten H. An interferometric force probe for beam diagnostics and the study of sputtering. EPJ Tech. Instrum. 2018;5:3. doi: 10.1140/epjti/s40485-018-0044-2. DOI

Hostettler HU, Bernstein RB. Improved slotted disk type velocity selector for molecular beams. Rev. Sci. Instrum. 1960;31:872–877. doi: 10.1063/1.1717075. DOI

van Steyn R, Verster NF. The design of slotted disc velocity selectors for molecular beams. J. Phys. E. 1972;5:691–697. doi: 10.1088/0022-3735/5/7/027. DOI

Frankl DR. Effects of angular beam dispersion on performance of slotted-disk velocity selectors. Rev. Sci. Instrum. 1974;45:1375–1377. doi: 10.1063/1.1686505. DOI

Pirani F, et al. A simple and compact mechanical velocity selector of use to analyze/select molecular alignment in supersonic seeded beams. Rev. Sci. Instrum. 2004;75:349–354. doi: 10.1063/1.1637433. DOI

Roux JF, et al. Mass selection of neutral clusters in low-energy cluster beam deposition experiments: Is it realistic? Appl. Phys. Lett. 1994;64:1212–1214. doi: 10.1063/1.110892. DOI

Gauter S, et al. Calorimetric investigations in a gas aggregation source. J. Appl. Phys. 2018;124:73301. doi: 10.1063/1.5037413. DOI

Dash JG, Sommers HS. A high transmission slow neutron velocity selector. Rev. Sci. Instrum. 1953;24:91–96. doi: 10.1063/1.1770658. DOI

Szewc C, Collier JD, Ulbricht H. Note: A helical velocity selector for continuous molecular beams. Rev. Sci. Instrum. 2010;81:106107. doi: 10.1063/1.3499254. PubMed DOI

Smirnov BM, Shyjumon I, Hippler R. Flow of nanosize cluster-containing plasma in a magnetron discharge. Phys. Rev. E. 2007;75:66402. doi: 10.1103/PhysRevE.75.066402. PubMed DOI

Ganeva M, Pipa AV, Hippler R. The influence of target erosion on the mass spectra of clusters formed in the planar DC magnetron sputtering source. Surf. Coat. Technol. 2012;213:41–47. doi: 10.1016/j.surfcoat.2012.10.012. DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Plasmonic Ag/Cu/PEG nanofluids prepared when solids meet liquids in the gas phase

. 2023 Jan 31 ; 5 (3) : 955-969. [epub] 20221222

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...