Radical pruning of distribution data may result in loss of knowledge (Response to Larsen & Shirey)
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
SS01010526
Technology Agency of the Czech Republic
PubMed
33756000
DOI
10.1111/ele.13739
Knihovny.cz E-zdroje
- Klíčová slova
- Data quality, GBIF, Lepidoptera, Rhopalocera, latitude, phenology, spatial bias,
- MeSH
- klimatické změny * MeSH
- motýli * MeSH
- roční období MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Larsen & Shirey (2020) criticised our analysis of latitudinal changes in butterfly phenology on the grounds of improper data management. We admit some imprecisions, but show that stringent reanalyses did not change the overall results. We also show that unreasonable treatment of data may result in critical information loss.
Zobrazit více v PubMed
Bartonova, A., Benes, J., Fric, Z.F., Chobot, K. & Konvicka, M. (2016). How universal are reserve design rules? A test using butterflies and their life history traits. Ecography, 39, 456-464.
Bates, D., Mächler, M., Bolker, B. & Walker, S. (2015). Fitting linear mixed-effects models using lme4. J. Stat. Soft., 67, 1. https://doi.org/10.18637/jss.v067.i01.
Fisher, R.A. (1935). The Design of Experiments. Oliver & Boyd, Edinburgh, p. 252.
Freeman, B.G., Lee-Yaw, J.A., Sunday, J.M. & Hargreaves, A.L. (2018). Expanding, shifting and shrinking: The impact of global warming on species’ elevational distributions. Global Ecol. Biogeogr., 27, 1268-1276.
Fric, Z.F., Rindos, M. & Konvicka, M. (2020). Phenology responses of temperate butterflies to latitude depend on ecological traits. Ecol. Lett., 23, 172-180.
Gaul, W., Sadykova, D., White, H.J., León-Sánchez, L., Caplat, P., Emmerson, M.C. & Yearsley, J.M. (2020). Data quantity is more important than its spatial bias for predictive species distribution modelling. PeerJ, 8, e10411.
GBIF Backbone Taxonomy (2018). GBIF Secretariat. Checklist Dataset. Available at: https://doi.org/10.15468/39omei. Last accessed 22.1.2019.
Geldmann, J., Heilmann-Clausen, J., Holm, T.E., Levinsky, I., Markussen, B., Olsen, K. et al. (2016). What determines spatial bias in citizen science? Exploring four recording schemes with different proficiency requirements. Divers. Distrib., 22, 1139-1149.
Hadfield, J.D. (2010). MCMC methods for multi-response generalized linear mixed models: The MCMCglmm R Package. J. Stat. Soft., 33, 2. https://doi.org/10.18637/jss.v033.i02.
Larsen, E.A. & Shirey, V. (2020). Presence-only data are currently insufficient for broad-scale phenological analyses for most species of temperate butterflies. Ecol. Lett., in press.
Maresova, J., Habel, J.C., Neve, G., Sielezniew, M., Bartonova, A., Kostro-Ambroziak, A. et al. (2019). Cross-continental phylogeography of two Holarctic Nymphalid butterflies, Boloria eunomia and Boloria selene. PLoS One, 14, e0214483.
Meffert, P.J. & Dziock, F. (2013). The influence of urbanisation on diversity and trait composition of birds. Landsc. Ecol., 28, 943-957.
Nekola, J.C., Hutchins, B.T., Schofield, A., Najev, B. & Perez, K.E. (2019). Caveat consumptor notitia museo: Let the museum data user beware. Global Ecol. Biogeogr., 28, 1722-1734.
Neyman, J. & Pearson, E.S. (1933). The testing of statistical hypotheses in relation to probabilities a priori. Math. Proc. Camb. Philos. Soc., 29, 492-510.
Zografou, K., Adamidis, G.C., Grill, A., Kati, V., Wilson, R.J. & Halley, J.M. (2015). Who flies first? - habitat-specific phenological shifts of butterflies and orthopterans in the light of climate change: a case study from the south-east Mediterranean. Ecol. Entomol., 40, 562-574.