Potent Cyclic Tetrapeptide for Lead Detoxification
Language English Country Germany Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
- Keywords
- chelation therapy, lead poisoning, metal selectivity, peptides, rational design,
- MeSH
- HT29 Cells MeSH
- Peptides, Cyclic chemistry metabolism MeSH
- Humans MeSH
- Oligopeptides chemistry metabolism MeSH
- Lead chemistry metabolism toxicity MeSH
- Protein Binding MeSH
- Cell Survival drug effects MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Peptides, Cyclic MeSH
- Oligopeptides MeSH
- Lead MeSH
Lead (Pb) is a ubiquitous poisonous metal, affecting the health of vast populations worldwide. Medications to treat Pb poisoning suffer from various limitations and are often toxic owing to insufficient metal selectivity. Here, we report a cyclic tetrapeptide that selectively binds Pb and eradicates its toxic effect on the cellular level, with superior potency than state-of-the-art drugs. The Pb-peptide complex is remarkably strong and was characterized experimentally and computationally. Accompanied by the lack of toxicity and enhanced stability of this peptide, these qualities indicate its merit as a potential remedy for Pb poisoning.
See more in PubMed
H. Needleman, Annu. Rev. Med. 2004, 55, 209-222.
Agency for Toxic Substances & Disease Registry (ATSDR), Toxicological Profile for Lead, 2007.
World Health Organization, Lead Poisoning and Health, 2016.
Centers for Disease Control and Prevention (CDC), Childhood Lead Poisoning Data, Statistics, and Surveillance, 2016.
N. Rees, R. Fuller, The Toxic Truth: Children's Exposure to Lead Pollution Undermines a Generation of Future Potential, UNICEF, 2020.
T. Dudev, C. Grauffel, C. Lim, Inorg. Chem. 2018, 57, 14798-14809.
P. B. Tchounwou, C. G. Yedjou, A. K. Patlolla, D. J. Sutton, Mol. Clin. Environ. Toxicol. 2012, 101, 133-164.
S. J. S. Flora, Al Ameen J. Med. Sci. 2009, 2, 4-26.
M. Jaishankar, T. Tseten, N. Anbalagan, B. B. Mathew, K. N. Beeregowda, Interdiscip. Toxicol. 2014, 7, 60-72.
G. Flora, D. Gupta, A. Tiwari, Interdiscip. Toxicol. 2012, 5, 47-58.
J. Aaseth, O. P. Ajsuvakova, A. V. Skalny, M. G. Skalnaya, A. A. Tinkov, Coord. Chem. Rev. 2018, 358, 1-12.
S. J. S. Flora, V. Pachauri, Int. J. Environ. Res. Public Health 2010, 7, 2745-2788.
B. Kaličanin, M. T. Rašić, J. Heavy Met. Toxicity Dis. 2019, 4 (2:5).
J. J. Kim, Y. S. Kim, V. Kumar, J. Trace Elem. Med. Biol. 2019, 54, 226-231.
M. E. Sears, Sci. World J. 2013, 219840.
G. Bjørklund, J. Mutter, J. Aaseth, Arch. Toxicol. 2017, 91, 3787-3797.
J. Aaseth, D. Jacobsen, O. Andersen, E. Wickstrøm, Analyst 1995, 120, 853-854.
S. Bradberry, A. Vale, Clin. Toxicol. 2009, 47, 617-631.
R. C. Gracia, W. R. Snodgrass, Am. J. Heal. Pharm. 2007, 64, 45-53.
M. J. Brown, J. Med. Toxicol. 2013, 9, 344-346.
G. Roesijadi, Cell. Mol. Biol. 2000, 46, 393-405.
C. S. Cobbett, Plant Physiol. 2002, 123, 825-832.
R. Pal, J. P. N. Rai, Appl. Biochem. Biotechnol. 2010, 160, 945-963.
A. Yoshida, B. E. Kaplan, M. Kimura, Proc. Natl. Acad. Sci. USA 1979, 76, 486-490.
L. Sauser, M. S. Shoshan, J. Inorg. Biochem. 2020, 212, 111251.
A. E. Tolbert, C. S. Ervin, L. Ruckthong, T. J. Paul, V. M. Jayasinghe-Arachchige, K. P. Neupane, J. A. Stuckey, R. Prabhakar, V. L. Pecoraro, Nat. Chem. 2020, 12, 405-411.
S. Chakraborty, J. Yudenfreundkravitz, P. W. Thulstrup, L. Hemmingsen, W. F. Degrado, V. L. Pecoraro, Angew. Chem. Int. Ed. 2011, 50, 2049-2053;
Angew. Chem. 2011, 123, 2097-2101.
P. Rousselot-Pailley, O. Sénèque, C. Lebrun, S. Crouzy, D. Boturyn, P. Dumy, M. Ferrand, P. Delangle, Inorg. Chem. 2006, 45, 5510-5520.
A. F. B. R. Der, M. Weinm, F. Reichart, A. Schumacher, S. Merzbach, C. Gilon, A. Hoffman, H. Kessler, Angew. Chem. Int. Ed. 2018, 57, 14414-14438;
Angew. Chem. 2018, 130, 14614-14640.
See the Supporting Information.
V. Cangelosi, L. Ruckthong, V. L. Pecoraro, Metal Ions in Life Sciences, Vol. 17, 1st ed., De Gruyter, Berlin, 2017, .
Performing both assays proved highly advantageous, mainly since the assay in bacteria examines CAs on solidified medium, eliminating any limitations derived from the low solubility of several compounds. Testing the CAs on human cells cannot be performed with insoluble compounds but is more indicative for medicinal purposes.
M. Feoktistova, P. Geserick, M. Leverkus, Cold Spring Harb. Protoc. 2016, 343-346.
J. Aaseth, O. Andersen, Chelation Therapy in the Treatment of Metal Intoxication, 1st ed., Elsevier, Amsterdam, 2016.
R. E. Thompson, B. Chan, L. Radom, K. A. Jolliffe, R. J. Payne, Angew. Chem. Int. Ed. 2013, 52, 9723-9727;
Angew. Chem. 2013, 125, 9905-9909.
The high rescue rate of above 100 % might be attributed to the potential ability of Na28 a to also act as an antioxidant.
F. Jalilehvand, N. S. Sisombath, A. C. Schell, G. A. Facey, Inorg. Chem. 2015, 54, 2160-2170.
Reducing the concentration of 8 a below 10 μM did no longer allow for the detection of the LMCT.
W. R. Harris, Y. Chen, J. Stenback, B. Shah, J. Coord. Chem. 1991, 23, 173-186.
G. Bjørklund, G. Crisponi, V. M. Nurchi, R. Cappai, A. B. Djordjevic, J. Aaseth, Molecules 2019, 24, 1-32.
O. Gutten, L. Rulíšek, Inorg. Chem. 2013, 52, 10347-10355.
The detailed description, including an alternative way to compute ΔGcomplexation (i.e., theoretical KD values), is summarized in the Supporting Information.
Y. A. Nagel, P. S. Raschle, H. Wennemers, Angew. Chem. Int. Ed. 2017, 56, 122-126;
Angew. Chem. 2017, 129, 128-132.
E. W. Miller, Q. He, C. J. Chang, Nat. Protoc. 2008, 3, 777-783.
Q. He, E. W. Miller, A. P. Wong, C. J. Chang, J. Am. Chem. Soc. 2006, 128, 9316-9317.
Design of Zn-Binding Peptide(s) from Protein Fragments
Cyclic Octapeptides Composed of Two Glutathione Units Outperform the Monomer in Lead Detoxification