Structure-based molecular modeling in SAR analysis and lead optimization
Status PubMed-not-MEDLINE Language English Country Netherlands Media electronic-ecollection
Document type Journal Article, Review
Grant support
T 942
Austrian Science Fund FWF - Austria
PubMed
33777339
PubMed Central
PMC7979990
DOI
10.1016/j.csbj.2021.02.018
PII: S2001-0370(21)00069-6
Knihovny.cz E-resources
- Keywords
- Docking, Lead optimization, Molecular modeling, Pharmacophore modeling, Structure-activity relationship,
- Publication type
- Journal Article MeSH
- Review MeSH
In silico methods like molecular docking and pharmacophore modeling are established strategies in lead identification. Their successful application for finding new active molecules for a target is reported by a plethora of studies. However, once a potential lead is identified, lead optimization, with the focus on improving potency, selectivity, or pharmacokinetic parameters of a parent compound, is a much more complex task. Even though in silico molecular modeling methods could contribute a lot of time and cost-saving by rationally filtering synthetic optimization options, they are employed less widely in this stage of research. In this review, we highlight studies that have successfully used computer-aided SAR analysis in lead optimization and want to showcase sound methodology and easily accessible in silico tools for this purpose.
See more in PubMed
Topliss J.G. Utilization of operational schemes for analog synthesis in drug design. J Med Chem. 1972;15:1006–1011. PubMed
Kubinyi H. Free Wilson Analysis. Theory, applications and its relationship to Hansch analysis. Quant Struct-Act Rel. 1988;7:121–133.
Issa N.T., Wathieu H., Ojo A., Byers S.W., Dakshanamurthy S. Drug metabolism in preclinical drug development: a survey of the discovery process, toxicology, and computational tools. Curr Drug Metab. 2017;18(6) PubMed PMC
Schnecke V., Boström J. Computational chemistry-driven decision making in lead generation. Drug Discov Today. 2006;11:43–50. PubMed
Jorgensen W.L. Efficient drug lead discovery and optimization. Acc Chem Res. 2009;42:724–733. PubMed PMC
Levinthal C., Wodak S.J., Kahn P., Dadivanian A.K. Hemoglobin interaction in sickle cell fibers. I: Theoretical approaches to the molecular contacts. Proc Natl Acad Sci USA. 1975;72:1330–1334. PubMed PMC
Kuntz I.D., Blaney J.M., Oatley S.J., Langridge R., Ferrin T.E. A geometric approach to macromolecule-ligand interactions. J Mol Biol. 1982;161:269–288. PubMed
Rudden L.S.P., Degiacomi M.T. Protein docking using a single representation for protein surface, electrostatics, and local dynamics. J Chem Theory Comput. 2019;15(9):5135–5143. PubMed PMC
Leach A.R. Ligand docking to proteins with discrete side-chain flexibility. J Mol Biol. 1994;235:345–356. PubMed
Knegtel R.M., Kuntz I.D., Oshiro C.M. Molecular docking to ensembles of protein structures. J Mol Biol. 1997;266:424–440. PubMed
Sousa S.F., Fernandes P.A., Ramos M.J. Protein–ligand docking: current status and future challenges. Proteins: Struct., Funct Bioinf. 2006;65:15–26. PubMed
Liu M., Wang S. MCDOCK: a Monte Carlo simulation approach to the molecular docking problem. J Comput Aided Mol Des. 1999;13:435–451. PubMed
Morris G.M., Goodsell D.S., Halliday R.S., Huey R., Hart W.E., Belew R.K. Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J Comput Chem. 1998;19:1639–1662.
Gardiner E.J., Willett P., Artymiuk P.J. Protein docking using a genetic algorithm. Proteins: Struct., Funct Bioinf. 2001;44:44–56. PubMed
Liu J., Wang R. Classification of current scoring functions. J Chem Inf Model. 2015;55:475–482. PubMed
Ferreira L.G., Dos Santos R.N., Oliva G., Andricopulo A.D. Molecular docking and structure-based drug design strategies. Molecules. 2015;20:13384–13421. PubMed PMC
Li J., Fu A., Zhang L. An overview of scoring functions used for protein-ligand interactions in molecular docking. Interdiscip Sci. 2019;11:320–328. PubMed
Heberlé G., de Azevedo W.F., Jr. Bio-inspired algorithms applied to molecular docking simulations. Curr. Med. Chem. 2011;18:1339–1352. PubMed
Fernandez M., Caballero J., Fernandez L., Sarai A. Genetic algorithm optimization in drug design QSAR: Bayesian-regularized genetic neural networks (BRGNN) and genetic algorithm-optimized support vectors machines (GA-SVM) Mol Divers. 2011;15(1):269–289. PubMed
Dias R., de Azevedo W.F., Jr. Molecular docking algorithms. Curr. Drug Targets. 2008;9:1040–1047. PubMed
Brooijmans N., Kuntz I.D. Molecular recognition and docking algorithms. Annu Rev Biophys Biomol Struct. 2003;32:335–373. PubMed
Willett P. Genetic algorithms in molecular recognition and design. Trends Biotechnol. 1995;13:516–521. PubMed
Li H., Sze K.-H., Lu G., Ballester P.J. Machine-learning scoring functions for structure-based drug lead optimization. WIREs Comput Mol Sci. 2020;10
Shen C., Ding J., Wang Z., Cao D., Ding X., Hou T. From machine learning to deep learning: Advances in scoring functions for protein–ligand docking. WIREs Comput Mol Sci. 2020;10(1) doi: 10.1002/wcms.v10.110.1002/wcms.1429. DOI
Adeniyi A.A., Soliman M.E.S. Implementing QM in docking calculations: is it a waste of computational time? Drug Discov Today. 2017;22:1216–1223. PubMed
Liu Z., Su M., Han L., Liu J., Yang Q., Li Y. Forging the basis for developing protein-ligand interaction scoring functions. Acc Chem Res. 2017;50:302–309. PubMed
Berman H.M., Westbrook J., Feng Z., Gilliland G., Bhat T.N., Weissig H. The protein data bank. Nucleic Acids Res. 2000;28:235–242. PubMed PMC
Kirchmair J., Markt P., Distinto S., Schuster D., Spitzer G.M., Liedl K.R. The protein data bank (PDB), its related services and software tools as key components for in silico guided drug discovery. J Med Chem. 2008;51:7021–7040. PubMed
Friedrich N.-O., Meyder A., de Bruyn Kops C., Sommer K., Flachsenberg F., Rarey M. High-quality dataset of protein-bound ligand conformations and its application to benchmarking conformer ensemble generators. J Chem Inf Model. 2017;57:529–539. PubMed
Pagadala N.S., Syed K., Tuszynski J. Software for molecular docking: a review. Biophys Rev. 2017;9:91–102. PubMed PMC
Luo J., Wei W., Waldispühl J., Moitessier N. Challenges and current status of computational methods for docking small molecules to nucleic acids. Eur J Med Chem. 2019;168:414–425. PubMed
Wang Z., Sun H., Yao X., Li D., Xu L., Li Y. Comprehensive evaluation of ten docking programs on a diverse set of protein–ligand complexes: the prediction accuracy of sampling power and scoring power. Phys Chem Chem Phys. 2016;18(18):12964–12975. PubMed
Agrawal P., Singh H., Srivastava H.K., Singh S., Kishore G., Raghava G.P.S. Benchmarking of different molecular docking methods for protein-peptide docking. BMC Bioinf. 2019;19:426. PubMed PMC
Weng G., Gao J., Wang Z., Wang E., Hu X., Yao X. Comprehensive evaluation of fourteen docking programs on protein-peptide complexes. J Chem Theory Comput. 2020;16(6):3959–3969. PubMed
Çınaroğlu S.S., Timuçin E. Comparative assessment of seven docking programs on a nonredundant metalloprotein subset of the PDBbind refined. J Chem Inf Model. 2019;59:3846–3859. PubMed
Hevener K.E., Zhao W., Ball D.M., Babaoglu K., Qi J., White S.W. Validation of molecular docking programs for virtual screening against dihydropteroate synthase. J Chem Inf Model. 2009;49:444–460. PubMed PMC
Castro-Alvarez A., Costa A.M., Vilarrasa J. The performance of several docking programs at reproducing protein-macrolide-like crystal structures. Molecules. 2017;22:136. PubMed PMC
Mukherjee S., Balius T.E., Rizzo R.C. Docking validation resources: protein family and ligand flexibility experiments. J Chem Inf Model. 2010;50(11):1986–2000. PubMed PMC
The PyMOL Molecular Graphics System, Version 2.4.1, Schrödinger, LLC.
Huang N., Shoichet B.K., Irwin J.J. Benchmarking sets for molecular docking. J Med Chem. 2006;49:6789–6801. PubMed PMC
Triballeau N., Acher F., Brabet I., Pin J.-P., Bertrand H.-O. Virtual screening workflow development guided by the “receiver operating characteristic” curve approach. application to high-throughput docking on metabotropic glutamate receptor subtype 4. J Med Chem. 2005;48:2534–2547. PubMed
Zhao Y., Li Y. Design of environmentally friendly neonicotinoid insecticides with bioconcentration tuning and Bi-directional selective toxic effects. J Clean Prod. 2019;221:113–121.
Gu W., Li Q., Li Y. Environment-friendly PCN derivatives design and environmental behavior simulation based on a multi-activity 3D-QSAR model and molecular dynamics. J Hazard Mater. 2020;393:122339. doi: 10.1016/j.jhazmat.2020.122339. PubMed DOI
Qiu Y., Zhang S., Li Y. High ultraviolet sensitivity of phthalic acid esters with environmental friendliness after modification through pharmacophore modeling associated with the solvation effect. Pol J Environ Stud. 2020;29(3):2303–2316.
Enyedy I.J., Egan W.J. Can we use docking and scoring for hit-to-lead optimization? J Comput Aided Mol Des. 2008;22:161–168. PubMed
Šinko G. Assessment of scoring functions and in silico parameters for AChE-ligand interactions as a tool for predicting inhibition potency. Chem-Biol Interact. 2019;308:216–223. PubMed
Pein H., Ville A., Pace S., Temml V., Garscha U., Raasch M. Endogenous metabolites of vitamin E limit inflammation by targeting 5-lipoxygenase. Nat Commun. 2018;9:3834. PubMed PMC
Cheung S.-Y., Werner M., Esposito L., Troisi F., Cantone V., Liening S. Discovery of a benzenesulfonamide-based dual inhibitor of microsomal prostaglandin E2 synthase-1 and 5-lipoxygenase that favorably modulates lipid mediator biosynthesis in inflammation. Eur J Med Chem. 2018;156:815–830. PubMed
Levoin N., Calmels T., Poupardin-Olivier O., Labeeuw O., Danvy D., Robert P. Refined docking as a valuable tool for lead optimization: application to histamine h3 receptor antagonists. Arch Pharm (Weinheim) 2008;341(10):610–623. PubMed
Galindez G., Matschinske J., Rose T.D., Sadegh S., Salgado-Albarrán M., Späth J. Lessons from the COVID-19 pandemic for advancing computational drug repurposing strategies. Nat Comput Sci. 2021;1:33–41. PubMed
Komura H, Watanabe R, Kawashima H, Ohashi R, Kuroda M, Sato T, Honma T, Mizuguchi K. (2021) A public–private partnership to enrich the development of in silico predictive models for pharmacokinetic and cardiotoxic properties, Drug Discov. Today. In Press. PubMed
Ekins S., Mottin M., Ramos P.R.P.S., Sousa B.K.P., Neves B.J., Foil D.H. Déjà vu: stimulating open drug discovery for SARS-CoV-2. Drug Discov Today. 2020;25:928–941. PubMed PMC
Mitusińska K., Raczyńska A., Bzówka M., Bagrowska W., Góra A. Applications of water molecules for analysis of macromolecule properties. Comput Struct Biotechnol J. 2020;18:355–365. PubMed PMC
Banchi L., Fingerhuth M., Babej T., Ing C., Arrazola J.M. Molecular docking with Gaussian Boson Sampling. Science Advances. 2020;6 eaax1950. PubMed PMC
Wang E., Sun H., Wang J., Wang Z., Liu H., Zhang J.Z.H. End-point binding free energy calculation with MM/PBSA and MM/GBSA: strategies and applications in drug design. Chem Rev. 2019;119(16):9478–9508. PubMed
Bhhatarai B., Walters W.P., Hop C., Lanza G., Ekins S. Opportunities and challenges using artificial intelligence in ADME/Tox. Nat Mater. 2019;18:418–422. PubMed PMC
Kazmi S.R., Jun R., Yu M.-S., Jung C., Na D. In silico approaches and tools for the prediction of drug metabolism and fate: a review. Comput Biol Med. 2019;106:54–64. PubMed
Ehmki E.S.R., Rarey M. Exploring structure-activity relationships with three-dimensional matched molecular pairs-a review. Chem Med Chem. 2018;13:482–489. PubMed
Wang S.H., Yu J. Structure-based design for binding peptides in anti-cancer therapy. Biomaterials. 2018;156:1–15. PubMed
Réau M., Langenfeld F., Zagury J.-F., Lagarde N., Montes M. Decoys selection in benchmarking datasets: overview and perspectives. Front Pharmacol. 2018;9:11. PubMed PMC
Sotriffer C. Docking of covalent ligands: challenges and approaches. Mol Inform. 2018;37(9-10):1800062. doi: 10.1002/minf.v37.9-1010.1002/minf.201800062. PubMed DOI
Defelipe L., Arcon J., Modenutti C., Marti M., Turjanski A., Barril X. Solvents to fragments to drugs: MD applications in drug design. Molecules. 2018;23(12):3269. doi: 10.3390/molecules23123269. PubMed DOI PMC
Ciemny M., Kurcinski M., Kamel K., Kolinski A., Alam N., Schueler-Furman O. Protein–peptide docking: opportunities and challenges. Drug Discov Today. 2018;23:1530–1537. PubMed
Riccardi L., Genna V., De Vivo M. Metal–ligand interactions in drug design. Nat Rev Chem. 2018;2:100–112.
Amaro R.E., Baudry J., Chodera J., Demir Ö., McCammon J.A., Miao Y. Ensemble docking in drug discovery. Biophys J. 2018;114:2271–2278. PubMed PMC
Salmaso V., Moro S. Bridging molecular docking to molecular dynamics in exploring ligand-protein recognition process: an overview. Front Pharmacol. 2018:9. PubMed PMC
Stefaniak F., Chudyk E.I., Bodkin M., Dawson W.K., Bujnicki J.M. Modeling of ribonucleic acid–ligand interactions, WIREs Comput. Mol Sci. 2015;5(6):425–439.
Kirchmair J., Göller A.H., Lang D., Kunze J., Testa B., Wilson I.D. Predicting drug metabolism: experiment and/or computation? Nat Rev Drug Discov. 2015;14(6):387–404. PubMed
Granchi C., Rizzolio F., Palazzolo S., Carmignani S., Macchia M., Saccomanni G. Structural optimization of 4-chlorobenzoylpiperidine derivatives for the development of potent, reversible, and selective monoacylglycerol lipase (MAGL) inhibitors. J Med Chem. 2016;59:10299–10314. PubMed
Baell J.B., Holloway G.A. New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays. J Med Chem. 2010;53:2719–2740. PubMed
Baell J.B., Nissink J.W.M. Seven year itch: pan-assay interference compounds (PAINS) in 2017—utility and limitations. ACS Chem Biol. 2018;13(1):36–44. PubMed PMC
Salentin S., Schreiber S., Haupt V.J., Adasme M.F., Schroeder M. PLIP: fully automated protein-ligand interaction profiler. Nucleic Acids Res. 2015;43:W443–W447. PubMed PMC
Stornaiuolo M., La Regina G., Passacantilli S., Grassia G., Coluccia A., La Pietra V. Structure-based lead optimization and biological evaluation of BAX direct activators as novel potential anticancer agents. J Med Chem. 2015;58:2135–2148. PubMed
Daina A., Michielin O., Zoete V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep. 2017;7:42717. PubMed PMC
Djoumbou-Feunang Y., Fiamoncini J., Gil-de-la-Fuente A., Greiner R., Manach C., Wishart D.S. BioTransformer: a comprehensive computational tool for small molecule metabolism prediction and metabolite identification. J Cheminform. 2019;11:2. PubMed PMC
Ramachandran S.A., Jadhavar P.S., Miglani S.K., Singh M.P., Kalane D.P., Agarwal A.K. Design, synthesis and optimization of bis-amide derivatives as CSF1R inhibitors. Bioorg Med Chem Lett. 2017;27:2153–2160. PubMed
Kawada H., Ebiike H., Tsukazaki M., Nakamura M., Morikami K., Yoshinari K. Lead optimization of a dihydropyrrolopyrimidine inhibitor against phosphoinositide 3-kinase (PI3K) to improve the phenol glucuronic acid conjugation. Bioorg Med Chem Lett. 2013;23:673–678. PubMed
Giustiniano M., Daniele S., Pelliccia S., La Pietra V., Pietrobono D., Brancaccio D. Computer-aided identification and lead optimization of dual murine double minute 2 and 4 binders: structure-activity relationship studies and pharmacological activity. J Med Chem. 2017;60:8115–8130. PubMed
Snow O., Lallous N., Singh K., Lack N., Rennie P., Cherkasov A. Androgen receptor plasticity and its implications for prostate cancer therapy. Cancer Treat Rev. 2019:81. PubMed
Ban F., Dalal K., Li H., LeBlanc E., Rennie P.S., Cherkasov A. Best practices of computer-aided drug discovery: lessons learned from the development of a preclinical candidate for prostate cancer with a new mechanism of action. J Chem Inf Model. 2017;57(5):1018–1028. PubMed
Dalal K., Ban F., Li H., Morin H., Roshan-Moniri M., Tam K.J. Selectively targeting the dimerization interface of human androgen receptor with small-molecules to treat castration-resistant prostate cancer. Cancer Lett. 2018;437:35–43. PubMed
Lyu J., Wang S., Balius T.E., Singh I., Levit A., Moroz Y.S. Ultra-large library docking for discovering new chemotypes. Nature. 2019;566:224–229. PubMed PMC
Trani G., Barker J.J., Bromidge S.M., Brookfield F.A., Burch J.D., Chen Y. Design, synthesis and structure-activity relationships of a novel class of sulfonylpyridine inhibitors of Interleukin-2 inducible T-cell kinase (ITK) Bioorg Med Chem Lett. 2014;24(24):5818–5823. PubMed
Alder C.M., Ambler M., Campbell A.J., Champigny A.C., Deakin A.M., Harling J.D. Identification of a novel and selective series of Itk inhibitors via a template-hopping strategy. ACS Med Chem Lett. 2013;4:948–952. PubMed PMC
Zou Y., Li L., Chen W., Chen T., Ma L., Wang X. Virtual screening and structure-based discovery of indole acylguanidines as potent beta-secretase (BACE1) inhibitors. Molecules. 2013;18:5706–5722. PubMed PMC
Joseph-McCarthy D., Parris K., Huang A., Failli A., Quagliato D., Dushin E.G. Use of structure-based drug design approaches to obtain novel anthranilic acid acyl carrier protein synthase inhibitors. J Med Chem. 2005;48:7960–7969. PubMed
Hoffer L., Voitovich Y.V., Raux B., Carrasco K., Muller C., Fedorov A.Y. Integrated strategy for lead optimization based on fragment growing: the diversity-oriented-target-focused-synthesis approach. J Med Chem. 2018;61:5719–5732. PubMed
Yan S., Elmes M.W., Tong S., Hu K., Awwa M., Teng G.Y.H. SAR studies on truxillic acid mono esters as a new class of antinociceptive agents targeting fatty acid binding proteins. Eur J Med Chem. 2018;154:233–252. PubMed PMC
Ranise A., Spallarossa A., Schenone S., Bruno O., Bondavalli F., Vargiu L. Design, synthesis, SAR, and molecular modeling studies of acylthiocarbamates: a novel series of potent non-nucleoside HIV-1 reverse transcriptase inhibitors structurally related to phenethylthiazolylthiourea derivatives. J Med Chem. 2003;46:768–781. PubMed
Mai A., Sbardella G., Artico M., Ragno R., Massa S., Novellino E. Structure-based design, synthesis, and biological evaluation of conformationally restricted novel 2-alkylthio-6-[1-(2,6-difluorophenyl)alkyl]-3,4-dihydro-5-alkylpyrimidin-4(3H)-on es as non-nucleoside inhibitors of HIV-1 reverse transcriptase. J Med Chem. 2001;44:2544–2554. PubMed
Jeankumar V.U., Renuka J., Kotagiri S., Saxena S., Kakan S.S., Sridevi J.P. Gyrase ATPase domain as an antitubercular drug discovery platform: structure-based design and lead optimization of nitrothiazolyl carboxamide analogues. Chem Med Chem. 2014;9:1850–1859. PubMed
Wu P., Ma D.-L., Leung C.-H., Yan S.-C., Zhu N., Abagyan R. Stabilization of G-quadruplex DNA with platinum(II) Schiff base complexes: luminescent probe and down-regulation of c-myc oncogene expression. Chemistry. 2009;15(47):13008–13021. PubMed
Crawford T.D., Ndubaku C.O., Chen H., Boggs J.W., Bravo B.J., Delatorre K. Discovery of selective 4-Amino-pyridopyrimidine inhibitors of MAP4K4 using fragment-based lead identification and optimization. J Med Chem. 2014;57:3484–3493. PubMed
Poulsen A., Williams M., Nagaraj H.M., William A.D., Wang H., Soh C.K. Structure-based optimization of morpholino-triazines as PI3K and mTOR inhibitors. Bioorg Med Chem Lett. 2012;22:1009–1013. PubMed
Zhu J., Huang J.W., Tseng P.H., Yang Y.T., Fowble J., Shiau C.W. From the cyclooxygenase-2 inhibitor celecoxib to a novel class of 3-phosphoinositide-dependent protein kinase-1 inhibitors. Cancer res. 2004;64:4309–4318. PubMed
Xia Z., Knaak C., Ma J., Beharry Z.M., McInnes C., Wang W. Synthesis and evaluation of novel inhibitors of Pim-1 and Pim-2 protein kinases. J Med Chem. 2009;52:74–86. PubMed PMC
Chen Y., Wen D., Huang Z., Huang M., Luo Y., Liu B. 2-(4-Chlorophenyl)-2-oxoethyl 4-benzamidobenzoate derivatives, a novel class of SENP1 inhibitors: virtual screening, synthesis and biological evaluation. Bioorg Med Chem Lett. 2012;22(22):6867–6870. PubMed
Iwata Y., Arisawa M., Hamada R., Kita Y., Mizutani M.Y., Tomioka N. Discovery of novel aldose reductase inhibitors using a protein structure-based approach: 3D-database search followed by design and synthesis. J Med Chem. 2001;44:1718–1728. PubMed
Ramunno A., Cosconati S., Sartini S., Maglio V., Angiuoli S., La Pietra V. Progresses in the pursuit of aldose reductase inhibitors: the structure-based lead optimization step. Eur J Med Chem. 2012;51:216–226. PubMed
Rakse M., Karthikeyan C., Deora G.S., Moorthy N.S., Rathore V., Rawat A.K. Design, synthesis and molecular modelling studies of novel 3-acetamido-4-methyl benzoic acid derivatives as inhibitors of protein tyrosine phosphatase 1B. Eur J Med Chem. 2013;70:469–476. PubMed
Moretto A.F., Kirincich S.J., Xu W.X., Smith M.J., Wan Z.K., Wilson D.P. Bicyclic and tricyclic thiophenes as protein tyrosine phosphatase 1B inhibitors. Bioorg Med Chem. 2006;14:2162–2177. PubMed
Wityak J., McGee K.F., Conlon M.P., Song R.H., Duffy B.C., Clayton B. Lead optimization toward proof-of-concept tools for huntington’s disease within a 4-(1h-pyrazol-4-yl)pyrimidine class of Pan-JNK inhibitors. J Med Chem. 2015;58:2967–2987. PubMed
Bajaj K., Burudkar S., Shah P., Keche A., Ghosh U., Tannu P. Lead optimization of isocytosine-derived xanthine oxidase inhibitors. Bioorg Med Chem Lett. 2013;23:834–838. PubMed
Khanna S., Burudkar S., Bajaj K., Shah P., Keche A., Ghosh U. Isocytosine-based inhibitors of xanthine oxidase: design, synthesis, SAR, PK and in vivo efficacy in rat model of hyperuricemia. Bioorg Med Chem Lett. 2012;22(24):7543–7546. PubMed
Kumar G., Parasuraman P., Sharma S.K., Banerjee T., Karmodiya K., Surolia N. Discovery of a rhodanine class of compounds as inhibitors of Plasmodium falciparum enoyl-acyl carrier protein reductase. J Med Chem. 2007;50:2665–2675. PubMed
La Pietra V., Marinelli L., Cosconati S., Di Leva F.S., Nuti E., Santamaria S. Identification of novel molecular scaffolds for the design of MMP-13 inhibitors: a first round of lead optimization. Eur J Med Chem. 2012;47:143–152. PubMed
Wu B., Murray J.K., Andrews K.L., Sham K., Long J., Aral J. Discovery of tarantula venom-derived NaV1.7-inhibitory JzTx-V peptide 5-Br-Trp24 analogue AM-6120 with systemic block of histamine-induced pruritis. J Med Chem. 2018;61:9500–9512. PubMed
Yang S.-Y. Pharmacophore modeling and applications in drug discovery: challenges and recent advances, Drug Discov. Today. 2010;15(11-12):444–450. PubMed
Wermuth CG, Ganellin CR, Lindberg P, Mitscher LA. Glossary of terms used in medicinal chemistry (IUPAC Recommendations 1998); 1998, 70, 1129.
Wolber G., Langer T. LigandScout: 3-D pharmacophores derived from protein-bound ligands and their use as virtual screening filters. J Chem Inf Model. 2005;45:160–169. PubMed
Schneider G., Neidhart W., Giller T., Schmid G. “Scaffold-hopping” by topological pharmacophore search: a contribution to virtual screening. Angew Chem Int. 1999;38:2894–2896. PubMed
Schaller D., Šribar D., Noonan T., Deng L., Nguyen T.N., Pach S. Next generation 3D pharmacophore modeling. WIREs Comput Mol Sci. 2020;10
Dixon S.L., Smondyrev A.M., Rao S.N. PHASE: a novel approach to pharmacophore modeling and 3D database searching. Chem Biol Drug Des. 2006;67(5):370–372. PubMed
Temml V., Kaserer T., Kutil Z., Landa P., Vanek T., Schuster D. Pharmacophore modeling for COX-1 and -2 inhibitors with LigandScout in comparison to Discovery Studio. Future Med Chem. 2014;6:1869–1881. PubMed
Kim M., Park K., Kim W., Jung S., Cho A.E. Target-specific drug design method combining deep learning and water pharmacophore. J Chem Inf Model. 2021;61:36–45. PubMed
Brown BP, Mendenhall J, Geanes AR, Meiler J. General Purpose Structure-Based drug discovery neural network score functions with human-interpretable pharmacophore maps, J. Chem. Inf. Model; 2021. PubMed PMC
Seidel T., Wieder O., Garon A., Langer T. Applications of the pharmacophore concept in natural product inspired drug design. Mol Inform. 2020;39:2000059. PubMed PMC
Wieder M., Garon A., Perricone U., Boresch S., Seidel T., Almerico A.M. Common hits approach: combining pharmacophore modeling and molecular dynamics simulations. J Chem Inf Model. 2017;57(2):365–385. PubMed
Hu Y., Stumpfe D., Bajorath J. Recent advances in scaffold hopping. J Med Chem. 2017;60:1238–1246. PubMed
Putz M.V., Duda-Seiman C., Duda-Seiman D., Putz A.-M., Alexandrescu I., Mernea M. Chemical structure-biological activity models for pharmacophores’ 3D-interactions. Int J Mol Sci. 2016;17:1087. PubMed PMC
Van Drie J.H. Generation of three-dimensional pharmacophore models. WIREs Comput Mol Sci. 2013;3(5):449–464.
Guner O.F., Bowen J.P. Pharmacophore modeling for ADME. Curr Top Med Chem. 2013;13:1327–1342. PubMed
Thai K.M., Ngo T.D., Tran T.D., Le M.T. Pharmacophore modeling for antitargets. Curr Top Med Chem. 2013;13:1002–1014. PubMed
Sanders M.P.A., McGuire R., Roumen L., de Esch I.J.P., de Vlieg J., Klomp J.P.G. From the protein's perspective: the benefits and challenges of protein structure-based pharmacophore modeling. Med Chem Comm. 2012;3(1):28–38.
Caporuscio F., Tafi A. Pharmacophore modelling: a forty year old approach and its modern synergies. Curr Med Chem. 2011;18:2543–2553. PubMed
Shim J., Mackerell A.D., Jr. Computational ligand-based rational design: role of conformational sampling and force fields in model development. Med Chem Comm. 2011;2:356–370. PubMed PMC
Wolber G., Seidel T., Bendix F., Langer T. Molecule-pharmacophore superpositioning and pattern matching in computational drug design. Drug Discov Today. 2008;13:23–29. PubMed
Ekins S., Mirny L., Schuetz E.G. A ligand-based approach to understanding selectivity of nuclear hormone receptors PXR, CAR, FXR, LXRα, and LXRβ. Pharm Res. 2002;19:1788–1800. PubMed
Zhu X., Kim J.L., Newcomb J.R., Rose P.E., Stover D.R., Toledo L.M. Structural analysis of the lymphocyte-specific kinase Lck in complex with non-selective and Src family selective kinase inhibitors. Structure. 1999;7:651–661. PubMed
Lawrie A.M., Noble M.E.M., Tunnah P., Brown N.R., Johnson L.N., Endicott J.A. Protein kinase inhibition by staurosporine revealed in details of the molecular interaction with CDK2. Nat Struct Biol. 1997;4:796–801. PubMed
Vuorinen A., Schuster D. Methods for generating and applying pharmacophore models as virtual screening filters and for bioactivity profiling. Methods. 2015;71:113–134. PubMed
Kirchmair J., Markt P., Distinto S., Wolber G., Langer T. Evaluation of the performance of 3D virtual screening protocols: RMSD comparisons, enrichment assessments, and decoy selection—what can we learn from earlier mistakes? J Comput Aided Mol Des. 2008;22(3-4):213–228. PubMed
Jacobsson M., Lidén P., Stjernschantz E., Boström H., Norinder U. Improving structure-based virtual screening by multivariate analysis of scoring data. J Med Chem. 2003;46:5781–5789. PubMed
Vuorinen A., Nashev L.G., Odermatt A., Rollinger J.M., Schuster D. Pharmacophore model refinement for 11β-hydroxysteroid dehydrogenase inhibitors: search for modulators of intracellular glucocorticoid concentrations. Mol Inform. 2014;33(1):15–25. PubMed
Kim K., Kwon H., Barinka C., Motlova L., Nam S., Choi D. Novel β- and γ-amino acid-derived inhibitors of prostate-specific membrane antigen. J Med Chem. 2020;63:3261–3273. PubMed
Schneider G., Fechner U. Computer-based de novo design of drug-like molecules. Nat Rev Drug Discov. 2005;4(8):649–663. PubMed
Huang Q., Li L.-L., Yang S.-Y. PhDD: A new pharmacophore-based de novo design method of drug-like molecules combined with assessment of synthetic accessibility. J Mol Graph Model. 2010;28(8):775–787. PubMed
Temml V., Garscha U., Romp E., Schubert G., Gerstmeier J., Kutil Z. Discovery of the first dual inhibitor of the 5-lipoxygenase-activating protein and soluble epoxide hydrolase using pharmacophore-based virtual screening. Sci Rep. 2017;7(1) doi: 10.1038/srep42751. PubMed DOI PMC
Meirer K, Steinhilber D, Proschak E. Inhibitors of the Arachidonic Acid Cascade: Interfering with Multiple Pathways; 2014. 114, 83–91. PubMed
Brunger A.T., Jin R., Breidenbach M.A. Highly specific interactions between botulinum neurotoxins and synaptic vesicle proteins. Cell Mol Life Sci. 2008;65:2296–2306. PubMed PMC
Burnett J.C., Wang C., Nuss J.E., Nguyen T.L., Hermone A.R., Schmidt J.J. Pharmacophore-guided lead optimization: the rational design of a non-zinc coordinating, sub-micromolar inhibitor of the botulinum neurotoxin serotype a metalloprotease. Bioorg Med Chem Lett. 2009;19(19):5811–5813. PubMed
Hermone A.R., Burnett J.C., Nuss J.E., Tressler L.E., Nguyen T.L., Solaja B.A. Three-dimensional database mining identifies a unique chemotype that unites structurally diverse botulinum neurotoxin serotype A inhibitors in a three-zone pharmacophore. Chem Med Chem. 2008;3:1905–1912. PubMed
Fu L., Wang S., Wang X., Wang P., Zheng Y., Yao D. Crystal structure-based discovery of a novel synthesized PARP1 inhibitor (OL-1) with apoptosis-inducing mechanisms in triple-negative breast cancer. Sci Rep. 2016;6(1) doi: 10.1038/s41598-016-0007-2. PubMed DOI PMC
Stjernschantz E., Marelius J., Medina C., Jacobsson M., Vermeulen N.P.E., Oostenbrink C. Are automated molecular dynamics simulations and binding free energy calculations realistic tools in lead optimization? an evaluation of the linear interaction energy (LIE) method. J Chem Inf Model. 2006;46(5):1972–1983. PubMed
Wieder M., Perricone U., Seidel T., Boresch S., Langer T. Comparing pharmacophore models derived from crystal structures and from molecular dynamics simulations. Monatsh Chem. 2016;147:553–563. PubMed PMC
Shan J., Zheng J.J. Optimizing Dvl PDZ domain inhibitor by exploring chemical space. J Comput Aided Mol Des. 2009;23:37–47. PubMed PMC
Shan J., Shi D.-L., Wang J., Zheng J. Identification of a specific inhibitor of the dishevelled PDZ domain. Biochemistry. 2005;44:15495–15503. PubMed
Masuzaki H., Yamamoto H., Kenyon C.J., Elmquist J.K., Morton N.M., Paterson J.M. Transgenic amplification of glucocorticoid action in adipose tissue causes high blood pressure in mice. J Clin Invest. 2003;112(1):83–90. PubMed PMC
Masuzaki H., Paterson J., Shinyama H., Morton N.M., Mullins J.J., Seckl J.R. A transgenic model of visceral obesity and the metabolic syndrome. Science. 2001;294:2166–2170. PubMed
Paterson J.M., Morton N.M., Fievet C., Kenyon C.J., Holmes M.C., Staels B. Metabolic syndrome without obesity: Hepatic overexpression of 11beta-hydroxysteroid dehydrogenase type 1 in transgenic mice. Proc Natl Acad Sci USA. 2004;101:7088–7093. PubMed PMC
Schuster D., Maurer E.M., Laggner C., Nashev L.G., Wilckens T., Langer T. The discovery of new 11β-hydroxysteroid dehydrogenase type 1 inhibitors by common feature pharmacophore modeling and virtual screening. J Med Chem. 2006;49:3454–3466. PubMed
Kratschmar D.V., Vuorinen A., Da Cunha T., Wolber G., Classen-Houben D., Doblhoff O. Characterization of activity and binding mode of glycyrrhetinic acid derivatives inhibiting 11β-hydroxysteroid dehydrogenase type 2. J Steroid Biochem Mol Biol. 2011;125:129–142. PubMed
Chiang Y.K., Kuo C.C., Wu Y.S., Chen C.T., Coumar M.S., Wu J.S. Generation of ligand-based pharmacophore model and virtual screening for identification of novel tubulin inhibitors with potent anticancer activity. J Med Chem. 2009;52:4221–4233. PubMed
Stanton R.A., Lu X., Detorio M., Montero C., Hammond E.T., Ehteshami M. Discovery, characterization, and lead optimization of 7-azaindole non-nucleoside HIV-1 reverse transcriptase inhibitors. Bioorg Med Chem Lett. 2016;26:4101–4105. PubMed PMC
Zhu K., Jiang C., Tao H., Liu J., Zhang H., Luo C. Identification of a novel selective small-molecule inhibitor of protein arginine methyltransferase 5 (PRMT5) by virtual screening, resynthesis and biological evaluations. Bioorg Med Chem Lett. 2018;28(9):1476–1483. PubMed
Yang L.L., Li G.B., Yan H.X., Sun Q.Z., Ma S., Ji P. Discovery of N6-phenyl-1H-pyrazolo[3,4-d]pyrimidine-3,6-diamine derivatives as novel CK1 inhibitors using common-feature pharmacophore model based virtual screening and hit-to-lead optimization. Eur J Med Chem. 2012;56:30–38. PubMed
Ranganathan A., Stoddart L.A., Hill S.J., Carlsson J. Fragment-based discovery of subtype-selective adenosine receptor ligands from homology models. J Med Chem. 2015;58:9578–9590. PubMed
Da Settimo F., Primofiore G., Taliani S., Marini A.M., La Motta C., Novellino E. 3-Aryl[1,2,4]triazino[4,3-a]benzimidazol-4(10H)-ones: a new class of selective A1 adenosine receptor antagonists. J Med Chem. 2001;44:316–327. PubMed
Huang P., Loew G.H., Funamizu H., Mimura M., Ishiyama N., Hayashida M. Rational design, discovery, and synthesis of a novel series of potent growth hormone secretagogues. J Med Chem. 2001;44:4082–4091. PubMed
Chhabria M.T., Brahmkshatriya P.S., Mahajan B.M., Darji U.B., Shah G.B. Discovery of novel acyl coenzyme a: cholesterol acyltransferase inhibitors: pharmacophore-based virtual screening, synthesis and pharmacology. Chem Biol Drug Des. 2012;80:106–113. PubMed
Choong I.C., Lew W., Lee D., Pham P., Burdett M.T., Lam J.W. Identification of potent and selective small-molecule inhibitors of caspase-3 through the use of extended tethering and structure-based drug design. J Med Chem. 2002;45:5005–5022. PubMed
Tian S., Wang X., Li L., Zhang X., Li Y., Zhu F. Discovery of novel and selective adenosine A2A receptor antagonists for treating Parkinson's disease through comparative structure-based virtual screening. J Chem Inf Model. 2017;57:1474–1487. PubMed