Structure-activity relationship
Dotaz
Zobrazit nápovědu
21 sv.
- MeSH
- kvantitativní vztahy mezi strukturou a aktivitou MeSH
- Publikační typ
- periodika MeSH
- Konspekt
- Farmacie. Farmakologie
- NLK Obory
- farmacie a farmakologie
- farmacie a farmakologie
A way to legalization results of Quantitative Structure – Activity Relationships (QSAR) models is described. A basic impulse has come from OECD followed by the other countries of the world. Final tool, QSAR Application Tool Box, has been developed and as an open system will be developed in the future, too.
Nerve agents such as sarin, VX and tabun are organophosphorus compounds able to inhibit an enzyme acetylcholinesterase (AChE). AChE reactivators and anticholinergics are generally used as antidotes in the case of intoxication with these agents. None from the known AChE reactivators is able to reactivate AChE inhibited by all kinds of nerve agents. In this work, reactivation potency of seventeen structurally different AChE reactivators was tested in vitro and subsequently, relationship between their chemical structure and biological activity was outlined. VX was chosen as appropriate member of the nerve agent family.
- MeSH
- acetylcholinesterasa metabolismus MeSH
- cholinesterasové inhibitory chemická syntéza chemie farmakologie MeSH
- krysa rodu rattus MeSH
- molekulární struktura MeSH
- organothiofosforové sloučeniny chemická syntéza chemie farmakologie MeSH
- potkani Wistar MeSH
- vztah mezi dávkou a účinkem léčiva MeSH
- vztahy mezi strukturou a aktivitou MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
A structure-activity relationship of some derivatives of 2-phenylsubstituted- 3-hydroxyquinolin-4(1H)-one-7-carboxamides was systematically studied using combinatorial solid-phase synthesis and in vitro cytotoxic activity screening on representative cancer lines. The effect of substituent type in position 2 as well as of the carboxamide group was investigated via synthesis of generic libraries constructed with respect to polarity and bulkiness of appropriate substituents. The process of development afforded a set of compounds with significant cytotoxic activity. Subsequently, corresponding 2-phenylsubstituted-3-hydroxyquinolin-4(1H)-one-6-carboxamides and 2-phenylsubstituted-3-hydroxyquinolin-4(1H)-one-8-carboxamides were prepared to evaluate the influence of the carboxamide group position on the resulting biological activity.
- MeSH
- buněčné linie MeSH
- chinoliny chemie MeSH
- lidé MeSH
- vztahy mezi strukturou a aktivitou MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
In this study, we described the structure-activity relationships of substituted 3,5-dinitrophenyl tetrazoles as potent antitubercular agents. These simple and readily accessible compounds possessed high in vitro antimycobacterial activities against Mycobacterium tuberculosis, including clinically isolated multidrug (MDR) and extensively drug-resistant (XDR) strains, with submicromolar minimum inhibitory concentrations (MICs). The most promising compounds showed low in vitro cytotoxicity and negligible antibacterial and antifungal activities, highlighting their highly selective antimycobacterial effects. 2-Substituted 5-(3,5-dinitrophenyl)-2H-tetrazole regioisomers, which are the dominant products of 5-(3,5-dinitrophenyl)-1H-tetrazole alkylation, showed better properties with respect to antimycobacterial activity and cytotoxicity than their 1-substituted counterparts. The 2-substituent of 5-(3,5-dinitrophenyl)-2H-tetrazole can be easily modified and can thus be used for the structure optimization of these promising antitubercular agents. The introduction of a tetrazole-5-thioalkyl moiety at position 2 of the tetrazole further increased the antimycobacterial activity. These compounds showed outstanding in vitro activity against M. tuberculosis (MIC values as low as 0.03 μM) and high activity against non-tuberculous mycobacterial strains.
- MeSH
- antituberkulotika chemie farmakologie MeSH
- druhová specificita MeSH
- lidé MeSH
- mikrobiální testy citlivosti MeSH
- mnohočetná léková rezistence účinky léků MeSH
- molekulární struktura MeSH
- Mycobacterium tuberculosis účinky léků MeSH
- tetrazoly chemie farmakologie MeSH
- vztahy mezi strukturou a aktivitou MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Autophagy is a catabolic process that was described to play a critical role in advanced stages of cancer, wherein it maintains tumor cell homeostasis and growth by supplying nutrients. Autophagy is also described to support alternative cellular trafficking pathways, providing a non-canonical autophagy-dependent inflammatory cytokine secretion mechanism. Therefore, autophagy inhibitors have high potential in the treatment of cancer and acute inflammation. In our study, we identified compound 1 as an inhibitor of the ATG12-ATG3 protein-protein interaction. We focused on the systematic modification of the original hit 1, a casein kinase 2 (CK2) inhibitor, to find potent disruptors of ATG12-ATG3 protein-protein interaction. A systematic modification of the hit structure led us to a wide plethora of compounds that maintain its ATG12-ATG3 inhibitory activity, which could act as a viable starting point to design new compounds with diverse therapeutic applications.
- MeSH
- autofagie účinky léků MeSH
- kaseinkinasa II antagonisté a inhibitory metabolismus MeSH
- knihovny malých molekul * chemie farmakologie chemická syntéza MeSH
- lidé MeSH
- molekulární struktura MeSH
- proteiny spojené s autofagií * metabolismus antagonisté a inhibitory MeSH
- vazba proteinů MeSH
- vztah mezi dávkou a účinkem léčiva MeSH
- vztahy mezi strukturou a aktivitou MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Inhibition of photosynthetic electron transport (PET) in spinach chloroplasts by sixty-one ring-substituted N-benzylsalicylamides was investigated. The inhibitory potency of the compounds expressed by IC50 value varied from 2.0 to 425.3 μmol/L. Several evaluated compounds can be considered as effective PET inhibitors; these include N-(3,4- dichlorobenzyl)-2-hydroxy-5-nitrobenzamide (IC50 = 2.0 μmol/L), 3,5-dibromo-N-(3,4-dichlorobenzyl)-2-hydroxybenzamide (IC50 = 2.3 μmol/L) and 3,5-dibromo-N-(4-chlorobenzyl)-2-hydroxybenzamide (IC50 = 2.6 μmol/L) with activity comparable with that of the standard Diuron (IC50 = 1.9 μmol/L). The PET inhibiting activity increased approximately linearly with increasing lipophilicity of the compounds as well as with the increasing sum of Hammett σ constants of the substituents on the acyl fragment (R(1) = H, 5-OCH3, 5-CH3, 5-Cl, 5-Br, 5-NO2, 4-OCH3, 4-Cl, 3,5-Cl and 3,5-Br) and the benzylamide fragment (R(2) = H, 4-OCH3, 4-CH3, 4-F, 4-Cl and 3,4-Cl). Based on the evaluated structure-PET inhibiting activity relationships (QSAR) it was confirmed that the inhibitory activity of the compounds depends on lipophilicity (log P or distributive parameters π; (1) and π(2)of individual substituents) and electronic properties of the substituents on the acyl (σ(1)) and the benzylamide fragments (σ(2)), the contribution of σ(1) being more significant than that of σ(2).
- MeSH
- chemické modely MeSH
- chloroplasty účinky léků metabolismus MeSH
- fotosyntéza účinky léků MeSH
- kvantitativní vztahy mezi strukturou a aktivitou MeSH
- molekulární struktura MeSH
- racionální návrh léčiv MeSH
- salicylamidy chemická syntéza chemie farmakologie MeSH
- Spinacia oleracea účinky léků metabolismus MeSH
- transport elektronů účinky léků MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH