Coronavirus infection: An immunologists' perspective
Language English Country England, Great Britain Media print-electronic
Document type Journal Article, Review
Grant support
CZ.02.1.01/0.0/0.0/16_019/0000868
Molecular, cellular, and clinical approach to healthy aging grant ENOCH
MTM
PubMed
33783027
PubMed Central
PMC8250184
DOI
10.1111/sji.13043
Knihovny.cz E-resources
- Keywords
- SARS-CoV-2 infection, complement, coronavirus, cytokine storm, immune response, innate immune response, memory cells,
- MeSH
- Angiotensin-Converting Enzyme 2 genetics metabolism MeSH
- Biomarkers MeSH
- COVID-19 complications immunology metabolism virology MeSH
- Cytokines metabolism MeSH
- Energy Metabolism MeSH
- Host-Pathogen Interactions immunology MeSH
- Humans MeSH
- Inflammation Mediators metabolism MeSH
- Disease Susceptibility immunology MeSH
- Lymphocyte Subsets immunology metabolism MeSH
- Immunity, Innate MeSH
- Receptor, Angiotensin, Type 2 metabolism MeSH
- Virus Replication MeSH
- SARS-CoV-2 physiology MeSH
- Cytokine Release Syndrome etiology metabolism MeSH
- Receptors, Virus metabolism MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
- Names of Substances
- ACE2 protein, human MeSH Browser
- Angiotensin-Converting Enzyme 2 MeSH
- Biomarkers MeSH
- Cytokines MeSH
- Inflammation Mediators MeSH
- Receptor, Angiotensin, Type 2 MeSH
- Receptors, Virus MeSH
Coronavirus infections are frequent viral infections in several species. As soon as the severe acute respiratory syndrome (SARS) appeared in the early 2000s, most of the research focused on pulmonary disease. However, disorders in immune response and organ dysfunctions have been documented. Elderly individuals with comorbidities exhibit worse outcomes in all the coronavirus that cause SARS. Disease severity in SARS-CoV-2 infection is related to severe inflammation and tissue injury, and effective immune response against the virus is still under analysis. ACE2 receptor expression and polymorphism, age, gender and immune genetics are factors that also play an essential role in patients' clinical features and immune responses and have been partially discussed. The present report aims to review the physiopathology of SARS-CoV-2 infection and propose new research topics to understand the complex mechanisms of viral infection and viral clearance.
See more in PubMed
Yuen KS, Ye ZW, Fung SY, Chan CP, Jin DY. SARS‐CoV‐2 and COVID‐19: the most critical research questions. Cell Biosci. 2020;10:40. PubMed PMC
Weber DJ, Rutala WA, Fischer WA, et al. Emerging infectious diseases: focus on infection control issues for novel coronaviruses (Severe Acute Respiratory Syndrome‐CoV and Middle East Respiratory Syndrome‐CoV), hemorrhagic fever viruses (Lassa and Ebola), and highly pathogenic avian influenza viruses, A(H5N1) and A(H7N9). Am J Infect Control. 2016;44(5 Suppl):e91‐e100. PubMed PMC
Ye Z‐W, Yuan S, Yuen K‐S, et al. Zoonotic origins of human coronaviruses. Int J Biol Sci. 2020;16(10):1686‐1697. PubMed PMC
Mousavizadeh L, Ghasemi S. Genotype and phenotype of COVID‐19: Their roles in pathogenesis. J Microbiol Immunol Infect. 2020;S1684‐1182(20):30082–30087. PubMed PMC
Chen Y, Liu Q, Guo D. Emerging coronaviruses: genome structure, replication, and pathogenesis. J Med Virol. 2020;92(4):418‐423. PubMed PMC
Fung TS, Liu DX. Human coronavirus: host‐pathogen interaction. Annu. Rev. Microbiol. 2019;73:529‐557. PubMed
Newton AH, Cardani A, Thomas J. The host immune response in respiratory virus infection: balancing virus clearance and immunopathology. Semin Immunopathol. 2016;38(4):471‐482. PubMed PMC
Thakur V, Ratho RK, Kumar P, et al. Multi‐organ involvement in COVID‐19: beyond pulmonary manifestations. J Clin Med. 2021;10(3):446. PubMed PMC
Lai C‐C, Liu YH, Wang C‐Y, et al. Asymptomatic carrier state, acute respiratory disease, and pneumonia due to severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2): facts and myths. J Microbiol Immunol Infect. 2020;53(3):404‐412. PubMed PMC
Jung C‐Y, Park H, Kim DW, et al. Clinical characteristics of asymptomatic patients with COVID‐19: a nationwide Cohort Study in South Korea. Int J Infect Dis. 2020;99:266‐268. PubMed PMC
Parilli‐Troconis D, Baptista P, Marcano‐Lozada M, et al. COVID‐19 infection and its influence in otorhinolaryngology‐head and neck surgery. Int Arch Otorhinolaryngol. 2020;24(4):e527‐e534. PubMed PMC
Pepe M, Maroun‐Eid C, Romero R, et al. Clinical presentation, therapeutic approach, and outcome of young patients admitted for COVID‐19, with respect to the elderly counterpart. Clin Exp Med. 2021;8:1‐20. PubMed PMC
Dumonteil E, Fusco D, Drouin A, Herrera C. Genomic signatures of SARS‐CoV‐2 associated with patient mortality. Viruses. 2021;13(2):227. PubMed PMC
Østergaard L. SARS CoV‐2 related microvascular damage and symptoms during and after COVID‐19: Consequences of capillary transit‐time changes, tissue hypoxia and inflammation. Physiol Rep. 2021;9(3):e14726. PubMed PMC
Rechtman E, Curtin P, Navarro E, Nirenberg S, Horton MK. Vital signs assessed in initial clinical encounters predict COVID‐19 mortality in an NYC hospital system. Sci Rep. 2020;10(1):21545. PubMed PMC
Hendren NS, de Lemos JA, Ayers C, et al. Association of body mass index and age with morbidity and mortality in patients hospitalized with COVID‐19: results from the American heart association COVID‐19 cardiovascular disease registry. Circulation. 2021;143(2):135‐144. PubMed
Pajo AT, Espiritu AI, Apor ADAO, Jamora RDG. Neuropathologic findings of patients with COVID‐19: a systematic review. Neurol Sci. 2021;22:1‐12. PubMed PMC
Garg S, Garg M, Prabhakar N, Malhotra P, Agarwal R. Unraveling the mystery of Covid‐19 cytokine storm: From skin to organ systems. Dermatol Ther. 2020;33:e13859. PubMed PMC
Mason RJ. Thoughts on the alveolar phase of COVID‐19. Am J Physiol Lung Cell Mol Physiol. 2020;319(1):L115‐L120. PubMed PMC
Nie X, Qian L, Sun R, et al. Multi‐organ proteomic landscape of COVID‐19 autopsies. Cell. 2021;184(3):775‐791. PubMed PMC
Gomes CP, Fernandes DE, Casimiro F, et al. in COVID‐19: from pharmacological evidences to genetics. Front Cell Infect Microbiol. 2020;10:589505. PubMed PMC
Lim J‐H, Jung H‐Y, Choi J‐Y, et al. Hypertension and electrolyte disorders in patients with COVID‐19. Electrolyte Blood Press. 2020;18(2):23‐30. 10.1007/s11739-021-02632-z. Online ahead of print. PubMed DOI PMC
De Carvalho H, Richard MC, Chouihed T, et al. Electrolyte imbalance in COVID‐19 patients admitted to the Emergency Department: a case‐control study. Intern Emerg Med. 2021;1‐6. PubMed PMC
Gong T, Yang Y, Jin T, Jiang W, Zhou R. Orchestration of NLRP3 inflammasome activation by ion fluxes. Trends Immunol. 2018;39(5):393‐406. PubMed
Shang J, Ye G, Shi KE, et al. Structural basis of receptor recognition by SARS‐CoV‐2. Nature. 2020;581(7807):221‐224. PubMed PMC
Yan R, Zhang Y, Li Y, Xia L, Guo Y, Zhou Q. Structural basis for the recognition of SARS‐CoV‐2 by full‐length human ACE2. Science. 2020;367(6485):1444‐1448. PubMed PMC
Morelli F, Meirelles LEdF, de Souza MVF, et al. COVID‐19 infection in the human reproductive tract of men and Nonpregnant women. Am J Trop Med Hyg. 2021;104:814‐825. PubMed PMC
Walls AC, Park YJ, Tortorici MA, Wall A, McGuire AT, Veesler D. Structure, function, and antigenicity of the SARS‐CoV‐2 spike glycoprotein. Cell. 2020;181(2):281‐292. PubMed PMC
Batlle D, Wysocki J, Satchell K. Soluble angiotensin‐converting enzyme 2: a potential approach for coronavirus infection therapy? Clin Sci. 2020;134(5):543‐545. PubMed
Hoffmann M, Kleine‐Weber H, Schroeder S, et al. SARS‐CoV‐2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020;181:1‐10. PubMed PMC
Johnson BA, Xie X, Bailey AL, et al. Loss of furin cleavage site attenuates SARS‐CoV‐2 pathogenesis. Nature. 2021;591(7849):293‐299. PubMed PMC
Gottlieb RL, Nirula A, Chen P, et al. Effect of bamlanivimab as monotherapy or in combination with etesevimab on viral load in patients with mild to moderate COVID‐19: a randomised clinical trial. JAMA. 2021;325(7):632. PubMed PMC
Rappazzo CG, Tse LV, Kaku CI, et al. Broad and potent activity against SARS‐like viruses by an engineered human monoclonal antibody. Science. 2021;371(6531):823‐829. PubMed PMC
Jitsuiki K, Katayama I, Iida T, Nagatomo S, Yanagawa Y. Successful treatment of elderly male with COVID‐19 infection with severe acute respiratory distress syndrome using multimodal therapy, including immune modulation therapy. Cureus. 2020;12(12):e12402. PubMed PMC
Gemmati D, Bramanti B, Serino ML, et al. COVID‐19 and individual genetic susceptibility/receptivity: role of ACE1/ACE2 genes, immunity, inflammation and coagulation. Might the double X‐chromosome in females be protective against SARS‐CoV‐2 compared to the single X‐chromosome in males? Int J Mol Sci. 2020;21(10):E3474. PubMed PMC
Zheng H, Cao JJ. Angiotensin‐converting enzyme gene polymorphism and severe lung injury in patients with coronavirus disease 2019. Am J Pathol. 2020;190(10):2013‐2017. PubMed PMC
Asselta R, Paraboschi EM, Mantovani A, Duga S. ACE2 and TMPRSS2 variants and expression as candidates to sex and country differences in COVID‐19 severity in Italy. Aging. 2020;12(11):10087‐10098. PubMed PMC
Hussain M, Jabeen N, Raza F, et al. Structural variations in human ACE2 may influence its binding with SARS‐CoV‐2 spike protein. J Med Virol. 2020;92(9):1580‐1586. PubMed PMC
Li Q, Cao Z, Rahman P. Genetic variability of human angiotensin‐converting enzyme 2 (hACE2) among various ethnic populations. Mol Genet Genomic Med. 2020;8(8):e1344. PubMed PMC
Ziegler CGK, Allon SJ, Nyquist SK, et al. HCA lung biological network, SARS‐CoV‐2 receptor ACE2 is an interferon‐stimulated gene in human airway epithelial cells and is detected in specific cell subsets across tissues. Cell. 2020;81(5):1016‐1035. PubMed PMC
Xu Q, Tang Y, Huang G. Innate immune responses in RNA viral infection. Front Med. 2020;1‐14. 10.1007/s11684-020-0776-7. Online ahead of print. PubMed DOI PMC
Jones JE, Le Sage V, Lakdawala SS. Viral and host heterogeneity and their effects on the viral life cycle. Nat Rev Microbiol. 2021;19(4):272‐282. PubMed PMC
Onomoto K, Onoguchi K, Yoneyama M. Regulation of RIG‐I‐like receptor‐mediated signaling: interaction between host and viral factors. Cell Mol Immunol. 2021;18(3):539‐555. PubMed PMC
Antonczyk A, Krist B, Sajek M, et al. Direct inhibition of IRF‐dependent transcriptional regulatory mechanisms associated with disease. Front Immunol. 2019;10:1176. PubMed PMC
Lega S, Naviglio S, Volpi S, Tommasini A. Recent insight into SARS‐CoV2 immunopathology and rationale for potential treatment and preventive strategies in COVID‐19. Vaccines. 2020;8(2):224. PubMed PMC
Jing H, Su HC. New immunodeficiency syndromes that help us understand the IFN‐mediated antiviral immune response. Curr Opin Pediatr. 2019;31(6):815‐820. PubMed PMC
Elhabyan A, Elyaacoub S, Sanad E, Abukhadra A, Elhabyan A, Dinu V. The role of host genetics in susceptibility to severe viral infections in humans and insights into host genetics of severe COVID‐19: A systematic review. Virus Res. 2020;289:198163. PubMed PMC
Wang BX, Fish EN. Global virus outbreaks: interferons as 1st responders. Semin Immunol. 2019;43:101300. PubMed PMC
Lei X, Dong X, Ma R, et al. activation and evasion of type I interferon responses by SARS‐CoV‐2. Nat Commun. 2020;11(1):3810. PubMed PMC
Konno Y, Kimura I, Uriu K, et al. SARS‐CoV‐2 ORF3b Is a Potent Interferon Antagonist Whose Activity Is Increased by a Naturally Occurring Elongation Variant. Cell Rep. 2020;32(12):108185. PubMed PMC
Miorin L, Kehrer T, Sanchez‐Aparicio MT, et al. SARS‐CoV‐2 Orf6 hijacks Nup98 to block STAT nuclear import and antagonise interferon signaling. Proc Natl Acad Sci USA. 2020;117(45):28344‐28354. PubMed PMC
Zheng YI, Zhuang M‐W, Han L, et al. Severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) membrane (M) protein inhibits type I and III interferon production by targeting RIG‐I/MDA‐5 signaling. Signal Transduct Target Ther. 2020;5(1):299. PubMed PMC
Zhang Q, Bastard P, Liu Z, et al. Inborn errors of type I IFN immunity in patients with life‐threatening COVID‐19. Science. 2020;370:eabd4570. PubMed PMC
Tangye SG, Al‐Herz W, Bousfiha A, et al. The ever‐increasing array of novel inborn errors of immunity: an interim update by the IUIS committee. J Clin Immunol. 2021;41(3):666‐679. PubMed PMC
Bastard P, Rosen LB, Zhang Q, et al. Auto‐antibodies against type I IFNs in patients with life‐threatening COVID‐19. Science. 2021;218(4):e20202486.
Fulzele S, Sahay B, Yusufu I, et al. COVID‐19 virulence in aged patients might be impacted by the host cellular MicroRNAs abundance/profile. Aging Dis. 2020;11(3):509‐522. PubMed PMC
Hosseini Rad Sm A, McLellan AD. Implications of SARS‐CoV2 mutations for genomic RNA structure and host microRNA targeting. Int J Mol Sci. 2020;21(13):4807. PubMed PMC
Arisan ED, Dart A, Grant GH, et al. The prediction of miRNAs in SARS‐CoV2 genomes: hsa‐miR databases identify 7 Key miRs linked to host responses and virus pathogenicity‐related KEGG pathways significant for comorbidities. Viruses. 2020;12(6):614. PubMed PMC
Srivastava R, Daulatabad SV, Srivastava M, Janga SC. SARS‐CoV‐2 contributes to altering the post‐transcriptional regulatory networks across human tissues by sponging RNA binding proteins and micro‐RNAs. Int J Mol Sci. 2020;21(19):E7090. PubMed PMC
Wower IK, Brandebourg TD, Wower J. New insights on the mobility of viral and host non‐coding RNAs reveal extracellular vesicles as intriguing candidate antiviral targets. Pathogens. 2020;9(11):E876. PubMed PMC
Nersisyan S, Engibaryan N, Gorbonos A, Kirdey K, Makhonin A, Tonevitsky A. Potential role of cellular miRNAs in coronavirus‐host interplay. PeerJ. 2020;8:e9994. PubMed PMC
Lee HY, Hur J, Kang JY, Rhee CK, Lee SY. MicroRNA‐21 inhibition suppresses alveolar M2 macrophages in an ovalbumin‐induced allergic asthma mice model. Allergy Asthma Immunol Res. 2021;13(2):312‐329. PubMed PMC
Nersisyan S, Shkurnikov M, Turchinovich A, Knyazev E, Tonevitsky A. Integrative analysis of miRNA and mRNA sequencing data reveals potential regulatory mechanisms of ACE2 and TMPRSS2. PLoS One. 2020;15(7):e0235987. PubMed PMC
Paniri A, Hosseini MM, Moballegh‐Eslam M, Akhavan‐Niaki H. Comprehensive in silico identification of impacts of ACE2 SNPs on COVID‐19 susceptibility in different populations. Gene Rep. 2021;22:100979. PubMed PMC
Wyler E, Mösbauer K, Franke V, et al. Transcriptomic profiling of SARS‐CoV‐2 infected human cell lines identifies HSP90 as target for COVID‐19 therapy. iScience. 2021;24(3):102151. PubMed PMC
Mazori AY, Bass IR, Chan L, et al. Hyperglycemia is associated with increased mortality in critically Ill patients with COVID‐19. Endocr Pract. 2021;27(2):95‐100. PubMed PMC
López‐Reyes A, Martinez‐Armenta C, Espinosa‐Velázquez R, et al. NLRP3 inflammasome: the stormy link between obesity and COVID‐19. Front Immunol. 2020;11:570251. PubMed PMC
Tanner JE, Alfieri C. The fatty acid lipid metabolism nexus in COVID‐19. Viruses. 2021;13(1):90. PubMed PMC
Kuo C‐L, Pilling LC, Atkins JL, et al. APOE e4 genotype predicts severe COVID‐19 in the UK Biobank community cohort. J Gerontol A Biol Sci Med Sci. 2020;75(11):2231‐2232. PubMed PMC
Keshavarz M, Solaymani‐Mohammadi F, Namdari H, et al. Metabolic host response and therapeutic approaches to influenza infection. Cell Mol Biol Lett. 2020;25:15. PubMed PMC
Yan B, Chu H, Yang D, et al. Characterisation of the lipidomic profile of human coronavirus‐infected cells: implications for lipid metabolism remodeling upon coronavirus replication. Viruses. 2019;11(1):73. PubMed PMC
Shen B, Yi X, Sun Y, et al. Proteomic and metabolomic characterisation of COVID‐19 patient sera. Cell. 2020;182(1):59‐72. PubMed PMC
Barberis E, Timo S, Amede E, et al. Large‐scale plasma analysis revealed new mechanisms and molecules associated with the host response to SARS‐CoV‐2. Int J Mol Sci. 2020;21(22):8623. PubMed PMC
Caterino M, Gelzo M, Sol S, et al. dysregulation of lipid metabolism and pathological inflammation in patients with COVID‐19. Sci Rep. 2021;11(1):2941. PubMed PMC
Garić D, De Sanctis JB, Shah J, Dumut DC, Radzioch D. Biochemistry of very‐long‐chain and long‐chain ceramides in cystic fibrosis and other diseases: the importance of side chain. Prog Lipid Res. 2019;74:130‐144. PubMed
Veltman M, Stolarczyk M, Radzioch D, et al. Correction of lung inflammation in a F508del CFTR murine cystic fibrosis model by the sphingosine‐1‐phosphate lyase inhibitor LX2931. Am J Physiol Lung Cell Mol Physiol. 2016;311(5):L1000‐L1014. PubMed
Prakash H, Upadhyay D, Bandapalli OR, Jain A, Kleuser B. Host sphingolipids: perspective immune adjuvant for controlling SARS‐CoV‐2 infection for managing COVID‐19 disease. Prostaglandins Other Lipid Mediat. 2021;152:106504. PubMed PMC
Carpinteiro A, Edwards MJ, Hoffmann M, et al. Pharmacological inhibition of acid sphingomyelinase prevents uptake of SARS‐CoV‐2 by epithelial cells. Cell Rep Med. 2020;1(8):100142. PubMed PMC
Java A, Apicelli AJ, Liszewski MK, et al. The complement system in COVID‐19: friend and foe? JCI Insight. 2020;5(15):e140711. PubMed PMC
Fang S, Wang H, Lu L, Jia Y, Xia Z. Decreased complement C3 levels are associated with poor prognosis in patients with COVID‐19: A retrospective cohort study. Int Immunopharmacol. 2020;89(Pt A):107070. PubMed PMC
Akk A, Springer LE, Yang L, et al. Complement activation on neutrophils initiates endothelial adhesion and extravasation. Mol Immunol. 2019;114:629‐642. PubMed PMC
Maxwell AJ, Ding J, You Y, et al. Identification of key signaling pathways induced by SARS‐CoV2 that underlie thrombosis and vascular injury in COVID‐19 patients. J Leukoc Biol. 2021;109(1):35‐47. PubMed PMC
Gralinski LE, Sheahan TP, Morrison TE, et al. Complement activation contributes to severe acute respiratory syndrome coronavirus pathogenesis. MBio. 2018;9(5):e01753‐e1818. PubMed PMC
Lin P, Chen W, Huang H, et al. Delayed discharge is associated with higher complement C3 levels and a longer nucleic acid‐negative conversion time in patients with COVID‐19. Sci Rep. 2021;11(1):1233. PubMed PMC
Cugno M, Meroni PL, Gualtierotti R, et al. Complement activation and endothelial perturbation parallel COVID‐19 severity and activity. J Autoimmun. 2021;116:102560. PubMed PMC
Overmyer KA, Shishkova E, Miller IJ, et al. Large‐scale multi‐omic analysis of COVID‐19 severity. Cell Syst. 2021;12(1):23‐40. PubMed PMC
Kulkarni HS, Elvington ML, Perng YC, et al. Intracellular C3 protects human airway epithelial cells from stress‐associated cell death. Am J Respir Cell Mol Biol. 2019;60(2):144‐157. PubMed PMC
Kolin DA, Kulm S, Christos PJ, Elemento O. Clinical, regional, and genetic characteristics of Covid‐19 patients from UK Biobank. PLoS One. 2020;15(11):e0241264. PubMed PMC
O'Brien ME, Fee L, Browne N, et al. activation of complement component 3 is associated with airways disease and pulmonary emphysema in alpha‐1 antitrypsin deficiency. Thorax. 2020;75(4):321‐330. PubMed PMC
Rogliani P, Lauro D, di Daniele N, Chetta A, Calzetta L. Reduced risk of COVID‐19 hospitalisation in asthmatic and COPD patients: a benefit of inhaled corticosteroids? Expert Rev Respir Med 2021;15(4):561‐568. PubMed PMC
Polycarpou A, Howard M, Farrar CA, et al. Rationale for targeting Complement in COVID‐19. EMBO Mol Med. 2020;12(8):e12642. PubMed PMC
Mastellos DC, Pires da Silva BGP, Fonseca BAL, et al. Complement C3 vs C5 inhibition in severe COVID‐19: early clinical findings reveal differential biological efficacy. Clin Immunol. 2020;220:108598. PubMed PMC
Yu J, Yuan X, Chen H, Chaturvedi S, Braunstein EM, Brodsky RA. Direct activation of the alternative complement pathway by SARS‐CoV‐2 spike proteins is blocked by factor D inhibition. Blood. 2020;136(18):2080‐2089. PubMed PMC
Skendros P, Mitsios A, Chrysanthopoulou A, et al. Complement and tissue factor‐enriched neutrophil extracellular traps are key drivers in COVID‐19 immunothrombosis. J Clin Invest. 2020;130(11):6151‐6157. PubMed PMC
Holter JC, Pischke SE, de Boer E, et al. Systemic complement activation is associated with respiratory failure in COVID‐19 hospitalized patients. Proc Natl Acad Sci USA. 2020;117(40):25018‐25025. PubMed PMC
Tu X, Chong WP, Zhai Y, et al. Functional polymorphisms of the CCL2 and MBL genes cumulatively increase susceptibility to severe acute respiratory syndrome coronavirus infection. J Infect. 2015;71(1):101‐109. PubMed PMC
Di Maria E, Latini A, Borgiani P, Novelli G. Genetic variants of the human host influencing the coronavirus‐associated phenotypes (SARS, MERS and COVID‐19): rapid systematic review and field synopsis. Hum Genomics. 2020;14(1):30. PubMed PMC
Valenti L, Griffini S, Lamorte G, et al. Chromosome 3 cluster rs11385942 variant links complement activation with severe COVID‐19. J Autoimmun. 2021;117:102595. PubMed PMC
Woodruff TM, Shukla AK. The complement C5a–C5aR1 GPCR axis in COVID‐19 therapeutics. Trends Immunol. 2020;41(11):965‐967. PubMed PMC
Kulasekararaj AG, Lazana I, Large J, et al. Terminal complement inhibition dampens the inflammation during COVID‐19. Br J Haematol. 2020;190(3):e141‐e143. PubMed PMC
Janiuk K, Jabłońska E, Garley M. Significance of NETs formation in COVID‐19. Cells. 2021;10(1):151. PubMed PMC
Schulte‐Schrepping J, Reusch N, Paclik D, et al. Severe COVID‐19 Is marked by a dysregulated myeloid cell compartment. Cell. 2020;182(6):1419‐1440. PubMed PMC
Barnes BJ, Adrover JM, Baxter‐Stoltzfus A, et al. Targeting potential drivers of COVID‐19: neutrophil extracellular traps. J Exp Med. 2020;217(6):e20200652. PubMed PMC
Zuo Y, Kanthi Y, Knight JS, Kim AHJ. The interplay between neutrophils, complement, and microthrombi in COVID‐19. Best Pract Res Clin Rheumatol. 2021;35(1):101661. PubMed PMC
Zuo Y, Zuo M, Yalavarthi S, et al. Neutrophil extracellular traps and thrombosis in COVID‐19. J Thromb Thrombolysis. 2021;51(2):446‐453. PubMed PMC
Bao L, Zhang C, Dong J, Zhao L, Li Y, Sun J. Oral microbiome and SARS‐CoV‐2: beware of lung co‐infection. Front Microbiol. 2020;11:1840. PubMed PMC
Tan Y, Zhou J, Zhou Q, Hu L, Long Y. Role of eosinophils in the diagnosis and prognostic evaluation of COVID‐19. J Med Virol. 2021;93(2):1105‐1110. PubMed
Lindsley AW, Schwartz JT, Rothenberg ME. Eosinophil responses during COVID‐19 infections and coronavirus vaccination. J Allergy Clin Immunol. 2020;146(1):1‐7. PubMed PMC
Ari S, Can V, Demir ÖF, et al. Elevated eosinophil count is related with lower anti‐factor Xa activity in COVID‐19 patients. J Hematop. 2020;Oct 8 1‐10. PubMed PMC
Motta Junior JDS, Miggiolaro AFRDS, Nagashima S, et al. Mast cells in alveolar septa of COVID‐19 patients: a pathogenic pathway that may link interstitial edema to immunothrombosis. Front Immunol. 2020;11:574862. 10.1007/s12308-020-00419-3. Online ahead of print. PubMed DOI PMC
Hogan Ii RB, Hogan Iii RB, Cannon T, et al. Dual‐histamine receptor blockade with cetirizine ‐ famotidine reduces pulmonary symptoms in COVID‐19 patients. Pulm Pharmacol Ther. 2020;63:101942. PubMed PMC
Kopf M, Schneider C, Nobs SP. The development and function of lung‐resident macrophages and dendritic cells. Nat Immunol. 2015;16(1):36‐44. PubMed
Evren E, Ringqvist E, Willinger T. Origin and ontogeny of lung macrophages: from mice to humans. Immunology. 2020;160(2):126‐138. PubMed PMC
Boumaza A, Gay L, Mezouar S, et al. Monocytes and macrophages, targets of SARS‐CoV‐2: the clue for Covid‐19 immunoparalysis. J Infect Dis. 2021;jiab044. 10.1093/infdis/jiab044. Online ahead of print. PubMed DOI PMC
Kvedaraite E, Hertwig L, Sinha I, et al. Major alterations in the mononuclear phagocyte landscape associated with COVID‐19 severity. Proc Natl Acad Sci USA. 2021;118(6):e2018587118. PubMed PMC
Amon L, Lehmann CHK, Heger L, Heidkamp GF, Dudziak D. The ontogenetic path of human dendritic cells. Mol Immunol. 2020;120:122‐129. PubMed
Reizis B. Plasmacytoid dendritic cells: development, regulation, and function. Immunity. 2019;50(1):37‐50. PubMed PMC
Freer G, Matteucci D. Influence of dendritic cells on viral pathogenicity. PLoS Pathog. 2009;5(7):e1000384. PubMed PMC
Campana P, Parisi V, Leosco D, Bencivenga D, Della Ragione F, Borriello A. Dendritic cells and SARS‐CoV‐2 infection: still an unclarified connection. Cells. 2020;9(9):2046. PubMed PMC
Onodi F, Bonnet‐Madin L, Meertens L, et al. SARS‐CoV‐2 induces human plasmacytoid predendritic cell diversification via UNC93B and IRAK4. J Exp Med. 2021;218(4):e20201387. PubMed PMC
Sánchez‐Cerrillo I, Landete P, Aldave B, et al. COVID‐19 severity associates with pulmonary redistribution of CD1c+ DCs and inflammatory transitional and nonclassical monocytes. J Clin Invest. 2020;130(12):6290‐6300. PubMed PMC
Guo H, Callaway JB, Ting JP. Inflammasomes: mechanism of action, role in disease, and therapeutics. Nat Med. 2015;21(7):677‐687. PubMed PMC
Zhao C, Zhao W. NLRP3 Inflammasome‐A Key Player in Antiviral Responses. Front Immunol. 2020;11:211. PubMed PMC
Krainer J, Siebenhandl S, Weinhäusel A. Systemic autoinflammatory diseases. J Autoimmun. 2020;109:102421. PubMed PMC
Wang Z, Zhang S, Xiao Y, et al. NLRP3 inflammasome and inflammatory diseases. Oxid Med Cell Longev. 2020;2020:4063562. PubMed PMC
Rodrigues TS, de Sá KSG, Ishimoto AY, et al. Inflammasomes are activated in response to SARS‐CoV‐2 infection and are associated with COVID‐19 severity in patients. J Exp Med. 2021;218(3):e20201707. PubMed PMC
Lara PC, Macías‐Verde D, Burgos‐Burgos J. Age‐induced NLRP3 inflammasome over‐activation increases lethality of SARS‐CoV‐2 pneumonia in elderly patients. Aging Dis. 2020;11(4):756‐762. PubMed PMC
Channappanavar R, Perlman S. Pathogenic human coronavirus infections: causes and consequences of cytokine storm and immunopathology. Semin Immunopathol. 2017;39(5):529‐539. PubMed PMC
Jacob CO. On the genetics and immunopathogenesis of COVID‐19. Clin Immunol. 2020;220:108591. PubMed PMC
Ye Q, Wang B, Mao J. The pathogenesis and treatment of the ʽCytokine Storm' in COVID‐19. J Infect. 2020;80(6):607‐613. PubMed PMC
Meftahi GH, Jangravi Z, Sahraei H, Bahari Z. The possible pathophysiology mechanism of cytokine storm in elderly adults with COVID‐19 infection: the contribution of "inflame‐aging". Inflamm Res. 2020;69(9):825‐839. PubMed PMC
Schulert GS, Cron RQ. The genetics of macrophage activation syndrome. Genes Immun. 2020;21(3):169‐181. PubMed
Lee S, Channappanavar R, Kanneganti TD. Coronaviruses: innate immunity, inflammasome activation, inflammatory cell death, and cytokines. Trends Immunol. 2020;41(12):1083‐1099. PubMed PMC
Ovali F. Coronavirus‐2019 disease (COVID‐19) in children. Medeni Med J. 2020;35(3):242‐252. PubMed PMC
Conti P, Caraffa A, Gallenga CE, et al. Coronavirus‐19 (SARS‐CoV‐2) induces acute severe lung inflammation via IL‐1 causing cytokine storm in COVID‐19: a promising inhibitory strategy. J Biol Regul Homeost Agents. 2020;34(6):1971‐1975. PubMed
Branchett WJ, Lloyd CM. Regulatory cytokine function in the respiratory tract. Mucosal Immunol. 2019;12:589‐600. PubMed PMC
Fitzgerald KA, Kagan JC. Toll‐like receptors and the control of immunity. Cell. 2020;180(6):1044‐1066. PubMed PMC
Wurfel MM, Gordon AC, Holden TD, et al. Toll‐like receptor 1 polymorphisms affect innate immune responses and outcomes in sepsis. Am J Respir Crit Care Med. 2008;178(7):710‐720. PubMed PMC
Patarčić I, Gelemanović A, Kirin M, et al. The role of host genetic factors in respiratory tract infectious diseases: systematic review, meta‐analyses and field synopsis. Sci Rep. 2015;5:16119. PubMed PMC
Li C, Jiao S, Wang G, et al. The immune adaptor ADAP regulates reciprocal TGF‐β1‐integrin crosstalk to protect from influenza virus infection. PLoS Pathog. 2015;11(4):e1004824. PubMed PMC
Sebastian‐Valverde M, Pasinetti GM. The NLRP3 inflammasome as a critical actor in the inflammaging process. Cells. 2020;9(6):1552. PubMed PMC
Li M, Guo W, Dong Y, et al. Elevated exhaustion levels of NK and CD8+ T cells as indicators for progression and prognosis of COVID‐19 disease. Front Immunol. 2020;11:580237. PubMed PMC
Udomsinprasert W, Jittikoon J, Sangroongruangsri S, Chaikledkaew U. Circulating levels of interleukin‐6 and interleukin‐10, but not tumor necrosis factor‐alpha, as potential biomarkers of severity and mortality for COVID‐19: systematic review with meta‐analysis. J Clin Immunol. 2020;41(1):11‐22. PubMed PMC
Cao X. COVID‐19: immunopathology and its implications for therapy. Nat Rev Immunol. 2020;20(5):269‐270. PubMed PMC
Roberts A, Paddock C, Vogel L, Butler E, Zaki S, Subbarao K. Aged BALB/c mice as a model for increased severity of severe acute respiratory syndrome in elderly humans. J Virol. 2005;79(9):5833‐5838. PubMed PMC
Baas T, Roberts A, Teal TH, et al. Genomic analysis reveals age‐dependent innate immune responses to severe acute respiratory syndrome coronavirus. J Virol. 2008;82(19):9465‐9476. PubMed PMC
Frieman M, Yount B, Agnihothram S, et al. Molecular determinants of severe acute respiratory syndrome coronavirus pathogenesis and virulence in young and aged mouse models of human disease. J Virol. 2012;86(2):884‐897. PubMed PMC
Masselli E, Vaccarezza M, Carubbi C, et al. NK cells: A double edge sword against SARS‐CoV‐2. Adv Biol Regul. 2020;77:100737. PubMed PMC
Poccia F, Agrati C, Castilletti C, et al. Anti‐severe acute respiratory syndrome coronavirus immune responses: the role played by V gamma 9V delta 2 T cells. J Infect Dis. 2006;193(9):1244‐1249. PubMed PMC
Chen G, Wu DI, Guo W, et al. Clinical and immunological features of severe and moderate coronavirus disease 2019. J Clin Invest. 2020;130(5):2620‐2629. PubMed PMC
Jouan Y, Guillon A, Gonzalez L, et al. Phenotypical and functional alteration of unconventional T cells in severe COVID‐19 patients. J Exp Med. 2020;217(12):e20200872. PubMed PMC
Carissimo G, Xu W, Kwok I, et al. Whole blood immunophenotyping uncovers immature neutrophil‐to‐VD2 T‐cell ratio as an early marker for severe COVID‐19. Nat Commun. 2020;11(1):5243. PubMed PMC
Maucourant C, Filipovic I, Ponzetta A, et al. Natural killer cell immunotypes related to COVID‐19 disease severity. Sci Immunol. 2020;5(50):eabd6832. PubMed PMC
National Research Project for SARS, Beijing Group . The involvement of natural killer cells in the pathogenesis of the severe acute respiratory syndrome. Am J Clin Pathol. 2004;121(4):507‐511. PubMed PMC
Giamarellos‐Bourboulis EJ, Netea MG, Rovina N, et al. Complex immune dysregulation in COVID‐19 patients with severe respiratory failure. Cell Host Microbe. 2020;27(6):992‐1000. PubMed PMC
García LF. Immune response, inflammation and the clinical spectrum of COVID‐19. Front. Immunol. 2020;11:1441. PubMed PMC
Hazeldine J, Lord JM. Immunesenescence: a predisposing risk factor for the development of COVID‐19? Front Immunol. 2020;11:573662. PubMed PMC
Haeryfar SMM. MAIT cells in COVID‐19: heroes, villains, or both? Crit Rev Immunol. 2020;40(2):173‐184. PubMed
Parrot T, Gorin J‐B, Ponzetta A, et al. MAIT cell activation and dynamics associated with COVID‐19 disease severity. Sci Immunol. 2020;5(51):eabe1670. PubMed PMC
Carter MJ, Fish M, Jennings A, et al. Peripheral immunophenotypes in children with multisystem inflammatory syndrome associated with SARS‐CoV‐2 infection. Nat Med. 2020;26(11):1701‐1707. PubMed
Gruber CN, Patel RS, Trachtman R, et al. Mapping systemic inflammation and antibody responses in multisystem inflammatory syndrome in children (MIS‐C). Cell. 2020;183(4):982‐995. PubMed PMC
Živković J, Lipej M, Banić I, et al. Respiratory and allergic disorders in children with severe and partial immunoglobulin A immunodeficiency. Scand J Immunol. 2019;90(6):e12828. PubMed
Buckland MS, Galloway JB, Fhogartaigh CN, et al. Treatment of COVID‐19 with remdesivir in the absence of humoral immunity: a case report. Nat Commun. 2020;11:6385. PubMed PMC
Naito Y, Takagi T, Yamamoto T, Watanabe S. Association between selective IgA deficiency and COVID‐19. J Clin Biochem Nutr. 2020;67(2):122‐125. PubMed PMC
Kumar S, Nyodu R, Maurya VK, Saxena SK. Host immune response and immunobiology of human SARS‐CoV‐2 infection. Coronavirus Disease 2019 (COVID‐19). 2020;43‐53.
Tomita Y, Ikeda T, Sato R, Sakagami T. Association between HLA gene polymorphisms and mortality of COVID‐19: An in silico analysis. Immun Inflamm Dis. 2020;8(4):684‐694. PubMed PMC
Marino R, Deibis L, De Sanctis JB, Bianco NE, Toro F. Interaction of immune complexes isolated from hepatitis C virus‐infected individuals with human cell lines. Med Microbiol Immunol. 2005;194(1–2):73‐80. PubMed
Devarajan A, Vaseghi M. Hydroxychloroquine can potentially interfere with immune function in COVID‐19 patients: Mechanisms and insights. Redox Biol. 2021;38:101810. PubMed PMC
Baruah V, Bose S. Immunoinformatics‐aided identification of T cell and B cell epitopes in the surface glycoprotein of 2019‐nCoV. J Med Virol. 2020;92(5):495‐500. PubMed PMC
Li G, Fan Y, Lai Y, et al. Coronavirus infections and immune responses. J Med Virol. 2020;92(4):424‐432. PubMed PMC
Sanchez‐Mazas A. HLA studies in the context of coronavirus outbreaks. Swiss Med Wkly. 2020;150:w20248. PubMed
Tavasolian F, Rashidi M, Hatam GR, et al. HLA, Immune Response, and Susceptibility to COVID‐19. Front Immunol. 2021;11:601886. PubMed PMC
Iesa M, Osman M, Hassan MA, et al. SARS‐CoV‐2 and Plasmodium falciparum common immunodominant regions may explain low COVID‐19 incidence in the malaria‐endemic belt. New Microbes New Infect. 2020;38:100817. PubMed PMC
Leite MM, Gonzalez‐Galarza FF, Silva BCCD, Middleton D, Santos EJMD. Predictive immunogenetic markers in COVID‐19. Hum Immunol. 2021;S0198‐8859(21):00015‐X. 10.1016/j.humimm.2021.01.008 PubMed DOI PMC
Chen W‐T, Wang C‐W, Lu C‐W, et al. The function of HLA‐B*13:01 involved in the pathomechanism of dapsone‐induced severe cutaneous adverse reactions. J Invest Dermatol. 2018;138(7):1546‐1554. PubMed
Bruchez A, Sha KY, Johnson J, et al. MHC class II transactivator CIITA induces cell resistance to Ebola virus and SARS‐like coronaviruses. Science. 2020;370(6513):241‐247. PubMed PMC
Lee SJ, Qin H, Benveniste EN. The IFN‐gamma‐induced transcriptional program of the CIITA gene is inhibited by statins. Eur J Immunol. 2008;38(8):2325‐2336. PubMed PMC
Vibholm LK, Nielsen SSF, Pahus MH, et al. SARS‐CoV‐2 persistence is associated with antigen‐specific CD8 T‐cell responses. EBioMedicine. 2021;64:103230. PubMed PMC
Kikkert M. Innate immune evasion by human respiratory RNA viruses. J Innate Immun. 2020;12(1):4‐20. PubMed PMC
Taefehshokr N, Taefehshokr S, Hemmat N, Heit B. Covid‐19: perspectives on innate immune evasion. Front Immunol. 2020;11:580641. PubMed PMC
Breton G, Mendoza P, Hägglöf T, et al. Persistent cellular immunity to SARS‐CoV‐2 infection. J Exp Med. 2021;218(4):e20202515. PubMed PMC
Sokal A, Chappert P, Barba‐Spaeth G, et al. Maturation and persistence of the anti‐SARS‐CoV‐2 memory B cell response. Cell. 2021;184(5):1201‐1213. PubMed PMC
Chen J, Lau YF, Lamirande EW, et al. Cellular immune responses to severe acute respiratory syndrome coronavirus (SARS‐CoV) infection in senescent BALB/c mice: CD4+ T cells are important in control of SARS‐CoV infection. J Virol. 2010;84(3):1289‐1301. PubMed PMC
Wang F, Nie J, Wang H, et al. Characteristics of peripheral lymphocyte subset alteration in COVID‐19 pneumonia. J Infect Dis. 2020;221(11):1762‐1769. PubMed PMC
Kiyotani K, Toyoshima Y, Nemoto K, Nakamura Y. Bioinformatic prediction of potential T cell epitopes for SARS‐Cov‐2. J Hum Genet. 2020;65(7):569‐575. PubMed PMC
Poh CM, Carissimo G, Wang B, et al. Two linear epitopes on the SARS‐CoV‐2 spike protein that elicit neutralising antibodies in COVID‐19 patients. Nat Commun. 2020;11(1):2806. PubMed PMC
Liu L, Wang P, Nair MS, et al. Potent neutralising antibodies against multiple epitopes on SARS‐CoV‐2 spike. Nature. 2020;584(7821):450‐456. PubMed
Niu X, Li S, Li P, et al. Longitudinal analysis of T and B cell receptor repertoire transcripts reveal dynamic immune response in COVID‐19 patients. Front Immunol. 2020;11:582010. PubMed PMC
Covre LP, De Maeyer RPH, Gomes DCO, Akbar AN. The role of senescent T cells in immunopathology. Aging Cell. 2020;19(12):e13272. PubMed PMC
Chen Y, Zuiani A, Fischinger S, et al. Quick COVID‐19 healers sustain Anti‐SARS‐CoV‐2 antibody production. Cell. 2020;183(6):1496‐1507. PubMed PMC
Mayora S, Zabaleta‐Lanz M, Martínez W, Toro F, De Sanctis JB, García A. Lymphocyte subpopulations in Venezuelan patients infected with SARS CoV‐2. Gac Méd Caracas. 2020;128(Supl 1):S74‐S78.
Ferretti AP, Kula T, Wang Y, et al. Unbiased screens show CD8+ T cells of COVID‐19 patients recognise shared epitopes in SARS‐CoV‐2 that largely reside outside the spike protein. Immunity. 2020;53(5):1095‐1107. PubMed PMC
Robbiani DF, Gaebler C, Muecksch F, et al. Convergent antibody responses to SARS‐CoV‐2 in convalescent individuals. Nature. 2020;584(7821):437‐442. PubMed PMC
Lee CH, Pinho MP, Buckley PR, et al. Potential CD8+ T cell cross‐reactivity against SARS‐CoV‐2 conferred by other coronavirus strains. Front Immunol. 2020;11:579480. PubMed PMC
Schulien I, Kemming J, Oberhardt V, et al. Characterisation of pre‐existing and induced SARS‐CoV‐2‐specific CD8+ T cells. Nat Med. 2021;27(1):78‐85. PubMed
Reche PA. Potential cross‐reactive immunity to SARS‐CoV‐2 from common human pathogens and vaccines. Front Immunol. 2020;11:586984. PubMed PMC
Marín‐Hernández D, Nixon DF, Hupert N. Anticipated reduction in COVID‐19 mortality due to population‐wide BCG vaccination: evidence from Germany. Hum Vaccin Immunother. 2021;Feb 5 1‐3. 10.1080/21645515.2021.1872344. Online ahead of print. PubMed DOI PMC
Conti P, Younes A. Coronavirus COV‐19/SARS‐CoV‐2 affects women less than men: clinical response to viral infection. J Biol Regul Homeost Agents. 2020;34(2):339‐343. PubMed
Rahimi G, Rahimi B, Panahi M, et al. An overview of Betacoronaviruses‐associated severe respiratory syndromes, focusing on sex‐type‐specific immune responses. Int Immunopharmacol. 2021;92:107365. PubMed PMC
Karaderi T, Bareke H, Kunter I., et al. Host genetics at the intersection of autoimmunity and COVID‐19: a potential key for heterogeneous COVID‐19 severity. Front Immunol. 2020;11:586111. PubMed PMC
Exploring the Contrasts and Similarities of Dengue and SARS-CoV-2 Infections During the COVID-19 Era
Autoimmunity and Immunodeficiency in Severe SARS-CoV-2 Infection and Prolonged COVID-19