• This record comes from PubMed

Coronavirus infection: An immunologists' perspective

. 2021 Jun ; 93 (6) : e13043. [epub] 20210407

Language English Country England, Great Britain Media print-electronic

Document type Journal Article, Review

Grant support
CZ.02.1.01/0.0/0.0/16_019/0000868 Molecular, cellular, and clinical approach to healthy aging grant ENOCH
MTM

Coronavirus infections are frequent viral infections in several species. As soon as the severe acute respiratory syndrome (SARS) appeared in the early 2000s, most of the research focused on pulmonary disease. However, disorders in immune response and organ dysfunctions have been documented. Elderly individuals with comorbidities exhibit worse outcomes in all the coronavirus that cause SARS. Disease severity in SARS-CoV-2 infection is related to severe inflammation and tissue injury, and effective immune response against the virus is still under analysis. ACE2 receptor expression and polymorphism, age, gender and immune genetics are factors that also play an essential role in patients' clinical features and immune responses and have been partially discussed. The present report aims to review the physiopathology of SARS-CoV-2 infection and propose new research topics to understand the complex mechanisms of viral infection and viral clearance.

See more in PubMed

Yuen KS, Ye ZW, Fung SY, Chan CP, Jin DY. SARS‐CoV‐2 and COVID‐19: the most critical research questions. Cell Biosci. 2020;10:40. PubMed PMC

Weber DJ, Rutala WA, Fischer WA, et al. Emerging infectious diseases: focus on infection control issues for novel coronaviruses (Severe Acute Respiratory Syndrome‐CoV and Middle East Respiratory Syndrome‐CoV), hemorrhagic fever viruses (Lassa and Ebola), and highly pathogenic avian influenza viruses, A(H5N1) and A(H7N9). Am J Infect Control. 2016;44(5 Suppl):e91‐e100. PubMed PMC

Ye Z‐W, Yuan S, Yuen K‐S, et al. Zoonotic origins of human coronaviruses. Int J Biol Sci. 2020;16(10):1686‐1697. PubMed PMC

Mousavizadeh L, Ghasemi S. Genotype and phenotype of COVID‐19: Their roles in pathogenesis. J Microbiol Immunol Infect. 2020;S1684‐1182(20):30082–30087. PubMed PMC

Chen Y, Liu Q, Guo D. Emerging coronaviruses: genome structure, replication, and pathogenesis. J Med Virol. 2020;92(4):418‐423. PubMed PMC

Fung TS, Liu DX. Human coronavirus: host‐pathogen interaction. Annu. Rev. Microbiol. 2019;73:529‐557. PubMed

Newton AH, Cardani A, Thomas J. The host immune response in respiratory virus infection: balancing virus clearance and immunopathology. Semin Immunopathol. 2016;38(4):471‐482. PubMed PMC

Thakur V, Ratho RK, Kumar P, et al. Multi‐organ involvement in COVID‐19: beyond pulmonary manifestations. J Clin Med. 2021;10(3):446. PubMed PMC

Lai C‐C, Liu YH, Wang C‐Y, et al. Asymptomatic carrier state, acute respiratory disease, and pneumonia due to severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2): facts and myths. J Microbiol Immunol Infect. 2020;53(3):404‐412. PubMed PMC

Jung C‐Y, Park H, Kim DW, et al. Clinical characteristics of asymptomatic patients with COVID‐19: a nationwide Cohort Study in South Korea. Int J Infect Dis. 2020;99:266‐268. PubMed PMC

Parilli‐Troconis D, Baptista P, Marcano‐Lozada M, et al. COVID‐19 infection and its influence in otorhinolaryngology‐head and neck surgery. Int Arch Otorhinolaryngol. 2020;24(4):e527‐e534. PubMed PMC

Pepe M, Maroun‐Eid C, Romero R, et al. Clinical presentation, therapeutic approach, and outcome of young patients admitted for COVID‐19, with respect to the elderly counterpart. Clin Exp Med. 2021;8:1‐20. PubMed PMC

Dumonteil E, Fusco D, Drouin A, Herrera C. Genomic signatures of SARS‐CoV‐2 associated with patient mortality. Viruses. 2021;13(2):227. PubMed PMC

Østergaard L. SARS CoV‐2 related microvascular damage and symptoms during and after COVID‐19: Consequences of capillary transit‐time changes, tissue hypoxia and inflammation. Physiol Rep. 2021;9(3):e14726. PubMed PMC

Rechtman E, Curtin P, Navarro E, Nirenberg S, Horton MK. Vital signs assessed in initial clinical encounters predict COVID‐19 mortality in an NYC hospital system. Sci Rep. 2020;10(1):21545. PubMed PMC

Hendren NS, de Lemos JA, Ayers C, et al. Association of body mass index and age with morbidity and mortality in patients hospitalized with COVID‐19: results from the American heart association COVID‐19 cardiovascular disease registry. Circulation. 2021;143(2):135‐144. PubMed

Pajo AT, Espiritu AI, Apor ADAO, Jamora RDG. Neuropathologic findings of patients with COVID‐19: a systematic review. Neurol Sci. 2021;22:1‐12. PubMed PMC

Garg S, Garg M, Prabhakar N, Malhotra P, Agarwal R. Unraveling the mystery of Covid‐19 cytokine storm: From skin to organ systems. Dermatol Ther. 2020;33:e13859. PubMed PMC

Mason RJ. Thoughts on the alveolar phase of COVID‐19. Am J Physiol Lung Cell Mol Physiol. 2020;319(1):L115‐L120. PubMed PMC

Nie X, Qian L, Sun R, et al. Multi‐organ proteomic landscape of COVID‐19 autopsies. Cell. 2021;184(3):775‐791. PubMed PMC

Gomes CP, Fernandes DE, Casimiro F, et al. in COVID‐19: from pharmacological evidences to genetics. Front Cell Infect Microbiol. 2020;10:589505. PubMed PMC

Lim J‐H, Jung H‐Y, Choi J‐Y, et al. Hypertension and electrolyte disorders in patients with COVID‐19. Electrolyte Blood Press. 2020;18(2):23‐30. 10.1007/s11739-021-02632-z. Online ahead of print. PubMed DOI PMC

De Carvalho H, Richard MC, Chouihed T, et al. Electrolyte imbalance in COVID‐19 patients admitted to the Emergency Department: a case‐control study. Intern Emerg Med. 2021;1‐6. PubMed PMC

Gong T, Yang Y, Jin T, Jiang W, Zhou R. Orchestration of NLRP3 inflammasome activation by ion fluxes. Trends Immunol. 2018;39(5):393‐406. PubMed

Shang J, Ye G, Shi KE, et al. Structural basis of receptor recognition by SARS‐CoV‐2. Nature. 2020;581(7807):221‐224. PubMed PMC

Yan R, Zhang Y, Li Y, Xia L, Guo Y, Zhou Q. Structural basis for the recognition of SARS‐CoV‐2 by full‐length human ACE2. Science. 2020;367(6485):1444‐1448. PubMed PMC

Morelli F, Meirelles LEdF, de Souza MVF, et al. COVID‐19 infection in the human reproductive tract of men and Nonpregnant women. Am J Trop Med Hyg. 2021;104:814‐825. PubMed PMC

Walls AC, Park YJ, Tortorici MA, Wall A, McGuire AT, Veesler D. Structure, function, and antigenicity of the SARS‐CoV‐2 spike glycoprotein. Cell. 2020;181(2):281‐292. PubMed PMC

Batlle D, Wysocki J, Satchell K. Soluble angiotensin‐converting enzyme 2: a potential approach for coronavirus infection therapy? Clin Sci. 2020;134(5):543‐545. PubMed

Hoffmann M, Kleine‐Weber H, Schroeder S, et al. SARS‐CoV‐2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020;181:1‐10. PubMed PMC

Johnson BA, Xie X, Bailey AL, et al. Loss of furin cleavage site attenuates SARS‐CoV‐2 pathogenesis. Nature. 2021;591(7849):293‐299. PubMed PMC

Gottlieb RL, Nirula A, Chen P, et al. Effect of bamlanivimab as monotherapy or in combination with etesevimab on viral load in patients with mild to moderate COVID‐19: a randomised clinical trial. JAMA. 2021;325(7):632. PubMed PMC

Rappazzo CG, Tse LV, Kaku CI, et al. Broad and potent activity against SARS‐like viruses by an engineered human monoclonal antibody. Science. 2021;371(6531):823‐829. PubMed PMC

Jitsuiki K, Katayama I, Iida T, Nagatomo S, Yanagawa Y. Successful treatment of elderly male with COVID‐19 infection with severe acute respiratory distress syndrome using multimodal therapy, including immune modulation therapy. Cureus. 2020;12(12):e12402. PubMed PMC

Gemmati D, Bramanti B, Serino ML, et al. COVID‐19 and individual genetic susceptibility/receptivity: role of ACE1/ACE2 genes, immunity, inflammation and coagulation. Might the double X‐chromosome in females be protective against SARS‐CoV‐2 compared to the single X‐chromosome in males? Int J Mol Sci. 2020;21(10):E3474. PubMed PMC

Zheng H, Cao JJ. Angiotensin‐converting enzyme gene polymorphism and severe lung injury in patients with coronavirus disease 2019. Am J Pathol. 2020;190(10):2013‐2017. PubMed PMC

Asselta R, Paraboschi EM, Mantovani A, Duga S. ACE2 and TMPRSS2 variants and expression as candidates to sex and country differences in COVID‐19 severity in Italy. Aging. 2020;12(11):10087‐10098. PubMed PMC

Hussain M, Jabeen N, Raza F, et al. Structural variations in human ACE2 may influence its binding with SARS‐CoV‐2 spike protein. J Med Virol. 2020;92(9):1580‐1586. PubMed PMC

Li Q, Cao Z, Rahman P. Genetic variability of human angiotensin‐converting enzyme 2 (hACE2) among various ethnic populations. Mol Genet Genomic Med. 2020;8(8):e1344. PubMed PMC

Ziegler CGK, Allon SJ, Nyquist SK, et al. HCA lung biological network, SARS‐CoV‐2 receptor ACE2 is an interferon‐stimulated gene in human airway epithelial cells and is detected in specific cell subsets across tissues. Cell. 2020;81(5):1016‐1035. PubMed PMC

Xu Q, Tang Y, Huang G. Innate immune responses in RNA viral infection. Front Med. 2020;1‐14. 10.1007/s11684-020-0776-7. Online ahead of print. PubMed DOI PMC

Jones JE, Le Sage V, Lakdawala SS. Viral and host heterogeneity and their effects on the viral life cycle. Nat Rev Microbiol. 2021;19(4):272‐282. PubMed PMC

Onomoto K, Onoguchi K, Yoneyama M. Regulation of RIG‐I‐like receptor‐mediated signaling: interaction between host and viral factors. Cell Mol Immunol. 2021;18(3):539‐555. PubMed PMC

Antonczyk A, Krist B, Sajek M, et al. Direct inhibition of IRF‐dependent transcriptional regulatory mechanisms associated with disease. Front Immunol. 2019;10:1176. PubMed PMC

Lega S, Naviglio S, Volpi S, Tommasini A. Recent insight into SARS‐CoV2 immunopathology and rationale for potential treatment and preventive strategies in COVID‐19. Vaccines. 2020;8(2):224. PubMed PMC

Jing H, Su HC. New immunodeficiency syndromes that help us understand the IFN‐mediated antiviral immune response. Curr Opin Pediatr. 2019;31(6):815‐820. PubMed PMC

Elhabyan A, Elyaacoub S, Sanad E, Abukhadra A, Elhabyan A, Dinu V. The role of host genetics in susceptibility to severe viral infections in humans and insights into host genetics of severe COVID‐19: A systematic review. Virus Res. 2020;289:198163. PubMed PMC

Wang BX, Fish EN. Global virus outbreaks: interferons as 1st responders. Semin Immunol. 2019;43:101300. PubMed PMC

Lei X, Dong X, Ma R, et al. activation and evasion of type I interferon responses by SARS‐CoV‐2. Nat Commun. 2020;11(1):3810. PubMed PMC

Konno Y, Kimura I, Uriu K, et al. SARS‐CoV‐2 ORF3b Is a Potent Interferon Antagonist Whose Activity Is Increased by a Naturally Occurring Elongation Variant. Cell Rep. 2020;32(12):108185. PubMed PMC

Miorin L, Kehrer T, Sanchez‐Aparicio MT, et al. SARS‐CoV‐2 Orf6 hijacks Nup98 to block STAT nuclear import and antagonise interferon signaling. Proc Natl Acad Sci USA. 2020;117(45):28344‐28354. PubMed PMC

Zheng YI, Zhuang M‐W, Han L, et al. Severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) membrane (M) protein inhibits type I and III interferon production by targeting RIG‐I/MDA‐5 signaling. Signal Transduct Target Ther. 2020;5(1):299. PubMed PMC

Zhang Q, Bastard P, Liu Z, et al. Inborn errors of type I IFN immunity in patients with life‐threatening COVID‐19. Science. 2020;370:eabd4570. PubMed PMC

Tangye SG, Al‐Herz W, Bousfiha A, et al. The ever‐increasing array of novel inborn errors of immunity: an interim update by the IUIS committee. J Clin Immunol. 2021;41(3):666‐679. PubMed PMC

Bastard P, Rosen LB, Zhang Q, et al. Auto‐antibodies against type I IFNs in patients with life‐threatening COVID‐19. Science. 2021;218(4):e20202486.

Fulzele S, Sahay B, Yusufu I, et al. COVID‐19 virulence in aged patients might be impacted by the host cellular MicroRNAs abundance/profile. Aging Dis. 2020;11(3):509‐522. PubMed PMC

Hosseini Rad Sm A, McLellan AD. Implications of SARS‐CoV2 mutations for genomic RNA structure and host microRNA targeting. Int J Mol Sci. 2020;21(13):4807. PubMed PMC

Arisan ED, Dart A, Grant GH, et al. The prediction of miRNAs in SARS‐CoV2 genomes: hsa‐miR databases identify 7 Key miRs linked to host responses and virus pathogenicity‐related KEGG pathways significant for comorbidities. Viruses. 2020;12(6):614. PubMed PMC

Srivastava R, Daulatabad SV, Srivastava M, Janga SC. SARS‐CoV‐2 contributes to altering the post‐transcriptional regulatory networks across human tissues by sponging RNA binding proteins and micro‐RNAs. Int J Mol Sci. 2020;21(19):E7090. PubMed PMC

Wower IK, Brandebourg TD, Wower J. New insights on the mobility of viral and host non‐coding RNAs reveal extracellular vesicles as intriguing candidate antiviral targets. Pathogens. 2020;9(11):E876. PubMed PMC

Nersisyan S, Engibaryan N, Gorbonos A, Kirdey K, Makhonin A, Tonevitsky A. Potential role of cellular miRNAs in coronavirus‐host interplay. PeerJ. 2020;8:e9994. PubMed PMC

Lee HY, Hur J, Kang JY, Rhee CK, Lee SY. MicroRNA‐21 inhibition suppresses alveolar M2 macrophages in an ovalbumin‐induced allergic asthma mice model. Allergy Asthma Immunol Res. 2021;13(2):312‐329. PubMed PMC

Nersisyan S, Shkurnikov M, Turchinovich A, Knyazev E, Tonevitsky A. Integrative analysis of miRNA and mRNA sequencing data reveals potential regulatory mechanisms of ACE2 and TMPRSS2. PLoS One. 2020;15(7):e0235987. PubMed PMC

Paniri A, Hosseini MM, Moballegh‐Eslam M, Akhavan‐Niaki H. Comprehensive in silico identification of impacts of ACE2 SNPs on COVID‐19 susceptibility in different populations. Gene Rep. 2021;22:100979. PubMed PMC

Wyler E, Mösbauer K, Franke V, et al. Transcriptomic profiling of SARS‐CoV‐2 infected human cell lines identifies HSP90 as target for COVID‐19 therapy. iScience. 2021;24(3):102151. PubMed PMC

Mazori AY, Bass IR, Chan L, et al. Hyperglycemia is associated with increased mortality in critically Ill patients with COVID‐19. Endocr Pract. 2021;27(2):95‐100. PubMed PMC

López‐Reyes A, Martinez‐Armenta C, Espinosa‐Velázquez R, et al. NLRP3 inflammasome: the stormy link between obesity and COVID‐19. Front Immunol. 2020;11:570251. PubMed PMC

Tanner JE, Alfieri C. The fatty acid lipid metabolism nexus in COVID‐19. Viruses. 2021;13(1):90. PubMed PMC

Kuo C‐L, Pilling LC, Atkins JL, et al. APOE e4 genotype predicts severe COVID‐19 in the UK Biobank community cohort. J Gerontol A Biol Sci Med Sci. 2020;75(11):2231‐2232. PubMed PMC

Keshavarz M, Solaymani‐Mohammadi F, Namdari H, et al. Metabolic host response and therapeutic approaches to influenza infection. Cell Mol Biol Lett. 2020;25:15. PubMed PMC

Yan B, Chu H, Yang D, et al. Characterisation of the lipidomic profile of human coronavirus‐infected cells: implications for lipid metabolism remodeling upon coronavirus replication. Viruses. 2019;11(1):73. PubMed PMC

Shen B, Yi X, Sun Y, et al. Proteomic and metabolomic characterisation of COVID‐19 patient sera. Cell. 2020;182(1):59‐72. PubMed PMC

Barberis E, Timo S, Amede E, et al. Large‐scale plasma analysis revealed new mechanisms and molecules associated with the host response to SARS‐CoV‐2. Int J Mol Sci. 2020;21(22):8623. PubMed PMC

Caterino M, Gelzo M, Sol S, et al. dysregulation of lipid metabolism and pathological inflammation in patients with COVID‐19. Sci Rep. 2021;11(1):2941. PubMed PMC

Garić D, De Sanctis JB, Shah J, Dumut DC, Radzioch D. Biochemistry of very‐long‐chain and long‐chain ceramides in cystic fibrosis and other diseases: the importance of side chain. Prog Lipid Res. 2019;74:130‐144. PubMed

Veltman M, Stolarczyk M, Radzioch D, et al. Correction of lung inflammation in a F508del CFTR murine cystic fibrosis model by the sphingosine‐1‐phosphate lyase inhibitor LX2931. Am J Physiol Lung Cell Mol Physiol. 2016;311(5):L1000‐L1014. PubMed

Prakash H, Upadhyay D, Bandapalli OR, Jain A, Kleuser B. Host sphingolipids: perspective immune adjuvant for controlling SARS‐CoV‐2 infection for managing COVID‐19 disease. Prostaglandins Other Lipid Mediat. 2021;152:106504. PubMed PMC

Carpinteiro A, Edwards MJ, Hoffmann M, et al. Pharmacological inhibition of acid sphingomyelinase prevents uptake of SARS‐CoV‐2 by epithelial cells. Cell Rep Med. 2020;1(8):100142. PubMed PMC

Java A, Apicelli AJ, Liszewski MK, et al. The complement system in COVID‐19: friend and foe? JCI Insight. 2020;5(15):e140711. PubMed PMC

Fang S, Wang H, Lu L, Jia Y, Xia Z. Decreased complement C3 levels are associated with poor prognosis in patients with COVID‐19: A retrospective cohort study. Int Immunopharmacol. 2020;89(Pt A):107070. PubMed PMC

Akk A, Springer LE, Yang L, et al. Complement activation on neutrophils initiates endothelial adhesion and extravasation. Mol Immunol. 2019;114:629‐642. PubMed PMC

Maxwell AJ, Ding J, You Y, et al. Identification of key signaling pathways induced by SARS‐CoV2 that underlie thrombosis and vascular injury in COVID‐19 patients. J Leukoc Biol. 2021;109(1):35‐47. PubMed PMC

Gralinski LE, Sheahan TP, Morrison TE, et al. Complement activation contributes to severe acute respiratory syndrome coronavirus pathogenesis. MBio. 2018;9(5):e01753‐e1818. PubMed PMC

Lin P, Chen W, Huang H, et al. Delayed discharge is associated with higher complement C3 levels and a longer nucleic acid‐negative conversion time in patients with COVID‐19. Sci Rep. 2021;11(1):1233. PubMed PMC

Cugno M, Meroni PL, Gualtierotti R, et al. Complement activation and endothelial perturbation parallel COVID‐19 severity and activity. J Autoimmun. 2021;116:102560. PubMed PMC

Overmyer KA, Shishkova E, Miller IJ, et al. Large‐scale multi‐omic analysis of COVID‐19 severity. Cell Syst. 2021;12(1):23‐40. PubMed PMC

Kulkarni HS, Elvington ML, Perng YC, et al. Intracellular C3 protects human airway epithelial cells from stress‐associated cell death. Am J Respir Cell Mol Biol. 2019;60(2):144‐157. PubMed PMC

Kolin DA, Kulm S, Christos PJ, Elemento O. Clinical, regional, and genetic characteristics of Covid‐19 patients from UK Biobank. PLoS One. 2020;15(11):e0241264. PubMed PMC

O'Brien ME, Fee L, Browne N, et al. activation of complement component 3 is associated with airways disease and pulmonary emphysema in alpha‐1 antitrypsin deficiency. Thorax. 2020;75(4):321‐330. PubMed PMC

Rogliani P, Lauro D, di Daniele N, Chetta A, Calzetta L. Reduced risk of COVID‐19 hospitalisation in asthmatic and COPD patients: a benefit of inhaled corticosteroids? Expert Rev Respir Med 2021;15(4):561‐568. PubMed PMC

Polycarpou A, Howard M, Farrar CA, et al. Rationale for targeting Complement in COVID‐19. EMBO Mol Med. 2020;12(8):e12642. PubMed PMC

Mastellos DC, Pires da Silva BGP, Fonseca BAL, et al. Complement C3 vs C5 inhibition in severe COVID‐19: early clinical findings reveal differential biological efficacy. Clin Immunol. 2020;220:108598. PubMed PMC

Yu J, Yuan X, Chen H, Chaturvedi S, Braunstein EM, Brodsky RA. Direct activation of the alternative complement pathway by SARS‐CoV‐2 spike proteins is blocked by factor D inhibition. Blood. 2020;136(18):2080‐2089. PubMed PMC

Skendros P, Mitsios A, Chrysanthopoulou A, et al. Complement and tissue factor‐enriched neutrophil extracellular traps are key drivers in COVID‐19 immunothrombosis. J Clin Invest. 2020;130(11):6151‐6157. PubMed PMC

Holter JC, Pischke SE, de Boer E, et al. Systemic complement activation is associated with respiratory failure in COVID‐19 hospitalized patients. Proc Natl Acad Sci USA. 2020;117(40):25018‐25025. PubMed PMC

Tu X, Chong WP, Zhai Y, et al. Functional polymorphisms of the CCL2 and MBL genes cumulatively increase susceptibility to severe acute respiratory syndrome coronavirus infection. J Infect. 2015;71(1):101‐109. PubMed PMC

Di Maria E, Latini A, Borgiani P, Novelli G. Genetic variants of the human host influencing the coronavirus‐associated phenotypes (SARS, MERS and COVID‐19): rapid systematic review and field synopsis. Hum Genomics. 2020;14(1):30. PubMed PMC

Valenti L, Griffini S, Lamorte G, et al. Chromosome 3 cluster rs11385942 variant links complement activation with severe COVID‐19. J Autoimmun. 2021;117:102595. PubMed PMC

Woodruff TM, Shukla AK. The complement C5a–C5aR1 GPCR axis in COVID‐19 therapeutics. Trends Immunol. 2020;41(11):965‐967. PubMed PMC

Kulasekararaj AG, Lazana I, Large J, et al. Terminal complement inhibition dampens the inflammation during COVID‐19. Br J Haematol. 2020;190(3):e141‐e143. PubMed PMC

Janiuk K, Jabłońska E, Garley M. Significance of NETs formation in COVID‐19. Cells. 2021;10(1):151. PubMed PMC

Schulte‐Schrepping J, Reusch N, Paclik D, et al. Severe COVID‐19 Is marked by a dysregulated myeloid cell compartment. Cell. 2020;182(6):1419‐1440. PubMed PMC

Barnes BJ, Adrover JM, Baxter‐Stoltzfus A, et al. Targeting potential drivers of COVID‐19: neutrophil extracellular traps. J Exp Med. 2020;217(6):e20200652. PubMed PMC

Zuo Y, Kanthi Y, Knight JS, Kim AHJ. The interplay between neutrophils, complement, and microthrombi in COVID‐19. Best Pract Res Clin Rheumatol. 2021;35(1):101661. PubMed PMC

Zuo Y, Zuo M, Yalavarthi S, et al. Neutrophil extracellular traps and thrombosis in COVID‐19. J Thromb Thrombolysis. 2021;51(2):446‐453. PubMed PMC

Bao L, Zhang C, Dong J, Zhao L, Li Y, Sun J. Oral microbiome and SARS‐CoV‐2: beware of lung co‐infection. Front Microbiol. 2020;11:1840. PubMed PMC

Tan Y, Zhou J, Zhou Q, Hu L, Long Y. Role of eosinophils in the diagnosis and prognostic evaluation of COVID‐19. J Med Virol. 2021;93(2):1105‐1110. PubMed

Lindsley AW, Schwartz JT, Rothenberg ME. Eosinophil responses during COVID‐19 infections and coronavirus vaccination. J Allergy Clin Immunol. 2020;146(1):1‐7. PubMed PMC

Ari S, Can V, Demir ÖF, et al. Elevated eosinophil count is related with lower anti‐factor Xa activity in COVID‐19 patients. J Hematop. 2020;Oct 8 1‐10. PubMed PMC

Motta Junior JDS, Miggiolaro AFRDS, Nagashima S, et al. Mast cells in alveolar septa of COVID‐19 patients: a pathogenic pathway that may link interstitial edema to immunothrombosis. Front Immunol. 2020;11:574862. 10.1007/s12308-020-00419-3. Online ahead of print. PubMed DOI PMC

Hogan Ii RB, Hogan Iii RB, Cannon T, et al. Dual‐histamine receptor blockade with cetirizine ‐ famotidine reduces pulmonary symptoms in COVID‐19 patients. Pulm Pharmacol Ther. 2020;63:101942. PubMed PMC

Kopf M, Schneider C, Nobs SP. The development and function of lung‐resident macrophages and dendritic cells. Nat Immunol. 2015;16(1):36‐44. PubMed

Evren E, Ringqvist E, Willinger T. Origin and ontogeny of lung macrophages: from mice to humans. Immunology. 2020;160(2):126‐138. PubMed PMC

Boumaza A, Gay L, Mezouar S, et al. Monocytes and macrophages, targets of SARS‐CoV‐2: the clue for Covid‐19 immunoparalysis. J Infect Dis. 2021;jiab044. 10.1093/infdis/jiab044. Online ahead of print. PubMed DOI PMC

Kvedaraite E, Hertwig L, Sinha I, et al. Major alterations in the mononuclear phagocyte landscape associated with COVID‐19 severity. Proc Natl Acad Sci USA. 2021;118(6):e2018587118. PubMed PMC

Amon L, Lehmann CHK, Heger L, Heidkamp GF, Dudziak D. The ontogenetic path of human dendritic cells. Mol Immunol. 2020;120:122‐129. PubMed

Reizis B. Plasmacytoid dendritic cells: development, regulation, and function. Immunity. 2019;50(1):37‐50. PubMed PMC

Freer G, Matteucci D. Influence of dendritic cells on viral pathogenicity. PLoS Pathog. 2009;5(7):e1000384. PubMed PMC

Campana P, Parisi V, Leosco D, Bencivenga D, Della Ragione F, Borriello A. Dendritic cells and SARS‐CoV‐2 infection: still an unclarified connection. Cells. 2020;9(9):2046. PubMed PMC

Onodi F, Bonnet‐Madin L, Meertens L, et al. SARS‐CoV‐2 induces human plasmacytoid predendritic cell diversification via UNC93B and IRAK4. J Exp Med. 2021;218(4):e20201387. PubMed PMC

Sánchez‐Cerrillo I, Landete P, Aldave B, et al. COVID‐19 severity associates with pulmonary redistribution of CD1c+ DCs and inflammatory transitional and nonclassical monocytes. J Clin Invest. 2020;130(12):6290‐6300. PubMed PMC

Guo H, Callaway JB, Ting JP. Inflammasomes: mechanism of action, role in disease, and therapeutics. Nat Med. 2015;21(7):677‐687. PubMed PMC

Zhao C, Zhao W. NLRP3 Inflammasome‐A Key Player in Antiviral Responses. Front Immunol. 2020;11:211. PubMed PMC

Krainer J, Siebenhandl S, Weinhäusel A. Systemic autoinflammatory diseases. J Autoimmun. 2020;109:102421. PubMed PMC

Wang Z, Zhang S, Xiao Y, et al. NLRP3 inflammasome and inflammatory diseases. Oxid Med Cell Longev. 2020;2020:4063562. PubMed PMC

Rodrigues TS, de Sá KSG, Ishimoto AY, et al. Inflammasomes are activated in response to SARS‐CoV‐2 infection and are associated with COVID‐19 severity in patients. J Exp Med. 2021;218(3):e20201707. PubMed PMC

Lara PC, Macías‐Verde D, Burgos‐Burgos J. Age‐induced NLRP3 inflammasome over‐activation increases lethality of SARS‐CoV‐2 pneumonia in elderly patients. Aging Dis. 2020;11(4):756‐762. PubMed PMC

Channappanavar R, Perlman S. Pathogenic human coronavirus infections: causes and consequences of cytokine storm and immunopathology. Semin Immunopathol. 2017;39(5):529‐539. PubMed PMC

Jacob CO. On the genetics and immunopathogenesis of COVID‐19. Clin Immunol. 2020;220:108591. PubMed PMC

Ye Q, Wang B, Mao J. The pathogenesis and treatment of the ʽCytokine Storm' in COVID‐19. J Infect. 2020;80(6):607‐613. PubMed PMC

Meftahi GH, Jangravi Z, Sahraei H, Bahari Z. The possible pathophysiology mechanism of cytokine storm in elderly adults with COVID‐19 infection: the contribution of "inflame‐aging". Inflamm Res. 2020;69(9):825‐839. PubMed PMC

Schulert GS, Cron RQ. The genetics of macrophage activation syndrome. Genes Immun. 2020;21(3):169‐181. PubMed

Lee S, Channappanavar R, Kanneganti TD. Coronaviruses: innate immunity, inflammasome activation, inflammatory cell death, and cytokines. Trends Immunol. 2020;41(12):1083‐1099. PubMed PMC

Ovali F. Coronavirus‐2019 disease (COVID‐19) in children. Medeni Med J. 2020;35(3):242‐252. PubMed PMC

Conti P, Caraffa A, Gallenga CE, et al. Coronavirus‐19 (SARS‐CoV‐2) induces acute severe lung inflammation via IL‐1 causing cytokine storm in COVID‐19: a promising inhibitory strategy. J Biol Regul Homeost Agents. 2020;34(6):1971‐1975. PubMed

Branchett WJ, Lloyd CM. Regulatory cytokine function in the respiratory tract. Mucosal Immunol. 2019;12:589‐600. PubMed PMC

Fitzgerald KA, Kagan JC. Toll‐like receptors and the control of immunity. Cell. 2020;180(6):1044‐1066. PubMed PMC

Wurfel MM, Gordon AC, Holden TD, et al. Toll‐like receptor 1 polymorphisms affect innate immune responses and outcomes in sepsis. Am J Respir Crit Care Med. 2008;178(7):710‐720. PubMed PMC

Patarčić I, Gelemanović A, Kirin M, et al. The role of host genetic factors in respiratory tract infectious diseases: systematic review, meta‐analyses and field synopsis. Sci Rep. 2015;5:16119. PubMed PMC

Li C, Jiao S, Wang G, et al. The immune adaptor ADAP regulates reciprocal TGF‐β1‐integrin crosstalk to protect from influenza virus infection. PLoS Pathog. 2015;11(4):e1004824. PubMed PMC

Sebastian‐Valverde M, Pasinetti GM. The NLRP3 inflammasome as a critical actor in the inflammaging process. Cells. 2020;9(6):1552. PubMed PMC

Li M, Guo W, Dong Y, et al. Elevated exhaustion levels of NK and CD8+ T cells as indicators for progression and prognosis of COVID‐19 disease. Front Immunol. 2020;11:580237. PubMed PMC

Udomsinprasert W, Jittikoon J, Sangroongruangsri S, Chaikledkaew U. Circulating levels of interleukin‐6 and interleukin‐10, but not tumor necrosis factor‐alpha, as potential biomarkers of severity and mortality for COVID‐19: systematic review with meta‐analysis. J Clin Immunol. 2020;41(1):11‐22. PubMed PMC

Cao X. COVID‐19: immunopathology and its implications for therapy. Nat Rev Immunol. 2020;20(5):269‐270. PubMed PMC

Roberts A, Paddock C, Vogel L, Butler E, Zaki S, Subbarao K. Aged BALB/c mice as a model for increased severity of severe acute respiratory syndrome in elderly humans. J Virol. 2005;79(9):5833‐5838. PubMed PMC

Baas T, Roberts A, Teal TH, et al. Genomic analysis reveals age‐dependent innate immune responses to severe acute respiratory syndrome coronavirus. J Virol. 2008;82(19):9465‐9476. PubMed PMC

Frieman M, Yount B, Agnihothram S, et al. Molecular determinants of severe acute respiratory syndrome coronavirus pathogenesis and virulence in young and aged mouse models of human disease. J Virol. 2012;86(2):884‐897. PubMed PMC

Masselli E, Vaccarezza M, Carubbi C, et al. NK cells: A double edge sword against SARS‐CoV‐2. Adv Biol Regul. 2020;77:100737. PubMed PMC

Poccia F, Agrati C, Castilletti C, et al. Anti‐severe acute respiratory syndrome coronavirus immune responses: the role played by V gamma 9V delta 2 T cells. J Infect Dis. 2006;193(9):1244‐1249. PubMed PMC

Chen G, Wu DI, Guo W, et al. Clinical and immunological features of severe and moderate coronavirus disease 2019. J Clin Invest. 2020;130(5):2620‐2629. PubMed PMC

Jouan Y, Guillon A, Gonzalez L, et al. Phenotypical and functional alteration of unconventional T cells in severe COVID‐19 patients. J Exp Med. 2020;217(12):e20200872. PubMed PMC

Carissimo G, Xu W, Kwok I, et al. Whole blood immunophenotyping uncovers immature neutrophil‐to‐VD2 T‐cell ratio as an early marker for severe COVID‐19. Nat Commun. 2020;11(1):5243. PubMed PMC

Maucourant C, Filipovic I, Ponzetta A, et al. Natural killer cell immunotypes related to COVID‐19 disease severity. Sci Immunol. 2020;5(50):eabd6832. PubMed PMC

National Research Project for SARS, Beijing Group . The involvement of natural killer cells in the pathogenesis of the severe acute respiratory syndrome. Am J Clin Pathol. 2004;121(4):507‐511. PubMed PMC

Giamarellos‐Bourboulis EJ, Netea MG, Rovina N, et al. Complex immune dysregulation in COVID‐19 patients with severe respiratory failure. Cell Host Microbe. 2020;27(6):992‐1000. PubMed PMC

García LF. Immune response, inflammation and the clinical spectrum of COVID‐19. Front. Immunol. 2020;11:1441. PubMed PMC

Hazeldine J, Lord JM. Immunesenescence: a predisposing risk factor for the development of COVID‐19? Front Immunol. 2020;11:573662. PubMed PMC

Haeryfar SMM. MAIT cells in COVID‐19: heroes, villains, or both? Crit Rev Immunol. 2020;40(2):173‐184. PubMed

Parrot T, Gorin J‐B, Ponzetta A, et al. MAIT cell activation and dynamics associated with COVID‐19 disease severity. Sci Immunol. 2020;5(51):eabe1670. PubMed PMC

Carter MJ, Fish M, Jennings A, et al. Peripheral immunophenotypes in children with multisystem inflammatory syndrome associated with SARS‐CoV‐2 infection. Nat Med. 2020;26(11):1701‐1707. PubMed

Gruber CN, Patel RS, Trachtman R, et al. Mapping systemic inflammation and antibody responses in multisystem inflammatory syndrome in children (MIS‐C). Cell. 2020;183(4):982‐995. PubMed PMC

Živković J, Lipej M, Banić I, et al. Respiratory and allergic disorders in children with severe and partial immunoglobulin A immunodeficiency. Scand J Immunol. 2019;90(6):e12828. PubMed

Buckland MS, Galloway JB, Fhogartaigh CN, et al. Treatment of COVID‐19 with remdesivir in the absence of humoral immunity: a case report. Nat Commun. 2020;11:6385. PubMed PMC

Naito Y, Takagi T, Yamamoto T, Watanabe S. Association between selective IgA deficiency and COVID‐19. J Clin Biochem Nutr. 2020;67(2):122‐125. PubMed PMC

Kumar S, Nyodu R, Maurya VK, Saxena SK. Host immune response and immunobiology of human SARS‐CoV‐2 infection. Coronavirus Disease 2019 (COVID‐19). 2020;43‐53.

Tomita Y, Ikeda T, Sato R, Sakagami T. Association between HLA gene polymorphisms and mortality of COVID‐19: An in silico analysis. Immun Inflamm Dis. 2020;8(4):684‐694. PubMed PMC

Marino R, Deibis L, De Sanctis JB, Bianco NE, Toro F. Interaction of immune complexes isolated from hepatitis C virus‐infected individuals with human cell lines. Med Microbiol Immunol. 2005;194(1–2):73‐80. PubMed

Devarajan A, Vaseghi M. Hydroxychloroquine can potentially interfere with immune function in COVID‐19 patients: Mechanisms and insights. Redox Biol. 2021;38:101810. PubMed PMC

Baruah V, Bose S. Immunoinformatics‐aided identification of T cell and B cell epitopes in the surface glycoprotein of 2019‐nCoV. J Med Virol. 2020;92(5):495‐500. PubMed PMC

Li G, Fan Y, Lai Y, et al. Coronavirus infections and immune responses. J Med Virol. 2020;92(4):424‐432. PubMed PMC

Sanchez‐Mazas A. HLA studies in the context of coronavirus outbreaks. Swiss Med Wkly. 2020;150:w20248. PubMed

Tavasolian F, Rashidi M, Hatam GR, et al. HLA, Immune Response, and Susceptibility to COVID‐19. Front Immunol. 2021;11:601886. PubMed PMC

Iesa M, Osman M, Hassan MA, et al. SARS‐CoV‐2 and Plasmodium falciparum common immunodominant regions may explain low COVID‐19 incidence in the malaria‐endemic belt. New Microbes New Infect. 2020;38:100817. PubMed PMC

Leite MM, Gonzalez‐Galarza FF, Silva BCCD, Middleton D, Santos EJMD. Predictive immunogenetic markers in COVID‐19. Hum Immunol. 2021;S0198‐8859(21):00015‐X. 10.1016/j.humimm.2021.01.008 PubMed DOI PMC

Chen W‐T, Wang C‐W, Lu C‐W, et al. The function of HLA‐B*13:01 involved in the pathomechanism of dapsone‐induced severe cutaneous adverse reactions. J Invest Dermatol. 2018;138(7):1546‐1554. PubMed

Bruchez A, Sha KY, Johnson J, et al. MHC class II transactivator CIITA induces cell resistance to Ebola virus and SARS‐like coronaviruses. Science. 2020;370(6513):241‐247. PubMed PMC

Lee SJ, Qin H, Benveniste EN. The IFN‐gamma‐induced transcriptional program of the CIITA gene is inhibited by statins. Eur J Immunol. 2008;38(8):2325‐2336. PubMed PMC

Vibholm LK, Nielsen SSF, Pahus MH, et al. SARS‐CoV‐2 persistence is associated with antigen‐specific CD8 T‐cell responses. EBioMedicine. 2021;64:103230. PubMed PMC

Kikkert M. Innate immune evasion by human respiratory RNA viruses. J Innate Immun. 2020;12(1):4‐20. PubMed PMC

Taefehshokr N, Taefehshokr S, Hemmat N, Heit B. Covid‐19: perspectives on innate immune evasion. Front Immunol. 2020;11:580641. PubMed PMC

Breton G, Mendoza P, Hägglöf T, et al. Persistent cellular immunity to SARS‐CoV‐2 infection. J Exp Med. 2021;218(4):e20202515. PubMed PMC

Sokal A, Chappert P, Barba‐Spaeth G, et al. Maturation and persistence of the anti‐SARS‐CoV‐2 memory B cell response. Cell. 2021;184(5):1201‐1213. PubMed PMC

Chen J, Lau YF, Lamirande EW, et al. Cellular immune responses to severe acute respiratory syndrome coronavirus (SARS‐CoV) infection in senescent BALB/c mice: CD4+ T cells are important in control of SARS‐CoV infection. J Virol. 2010;84(3):1289‐1301. PubMed PMC

Wang F, Nie J, Wang H, et al. Characteristics of peripheral lymphocyte subset alteration in COVID‐19 pneumonia. J Infect Dis. 2020;221(11):1762‐1769. PubMed PMC

Kiyotani K, Toyoshima Y, Nemoto K, Nakamura Y. Bioinformatic prediction of potential T cell epitopes for SARS‐Cov‐2. J Hum Genet. 2020;65(7):569‐575. PubMed PMC

Poh CM, Carissimo G, Wang B, et al. Two linear epitopes on the SARS‐CoV‐2 spike protein that elicit neutralising antibodies in COVID‐19 patients. Nat Commun. 2020;11(1):2806. PubMed PMC

Liu L, Wang P, Nair MS, et al. Potent neutralising antibodies against multiple epitopes on SARS‐CoV‐2 spike. Nature. 2020;584(7821):450‐456. PubMed

Niu X, Li S, Li P, et al. Longitudinal analysis of T and B cell receptor repertoire transcripts reveal dynamic immune response in COVID‐19 patients. Front Immunol. 2020;11:582010. PubMed PMC

Covre LP, De Maeyer RPH, Gomes DCO, Akbar AN. The role of senescent T cells in immunopathology. Aging Cell. 2020;19(12):e13272. PubMed PMC

Chen Y, Zuiani A, Fischinger S, et al. Quick COVID‐19 healers sustain Anti‐SARS‐CoV‐2 antibody production. Cell. 2020;183(6):1496‐1507. PubMed PMC

Mayora S, Zabaleta‐Lanz M, Martínez W, Toro F, De Sanctis JB, García A. Lymphocyte subpopulations in Venezuelan patients infected with SARS CoV‐2. Gac Méd Caracas. 2020;128(Supl 1):S74‐S78.

Ferretti AP, Kula T, Wang Y, et al. Unbiased screens show CD8+ T cells of COVID‐19 patients recognise shared epitopes in SARS‐CoV‐2 that largely reside outside the spike protein. Immunity. 2020;53(5):1095‐1107. PubMed PMC

Robbiani DF, Gaebler C, Muecksch F, et al. Convergent antibody responses to SARS‐CoV‐2 in convalescent individuals. Nature. 2020;584(7821):437‐442. PubMed PMC

Lee CH, Pinho MP, Buckley PR, et al. Potential CD8+ T cell cross‐reactivity against SARS‐CoV‐2 conferred by other coronavirus strains. Front Immunol. 2020;11:579480. PubMed PMC

Schulien I, Kemming J, Oberhardt V, et al. Characterisation of pre‐existing and induced SARS‐CoV‐2‐specific CD8+ T cells. Nat Med. 2021;27(1):78‐85. PubMed

Reche PA. Potential cross‐reactive immunity to SARS‐CoV‐2 from common human pathogens and vaccines. Front Immunol. 2020;11:586984. PubMed PMC

Marín‐Hernández D, Nixon DF, Hupert N. Anticipated reduction in COVID‐19 mortality due to population‐wide BCG vaccination: evidence from Germany. Hum Vaccin Immunother. 2021;Feb 5 1‐3. 10.1080/21645515.2021.1872344. Online ahead of print. PubMed DOI PMC

Conti P, Younes A. Coronavirus COV‐19/SARS‐CoV‐2 affects women less than men: clinical response to viral infection. J Biol Regul Homeost Agents. 2020;34(2):339‐343. PubMed

Rahimi G, Rahimi B, Panahi M, et al. An overview of Betacoronaviruses‐associated severe respiratory syndromes, focusing on sex‐type‐specific immune responses. Int Immunopharmacol. 2021;92:107365. PubMed PMC

Karaderi T, Bareke H, Kunter I., et al. Host genetics at the intersection of autoimmunity and COVID‐19: a potential key for heterogeneous COVID‐19 severity. Front Immunol. 2020;11:586111. PubMed PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...