Laser-induced breakdown spectroscopy as a readout method for immunocytochemistry with upconversion nanoparticles
Jazyk angličtina Země Rakousko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
LQ1601
Ministerstvo Školství, Mládeže a Tělovýchovy
LTAB19011
Ministerstvo Školství, Mládeže a Tělovýchovy
LM2018110
Ministerstvo Školství, Mládeže a Tělovýchovy
LM2018127
Ministerstvo Školství, Mládeže a Tělovýchovy
LM2018110
Ministerstvo Školství, Mládeže a Tělovýchovy
LM2018110
Ministerstvo Školství, Mládeže a Tělovýchovy
LQ1601
Ministerstvo Školství, Mládeže a Tělovýchovy
LQ1601
Ministerstvo Školství, Mládeže a Tělovýchovy
LTAB19011
Ministerstvo Školství, Mládeže a Tělovýchovy
LTAB19011
Ministerstvo Školství, Mládeže a Tělovýchovy
LM2018127
Ministerstvo Školství, Mládeže a Tělovýchovy
LM2018127
Ministerstvo Školství, Mládeže a Tělovýchovy
20-19526Y
Grantová Agentura České Republiky
GJ20-30004Y
Technologická Agentura České Republiky
PubMed
33797618
DOI
10.1007/s00604-021-04816-y
PII: 10.1007/s00604-021-04816-y
Knihovny.cz E-zdroje
- Klíčová slova
- Immunocytochemistry, Immunohistochemistry, Laser-induced breakdown spectroscopy, Photon-upconversion nanoparticles, Tag-LIBS,
- MeSH
- fluoridy chemie účinky záření MeSH
- imobilizační protilátky imunologie MeSH
- imunohistochemie metody MeSH
- lidé MeSH
- nádorové biomarkery analýza imunologie MeSH
- nádorové buněčné linie MeSH
- nanočástice chemie účinky záření MeSH
- receptor erbB-2 analýza imunologie MeSH
- spektrální analýza metody MeSH
- studie proveditelnosti MeSH
- světlo MeSH
- thulium chemie účinky záření MeSH
- ytrium chemie účinky záření MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- ERBB2 protein, human MeSH Prohlížeč
- fluoridy MeSH
- imobilizační protilátky MeSH
- nádorové biomarkery MeSH
- receptor erbB-2 MeSH
- sodium yttriumtetrafluoride MeSH Prohlížeč
- thulium MeSH
- ytrium MeSH
Immunohistochemistry (IHC) and immunocytochemistry (ICC) are widely used to identify cancerous cells within tissues and cell cultures. Even though the optical microscopy evaluation is considered the gold standard, the limited range of useful labels and narrow multiplexing capabilities create an imminent need for alternative readout techniques. Laser-induced breakdown spectroscopy (LIBS) enables large-scale multi-elemental analysis of the surface of biological samples, e.g., thin section or cell pellet. It is, therefore, a potential alternative for IHC and ICC readout of various labels or tags (Tag-LIBS approach). Here, we introduce Tag-LIBS as a method for the specific determination of HER2 biomarker. The cell pellets were labeled with streptavidin-conjugated upconversion nanoparticles (UCNP) through a primary anti-HER2 antibody and a biotinylated secondary antibody. The LIBS scanning enabled detecting the characteristic elemental signature of yttrium as a principal constituent of UCNP, thus indirectly providing a reliable way to differentiate between HER2-positive BT-474 cells and HER2-negative MDA-MB-231 cells. The comparison of results with upconversion optical microscopy and luminescence intensity scanning confirmed that LIBS is a promising alternative for the IHC and ICC readout.
Central European Institute of Technology Masaryk University Kamenice 5 625 00 Brno Czech Republic
Department of Chemistry Faculty of Science Masaryk University Kamenice 5 625 00 Brno Czech Republic
Zobrazit více v PubMed
Luppa PB, Sokoll LJ, Chan DW (2001) Immunosensors - principles and applications to clinical chemistry. Clin Chim Acta 314(1–2):1–26. https://doi.org/10.1016/s0009-8981(01)00629-5 PubMed DOI
Farka Z, Mickert MJ, Pastucha M, Mikusova Z, Skladal P, Gorris HH (2020) Advances in optical single-molecule detection: en route to supersensitive bioaffinity assays. Angew Chem Int Edit 59(27):10746–10773. https://doi.org/10.1002/anie.201913924 DOI
Susaki EA, Ueda HR (2016) Whole-body and whole-organ clearing and imaging techniques with single-cell resolution: toward organism-level systems biology in mammals. Cell Chem Biol 23(1):137–157. https://doi.org/10.1016/j.chembiol.2015.11.009 PubMed DOI
Wang QQ, Wei H, Zhang ZQ, Wang EK, Dong SJ (2018) Nanozyme: an emerging alternative to natural enzyme for biosensing and immunoassay. Trac Trends Anal Chem 105:218–224. https://doi.org/10.1016/j.trac.2018.05.012 DOI
Yezhelyev MV, Gao X, Xing Y, Al-Hajj A, Nie SM, O’Regan RM (2006) Emerging use of nanoparticles in diagnosis and treatment of breast cancer. Lancet Oncol 7(8):657–667. https://doi.org/10.1016/s1470-2045(06)70793-8 PubMed DOI
Farka Z, Juriik T, Kovaar D, Trnkova L, Sklaadal P (2017) Nanoparticle-based immunochemical biosensors and assays: recent advances and challenges. Chem Rev 117(15):9973–10042. https://doi.org/10.1021/acs.chemrev.7b00037 PubMed DOI
Dong JL, Song LN, Yin JJ, He WW, Wu YH, Gu N, Zhang Y (2014) Co3O4 nanoparticles with multi-enzyme activities and their application in immunohistochemical assay. ACS Appl Mater Interfaces 6(3):1959–1970. https://doi.org/10.1021/am405009f PubMed DOI
Seydack M (2005) Nanoparticle labels in immunosensing using optical detection methods. Biosens Bioelectron 20(12):2454–2469. https://doi.org/10.1016/j.bios.2004.11.003 PubMed DOI
Zhou L, Yan J, Tong L, Han X, Wu X, Guo P (2016) Quantum dot-based immunohistochemistry for pathological applications. Cancer Transl Med 2(1):21–28. https://doi.org/10.4103/2395-3977.177562
Wu Y-T, Qiu X, Lindbo S, Susumu K, Medintz IL, Hober S, Hildebrandt N (2018) Quantum dot-based FRET immunoassay for HER2 using Ultrasmall affinity proteins. Small 14:1802266. https://doi.org/10.1002/smll.201802266
Tang DP, Lin YX, Zhou Q (2018) Carbon dots prepared from Litchi chinensis and modified with manganese dioxide nanosheets for use in a competitive fluorometric immunoassay for aflatoxin B-1. Microchim Acta 185(10):476. https://doi.org/10.1007/s00604-018-3012-2 DOI
Mickert MJ, Farka Z, Kostiv U, Hlavacek A, Horak D, Skladal P, Gorris HH (2019) Measurement of sub-femtomolar concentrations of prostate-specific antigen through single-molecule counting with an upconversion-linked immunosorbent assay. Anal Chem 91(15):9435–9441. https://doi.org/10.1021/acs.analchem.9b02872 PubMed DOI
He H, Howard CB, Chen YH, Wen SH, Lin GG, Zhou JJ, Thurecht KJ, Jin DY (2018) Bispecific antibody-functionalized upconversion nanoprobe. Anal Chem 90(5):3024–3029. https://doi.org/10.1021/acs.analchem.7b05341 PubMed DOI
Farka Z, Mickert MJ, Mikusova Z, Hlavacek A, Bouchalova P, Xu WS, Bouchal P, Skladal P, Gorris HH (2020) Surface design of photon-upconversion nanoparticles for high-contrast immunocytochemistry. Nanoscale 12(15):8303–8313. https://doi.org/10.1039/c9nr10568a PubMed DOI
Modlitbova P, Porizka P, Kaiser J (2020) Laser-induced breakdown spectroscopy as a promising tool in the elemental bioimaging of plant tissues. Trac Trends Anal Chem 122:10. https://doi.org/10.1016/j.trac.2019.115729 DOI
Hahn DW, Omenetto N (2012) Laser-induced breakdown spectroscopy (LIBS), part II: review of instrumental and methodological approaches to material analysis and applications to different fields. Appl Spectrosc 66(4):347–419. https://doi.org/10.1366/11-06574 PubMed DOI
El Haddad J, Canioni L, Bousquet B (2014) Good practices in LIBS analysis: review and advices. Spectrochim Acta B At Spectrosc 101:171–182. https://doi.org/10.1016/j.sab.2014.08.039 DOI
Modlitbova P, Farka Z, Pastucha M, Porizka P, Novotny K, Skladal P, Kaiser J (2019) Laser-induced breakdown spectroscopy as a novel readout method for nanoparticle-based immunoassays. Microchim Acta 186(9):10. https://doi.org/10.1007/s00604-019-3742-9 DOI
Busser B, Moncayo S, Coll JL, Sancey L, Motto-Ros V (2018) Elemental imaging using laser-induced breakdown spectroscopy: a new and promising approach for biological and medical applications. Coord Chem Rev 358:70–79. https://doi.org/10.1016/j.ccr.2017.12.006 DOI
Gaudiuso R, Melikechi N, Abdel-Salam ZA, Harith MA, Palleschi V, Motto-Ros V, Busser B (2019) Laser-induced breakdown spectroscopy for human and animal health: a review. Spectrochim Acta B At Spectrosc 152:123–148. https://doi.org/10.1016/j.sab.2018.11.006 DOI
Dell’Aglio M, Alrifai R, Giacomo A (2018) Nanoparticle enhanced laser induced breakdown spectroscopy (NELIBS), a first review. Spectrochim Acta B At Spectrosc 148:105–112. https://doi.org/10.1016/j.sab.2018.06.008 DOI
Zhao X, Zhao C, Du X (2019) Detecting and mapping harmful chemicals in fruit and vegetables using nanoparticle-enhanced laser-induced breakdown spectroscopy. Sci Rep 9:906. https://doi.org/10.1038/s41598-018-37556-w PubMed DOI PMC
Fortes FJ, Fernandez-Bravo A, Laserna JJ (2014) Chemical characterization of single micro- and nano-particles by optical catapulting-optical trapping-laser-induced breakdown spectroscopy. Spectrochim Acta B At Spectrosc 100:78–85. https://doi.org/10.1016/j.sab.2014.08.023 DOI
He Q, Liu Y, He Y (2016) Digital barcodes of suspension array using laser induced breakdown spectroscopy. Sci Rep 6:36511. https://doi.org/10.1038/srep36511 PubMed DOI PMC
Markushin Y, Sivakumar P, Connolly D, Melikechi N (2015) Tag-femtosecond laser-induced breakdown spectroscopy for the sensitive detection of cancer antigen 125 in blood plasma. Anal Bioanal Chem 407(7):1849–1855. https://doi.org/10.1007/s00216-014-8433-0 PubMed DOI
Konecna M, Novotny K, Krizkova S, Blazkova I, Kopel P, Kaiser J, Hodek P, Kizek R, Adam V (2014) Identification of quantum dots labeled metallothionein by fast scanning laser-induced breakdown spectroscopy. Spectrochim Acta B At Spectrosc 101:220–225. https://doi.org/10.1016/j.sab.2014.08.037 DOI
Gondhalekar C, Biela E, Rajwa B, Bae E, Patsekin V, Sturgis J, Reynolds C, Doh IJ, Diwakar P, Stanker L, Zorba V, Mao XL, Russo R, Robinson JP (2020) Detection of E. coli labeled with metal-conjugated antibodies using lateral-flow assay and laser-induced breakdown spectroscopy. Anal Bioanal Chem 412(6):1291–1301. https://doi.org/10.1007/s00216-019-02347-3 PubMed DOI
Peltomaa R, Farka Z, Mickert MJ, Brandmeier JC, Pastucha M, Hlaváček A, Martínez-Orts M, Canales Á, Skládal P, Benito-Peña E, Moreno-Bondi MC, Gorris HH (2020) Competitive upconversion-linked immunoassay using peptide mimetics for the detection of the mycotoxin zearalenone. Biosens Bioelectron 170:112683. https://doi.org/10.1016/j.bios.2020.112683 PubMed DOI
Wang F, Han Y, Lim CS, Lu YH, Wang J, Xu J, Chen HY, Zhang C, Hong MH, Liu XG (2010) Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping. Nature 463(7284):1061–1065. https://doi.org/10.1038/nature08777 PubMed DOI
Kostiv U, Lobaz V, Kucka J, Svec P, Sedlacek O, Hruby M, Janouskova O, Francova P, Kolarova V, Sefc L, Horak D (2017) A simple neridronate-based surface coating strategy for upconversion nanoparticles: highly colloidally stable I-125-radiolabeled NaYF4:Yb3+/Er3+@PEG nanoparticles for multimodal in vivo tissue imaging. Nanoscale 9(43):16680–16688. https://doi.org/10.1039/c7nr05456d PubMed DOI
Subik K, Lee J-F, Baxter L, Strzepek T, Costello D, Crowley P, Xing L, Hung M-C, Bonfiglio T, Hicks D, Ping T (2010) The expression patterns of ER, PR, HER2, CK5/6, EGFR, Ki-67 and AR by immunohistochemical analysis in breast cancer cell lines. Breast Cancer 4:35–41. https://doi.org/10.1177/117822341000400004 PubMed DOI
Modlitbova P, Hlavacek A, Svestkova T, Porizka P, Simonikova L, Novotny K, Kaiser J (2019) The effects of photon-upconversion nanoparticles on the growth of radish and duckweed: bioaccumulation, imaging, and spectroscopic studies. Chemosphere 225:723–734. https://doi.org/10.1016/j.chemosphere.2019.03.074 PubMed DOI
Farka Z, Mickert MJ, Hlavacek A, Skladal P, Gorris HH (2017) Single molecule upconversion-linked immunosorbent assay with extended dynamic range for the sensitive detection of diagnostic biomarkers. Anal Chem 89(21):11825–11830. https://doi.org/10.1021/acs.analchem.7b03542 PubMed DOI
Hlavacek A, Farka Z, Hubner M, Hornakova V, Nemecek D, Niessner R, Skladal P, Knopp D, Gorris HH (2016) Competitive upconversion-linked immunosorbent assay for the sensitive detection of diclofenac. Anal Chem 88(11):6011–6017. https://doi.org/10.1021/acs.analchem.6b01083 PubMed DOI
Skarkova P, Novotny K, Lubal P, Jebava A, Porizka P, Klus J, Farka Z, Hrdlicka A, Kaiser J (2017) 2d distribution mapping of quantum dots injected onto filtration paper by laser-induced breakdown spectroscopy. Spectrochim Acta B At Spectrosc 131:107–114. https://doi.org/10.1016/j.sab.2017.03.016 DOI
Dukhno O, Przybilla F, Muhr V, Buchner M, Hirsch T, Mely Y (2018) Time-dependent luminescence loss for individual upconversion nanoparticles upon dilution in aqueous solution. Nanoscale 10(34):15904–15910. https://doi.org/10.1039/c8nr03892a PubMed DOI
Cid-Barrio L, Calderon-Celis F, Abasolo-Linares P, Fernandez-Sanchez ML, Costa-Fernandez JM, Encinar JR, Sanz-Meder A (2018) Advances in absolute protein quantification and quantitative protein mapping using ICP-MS. Trac Trends Anal Chem 104:148–159. https://doi.org/10.1016/j.trac.2017.09.024 DOI
Malile B, Brkic J, Bouzekri A, Wilson DJ, Ornatsky O, Peng C, Chen JIL (2019) DNA-conjugated gold nanoparticles as high-mass probes in imaging mass cytometry. ACS Appl Bio Mater 2(10):4316–4323. https://doi.org/10.1021/acsabm.9b00574 DOI
Lores-Padin A, Menero-Valdes P, Fernandez B, Pereiro R (2020) Nanoparticles as labels of specific-recognition reactions for the determination of biomolecules by inductively coupled plasma-mass spectrometry. Anal Chim Acta 1128:251–268. https://doi.org/10.1016/j.aca.2020.07.008 PubMed DOI