Skp2 and Slug Are Coexpressed in Aggressive Prostate Cancer and Inhibited by Neddylation Blockade
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
NU20-03-00201, 17-28518A, DRO (FNOL, 00098892)
Ministerstvo Zdravotnictví Ceské Republiky
LF_2020_015
Palacky University
CZ.02.1.01/0.0/0.0/16_019/0000868, CZ.1.05/2.1.00/19.0400, LM2018129, DRO 61989592
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
33799604
PubMed Central
PMC8000894
DOI
10.3390/ijms22062844
PII: ijms22062844
Knihovny.cz E-zdroje
- Klíčová slova
- Skp2 (S-phase kinase-associated protein 2), Slug, immunohistochemistry, multiplex, neddylation, prostate cancer,
- MeSH
- androgenní receptory genetika metabolismus MeSH
- antitumorózní látky farmakologie MeSH
- buňky PC-3 MeSH
- CD antigeny genetika metabolismus MeSH
- cyklopentany farmakologie MeSH
- docetaxel farmakologie MeSH
- epitelo-mezenchymální tranzice genetika MeSH
- inhibitor p27 cyklin-dependentní kinasy genetika metabolismus MeSH
- kadheriny genetika metabolismus MeSH
- lidé MeSH
- lymfatické metastázy MeSH
- malá interferující RNA genetika metabolismus MeSH
- nádorové buněčné linie MeSH
- nádory prostaty genetika metabolismus patologie MeSH
- posttranslační úpravy proteinů * MeSH
- prostata metabolismus patologie MeSH
- protein NEDD8 genetika metabolismus MeSH
- proteiny asociované s kinázou S-fáze antagonisté a inhibitory genetika metabolismus MeSH
- pyrimidiny farmakologie MeSH
- regulace genové exprese u nádorů MeSH
- rodina transkripčních faktorů Snail genetika metabolismus MeSH
- stupeň nádoru MeSH
- viabilita buněk účinky léků MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- androgenní receptory MeSH
- antitumorózní látky MeSH
- CD antigeny MeSH
- CDH1 protein, human MeSH Prohlížeč
- cyklopentany MeSH
- docetaxel MeSH
- inhibitor p27 cyklin-dependentní kinasy MeSH
- kadheriny MeSH
- malá interferující RNA MeSH
- NEDD8 protein, human MeSH Prohlížeč
- pevonedistat MeSH Prohlížeč
- protein NEDD8 MeSH
- proteiny asociované s kinázou S-fáze MeSH
- pyrimidiny MeSH
- rodina transkripčních faktorů Snail MeSH
- SKP2 protein, human MeSH Prohlížeč
- SNAI1 protein, human MeSH Prohlížeč
Prostate cancer (PCa) is the second leading cause of cancer-related deaths in men in Western countries, and there is still an urgent need for a better understanding of PCa progression to inspire new treatment strategies. Skp2 is a substrate-recruiting component of the E3 ubiquitin ligase complex, whose activity is regulated through neddylation. Slug is a transcriptional repressor involved in the epithelial-to-mesenchymal transition, which may contribute to therapy resistance. Although Skp2 has previously been associated with a mesenchymal phenotype and prostate cancer progression, the relationship with Slug deserves further elucidation. We have previously shown that a high Gleason score (≥8) is associated with higher Skp2 and lower E-cadherin expression. In this study, significantly increased expression of Skp2, AR, and Slug, along with E-cadherin downregulation, was observed in primary prostate cancer in patients who already had lymph node metastases. Skp2 was slightly correlated with Slug and AR in the whole cohort (Rs 0.32 and 0.37, respectively), which was enhanced for both proteins in patients with high Gleason scores (Rs 0.56 and 0.53, respectively) and, in the case of Slug, also in patients with metastasis to lymph nodes (Rs 0.56). Coexpression of Skp2 and Slug was confirmed in prostate cancer tissues by multiplex immunohistochemistry and confocal microscopy. The same relationship between these two proteins was observed in three sets of prostate epithelial cell lines (PC3, DU145, and E2) and their mesenchymal counterparts. Chemical inhibition of Skp2, but not RNA interference, modestly decreased Slug protein in PC3 and its docetaxel-resistant subline PC3 DR12. Importantly, chemical inhibition of Skp2 by MLN4924 upregulated p27 and decreased Slug expression in PC3, PC3 DR12, and LAPC4 cells. Novel treatment strategies targeting Skp2 and Slug by the neddylation blockade may be promising in advanced prostate cancer, as recently documented for other aggressive solid tumors.
Department of Experimental Biology Faculty of Science Masaryk University 625 00 Brno Czech Republic
Department of Urology University Hospital 779 00 Olomouc Czech Republic
Zobrazit více v PubMed
Siegel R.L., Miller K.D., Jemal A. Cancer statistics, 2020. CA Cancer J. Clin. 2020;70:7–30. doi: 10.3322/caac.21590. PubMed DOI
Zhang Y., Weinberg R.A. Epithelial-to-mesenchymal transition in cancer: Complexity and opportunities. Front. Med. 2018;12:361–373. doi: 10.1007/s11684-018-0656-6. PubMed DOI PMC
Zhang J., Tian X.-J., Xing J. Signal Transduction Pathways of EMT Induced by TGF-β, SHH, and WNT and Their Crosstalks. J. Clin. Med. 2016:5. doi: 10.3390/jcm5040041. PubMed DOI PMC
Marín-Aguilera M., Codony-Servat J., Reig Ò., Lozano J.J., Fernández P.L., Pereira M.V., Jiménez N., Donovan M., Puig P., Mengual L., et al. Epithelial-to-mesenchymal transition mediates docetaxel resistance and high risk of relapse in prostate cancer. Mol. Cancer Ther. 2014;13:1270–1284. doi: 10.1158/1535-7163.MCT-13-0775. PubMed DOI
Bolós V., Peinado H., Pérez-Moreno M.A., Fraga M.F., Esteller M., Cano A. The transcription factor Slug represses E-cadherin expression and induces epithelial to mesenchymal transitions: A comparison with Snail and E47 repressors. J. Cell Sci. 2003;116:499–511. doi: 10.1242/jcs.00224. PubMed DOI
Cobaleda C., Pérez-Caro M., Vicente-Dueñas C., Sánchez-García I. Function of the zinc-finger transcription factor SNAI2 in cancer and development. Annu. Rev. Genet. 2007;41:41–61. doi: 10.1146/annurev.genet.41.110306.130146. PubMed DOI
Wang Y., Shi J., Chai K., Ying X., Zhou B.P. The Role of Snail in EMT and Tumorigenesis. Curr. Cancer Drug Targets. 2013;13:963–972. doi: 10.2174/15680096113136660102. PubMed DOI PMC
Esposito S., Russo M.V., Airoldi I., Tupone M.G., Sorrentino C., Barbarito G., Di Meo S., Di Carlo E. SNAI2/Slug gene is silenced in prostate cancer and regulates neuroendocrine differentiation, metastasis-suppressor and pluripotency gene expression. Oncotarget. 2015;6:17121–17134. doi: 10.18632/oncotarget.2736. PubMed DOI PMC
Kahounová Z., Remšík J., Fedr R., Bouchal J., Mičková A., Slabáková E., Binó L., Hampl A., Souček K. Slug-expressing mouse prostate epithelial cells have increased stem cell potential. Stem Cell Res. 2020;46:101844. doi: 10.1016/j.scr.2020.101844. PubMed DOI
Cui D., Xiong X., Zhao Y. Cullin-RING ligases in regulation of autophagy. Cell Div. 2016;11:8. doi: 10.1186/s13008-016-0022-5. PubMed DOI PMC
Cai Z., Moten A., Peng D., Hsu C.-C., Pan B.-S., Manne R., Li H.-Y., Lin H.-K. The Skp2 Pathway: A Critical Target for Cancer Therapy. Semin. Cancer Biol. 2020 doi: 10.1016/j.semcancer.2020.01.013. PubMed DOI PMC
Senft D., Qi J., Ronai Z.A. Ubiquitin ligases in oncogenic transformation and cancer therapy. Nat. Rev. Cancer. 2018;18:69–88. doi: 10.1038/nrc.2017.105. PubMed DOI PMC
Brown J.S., Jackson S.P. Ubiquitylation, neddylation and the DNA damage response. Open Biol. 2015;5:150018. doi: 10.1098/rsob.150018. PubMed DOI PMC
Yang Y., Lu Y., Wang L., Mizokami A., Keller E.T., Zhang J., Fu J. Skp2 is associated with paclitaxel resistance in prostate cancer cells. Oncol. Rep. 2016;36:559–566. doi: 10.3892/or.2016.4809. PubMed DOI
Ben-Izhak O., Lahav-Baratz S., Meretyk S., Ben-Eliezer S., Sabo E., Dirnfeld M., Cohen S., Ciechanover A. Inverse relationship between Skp2 ubiquitin ligase and the cyclin dependent kinase inhibitor p27Kip1 in prostate cancer. J. Urol. 2003;170:241–245. doi: 10.1097/01.ju.0000072113.34524.a7. PubMed DOI
Jang W., Kim T., Koo J.S., Kim S.-K., Lim D.-S. Mechanical cue-induced YAP instructs Skp2-dependent cell cycle exit and oncogenic signaling. EMBO J. 2017;36:2510–2528. doi: 10.15252/embj.201696089. PubMed DOI PMC
Simeckova S., Kahounová Z., Fedr R., Remšík J., Slabáková E., Suchánková T., Procházková J., Bouchal J., Kharaishvili G., Král M., et al. High Skp2 expression is associated with a mesenchymal phenotype and increased tumorigenic potential of prostate cancer cells. Sci. Rep. 2019;9:5695. doi: 10.1038/s41598-019-42131-y. PubMed DOI PMC
Urbanucci A., Sahu B., Seppälä J., Larjo A., Latonen L.M., Waltering K.K., Tammela T.L.J., Vessella R.L., Lähdesmäki H., Jänne O.A., et al. Overexpression of androgen receptor enhances the binding of the receptor to the chromatin in prostate cancer. Oncogene. 2012;31:2153–2163. doi: 10.1038/onc.2011.401. PubMed DOI
Tomlins S.A., Mehra R., Rhodes D.R., Cao X., Wang L., Dhanasekaran S.M., Kalyana-Sundaram S., Wei J.T., Rubin M.A., Pienta K.J., et al. Integrative molecular concept modeling of prostate cancer progression. Nat. Genet. 2007;39:41–51. doi: 10.1038/ng1935. PubMed DOI
Chan C.-H., Morrow J.K., Li C.-F., Gao Y., Jin G., Moten A., Stagg L.J., Ladbury J.E., Cai Z., Xu D., et al. Pharmacological inactivation of Skp2 SCF ubiquitin ligase restricts cancer stem cell traits and cancer progression. Cell. 2013;154:556–568. doi: 10.1016/j.cell.2013.06.048. PubMed DOI PMC
Zhou W., Ni T.K., Wronski A., Glass B., Skibinski A., Beck A., Kuperwasser C. The SIRT2 Deacetylase Stabilizes Slug to Control Malignancy of Basal-like Breast Cancer. Cell Rep. 2016;17:1302–1317. doi: 10.1016/j.celrep.2016.10.006. PubMed DOI PMC
Jin Y., Zhang P., Wang Y., Jin B., Zhou J., Zhang J., Pan J. Neddylation Blockade Diminishes Hepatic Metastasis by Dampening Cancer Stem-Like Cells and Angiogenesis in Uveal Melanoma. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2018;24:3741–3754. doi: 10.1158/1078-0432.CCR-17-1703. PubMed DOI
Hauck P.M., Wolf E.R., Olivos D.J., III, McAtarsney C.P., Mayo L.D. The fate of murine double minute X (MdmX) is dictated by distinct signaling pathways through murine double minute 2 (Mdm2) Oncotarget. 2017;8:104455–104466. doi: 10.18632/oncotarget.22320. PubMed DOI PMC
Wang Y.V., Wade M., Wahl G.M. Guarding the guardian: Mdmx plays important roles in setting p53 basal activity and determining biological responses in vivo. Cell Cycle. 2009;21:21–3444. doi: 10.4161/cc.8.21.9744. PubMed DOI PMC
Lu L., Schulz H., Wolf D.A. The F-box protein SKP2 mediates androgen control of p27 stability in LNCaP human prostate cancer cells. BMC Cell Biol. 2002;3:22. doi: 10.1186/1471-2121-3-22. PubMed DOI PMC
Tsai Y.-S., Lai C.-L., Lai C.-H., Chang K.-H., Wu K., Tseng S.-F., Fazli L., Gleave M., Xiao G., Gandee L., et al. The role of homeostatic regulation between tumor suppressor DAB2IP and oncogenic Skp2 in prostate cancer growth. Oncotarget. 2014;5:6425–6436. doi: 10.18632/oncotarget.2228. PubMed DOI PMC
Pernicová Z., Slabáková E., Kharaishvili G., Bouchal J., Král M., Kunická Z., Machala M., Kozubík A., Souček K. Androgen depletion induces senescence in prostate cancer cells through down-regulation of Skp2. Neoplasia. 2011;13:526–536. doi: 10.1593/neo.11182. PubMed DOI PMC
Wang H., Sun D., Ji P., Mohler J., Zhu L. An AR-Skp2 pathway for proliferation of androgen-dependent prostate-cancer cells. J. Cell Sci. 2008;121:2578–2587. doi: 10.1242/jcs.030742. PubMed DOI PMC
Ruan D., He J., Li C.-F., Lee H.-J., Liu J., Lin H.-K., Chan C.-H. Skp2 deficiency restricts the progression and stem cell features of castration-resistant prostate cancer by destabilizing Twist. Oncogene. 2017;36:4299–4310. doi: 10.1038/onc.2017.64. PubMed DOI PMC
Lu W., Liu S., Li B., Xie Y., Izban M.G., Ballard B.R., Sathyanarayana S.A., Adunyah S.E., Matusik R.J., Chen Z. SKP2 loss destabilizes EZH2 by promoting TRAF6-mediated ubiquitination to suppress prostate cancer. Oncogene. 2017;36:1364–1373. doi: 10.1038/onc.2016.300. PubMed DOI PMC
Lee H.H., Lee S.H., Song K.Y., Na S.J., Joo H.O., Park J.M., Jung E.S., Choi M.-G., Park C.H. Evaluation of Slug expression is useful for predicting lymph node metastasis and survival in patients with gastric cancer. BMC Cancer. 2017;17:670. doi: 10.1186/s12885-017-3668-8. PubMed DOI PMC
Shioiri M., Shida T., Koda K., Oda K., Seike K., Nishimura M., Takano S., Miyazaki M. Slug expression is an independent prognostic parameter for poor survival in colorectal carcinoma patients. Br. J. Cancer. 2006;94:1816–1822. doi: 10.1038/sj.bjc.6603193. PubMed DOI PMC
Mikami S., Katsube K.-I., Oya M., Ishida M., Kosaka T., Mizuno R., Mukai M., Okada Y. Expression of Snail and Slug in renal cell carcinoma: E-cadherin repressor Snail is associated with cancer invasion and prognosis. Lab. Investig. J. Tech. Methods Pathol. 2011;91:1443–1458. doi: 10.1038/labinvest.2011.111. PubMed DOI
Yang Q., Huang J., Wu Q., Cai Y., Zhu L., Lu X., Chen S., Chen C., Wang Z. Acquisition of epithelial-mesenchymal transition is associated with Skp2 expression in paclitaxel-resistant breast cancer cells. Br. J. Cancer. 2014;110:1958–1967. doi: 10.1038/bjc.2014.136. PubMed DOI PMC
Zhou X., Han S., Wilder-Romans K., Sun G.Y., Zhu H., Liu X., Tan M., Wang G., Feng F.Y., Sun Y. Neddylation inactivation represses androgen receptor transcription and inhibits growth, survival and invasion of prostate cancer cells. Neoplasia. 2020;22:192–202. doi: 10.1016/j.neo.2020.02.002. PubMed DOI PMC
Lockhart A.C., Bauer T.M., Aggarwal C., Lee C.B., Harvey R.D., Cohen R.B., Sedarati F., Nip T.K., Faessel H., Dash A.B., et al. Phase Ib study of pevonedistat, a NEDD8-activating enzyme inhibitor, in combination with docetaxel, carboplatin and paclitaxel, or gemcitabine, in patients with advanced solid tumors. Investig. New Drugs. 2019;37:87–97. doi: 10.1007/s10637-018-0610-0. PubMed DOI PMC
Zhou L., Jiang Y., Luo Q., Li L., Jia L. Neddylation: A novel modulator of the tumor microenvironment. Mol. Cancer. 2019;18:77. doi: 10.1186/s12943-019-0979-1. PubMed DOI PMC
Puhr M., Hoefer J., Schäfer G., Erb H.H.H., Oh S.J., Klocker H., Heidegger I., Neuwirt H., Culig Z. Epithelial-to-mesenchymal transition leads to docetaxel resistance in prostate cancer and is mediated by reduced expression of miR-200c and miR-205. Am. J. Pathol. 2012;181:2188–2201. doi: 10.1016/j.ajpath.2012.08.011. PubMed DOI
Liao C.-P., Liang M., Cohen M.B., Flesken-Nikitin A., Jeong J.H., Nikitin A.Y., Roy-Burman P. Mouse prostate cancer cell lines established from primary and postcastration recurrent tumors. Horm Cancer. 2010;1:44–54. doi: 10.1007/s12672-009-0005-y. PubMed DOI PMC
Remšík J., Binó L., Kahounová Z., Kharaishvili G., Šimecková Š., Fedr R., Kucírková T., Lenárt S., Muresan X.M., Slabáková E., et al. Trop-2 plasticity is controlled by epithelial-to-mesenchymal transition. Carcinogenesis. 2018;39:1411–1418. doi: 10.1093/carcin/bgy095. PubMed DOI
Simkova D., Kharaishvili G., Korinkova G., Ozdian T., Suchánková-Kleplová T., Soukup T., Krupka M., Galandakova A., Dzubak P., Janikova M., et al. The dual role of asporin in breast cancer progression. Oncotarget. 2016;7:52045–52060. doi: 10.18632/oncotarget.10471. PubMed DOI PMC
Bouchal J., Baumforth K.R.N., Sváchová M., Murray P.G., von Angerer E., Kolár Z. Microarray analysis of bicalutamide action on telomerase activity, p53 pathway and viability of prostate carcinoma cell lines. J. Pharm. Pharmacol. 2005;57:83–92. doi: 10.1211/0022357055164. PubMed DOI
Hu Y.H., Zhang Y., Jiang L.Q., Wang S., Lei C.Q., Sun M.S., Shu H.B., Liu Y. WDFY1 mediates TLR3/4 signaling by recruiting TRIF. EMBO Rep. 2015;16:447–455. doi: 10.15252/embr.201439637. PubMed DOI PMC