Epithelial-Mesenchymal Transition: A Fundamental Cellular and Microenvironmental Process in Benign and Malignant Prostate Pathologies
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
00098892
University Hospital Olomouc
PubMed
38398019
PubMed Central
PMC10886988
DOI
10.3390/biomedicines12020418
PII: biomedicines12020418
Knihovny.cz E-zdroje
- Klíčová slova
- BPH, EMT, epithelial-mesenchymal transition, prostate cancer, transcription factors,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Epithelial-mesenchymal transition (EMT) is a crucial and fundamental mechanism in many cellular processes, beginning with embryogenesis via tissue remodulation and wound healing, and plays a vital role in tumorigenesis and metastasis formation. EMT is a complex process that involves many transcription factors and genes that enable the tumor cell to leave the primary location, invade the basement membrane, and send metastasis to other tissues. Moreover, it may help the tumor avoid the immune system and establish radioresistance and chemoresistance. It may also change the normal microenvironment, thus promoting other key factors for tumor survival, such as hypoxia-induced factor-1 (HIF-1) and promoting neoangiogenesis. In this review, we will focus mainly on the role of EMT in benign prostate disease and especially in the process of establishment of malignant prostate tumors, their invasiveness, and aggressive behavior. We will discuss relevant study methods for EMT evaluation and possible clinical implications. We will also introduce clinical trials conducted according to CONSORT 2010 that try to harness EMT properties in the form of circulating tumor cells to predict aggressive patterns of prostate cancer. This review will provide the most up-to-date information to establish a keen understanding of the cellular and microenvironmental processes for developing novel treatment lines by modifying or blocking the pathways.
Zobrazit více v PubMed
Their J.P. Epithelial-Mesenchymal Transitions in Tumour Progression. Nat. Rev. Cancer. 2002;2:442–454. doi: 10.1038/NRC822. PubMed DOI
Kalluri R., Neilson E.G. Epithelial-Mesenchymal Transition and Its Implications for Fibrosis. J. Clin. Investig. 2003;112:1776–1784. doi: 10.1172/JCI200320530. PubMed DOI PMC
Kalluri R. EMT: When Epithelial Cells Decide to Become Mesenchymal-like Cells. J. Clin. Investig. 2009;119:1417–1419. doi: 10.1172/JCI39675. PubMed DOI PMC
Micalizzi D.S., Farabaugh S.M., Ford H.L. Epithelial-Mesenchymal Transition in Cancer: Parallels between Normal Development and Tumor Progression. J. Mammary Gland. Biol. Neoplasia. 2010;15:117–134. doi: 10.1007/s10911-010-9178-9. PubMed DOI PMC
Marconi G.D., Fonticoli L., Rajan T.S., Pierdomenico S.D., Trubiani O., Pizzicannella J., Diomede F. Epithelial-Mesenchymal Transition (EMT): The Type-2 EMT in Wound Healing, Tissue Regeneration and Organ Fibrosis. Cells. 2021;10:1587. doi: 10.3390/cells10071587. PubMed DOI PMC
Kim D.H., Xing T., Yang Z., Dudek R., Lu Q., Chen Y.H. Epithelial Mesenchymal Transition in Embryonic Development, Tissue Repair and Cancer: A Comprehensive Overview. J. Clin. Med. 2018;7:1. doi: 10.3390/jcm7010001. PubMed DOI PMC
Yin Y., Liu S., Pu L., Luo J., Liu H., Wu W. Nintedanib Prevents TGF-Β2-Induced Epithelial-Mesenchymal Transition in Retinal Pigment Epithelial Cells. Biomed. Pharmacother. 2023;161:114543. doi: 10.1016/j.biopha.2023.114543. PubMed DOI
Salisbury M.L., Conoscenti C.S., Culver D.A., Yow E., Neely M.L., Bender S., Hartmann N., Palmer S.M., Leonard T.B. Antifibrotic Drug Use in Patients with Idiopathic Pulmonary Fibrosis Data from the IPF-PRO Registry. Ann. Am. Thorac. Soc. 2020;17:1413–1423. doi: 10.1513/AnnalsATS.201912-880OC. PubMed DOI PMC
Sethi S., Macoska J., Chen W., Sarkar F.H. Molecular Signature of Epithelial-Mesenchymal Transition (EMT) in Human Prostate Cancer Bone Metastasis. Am. J. Transl. Res. 2011;3:90. PubMed PMC
Vergara D., Merlot B., Lucot J.P., Collinet P., Vinatier D., Fournier I., Salzet M. Epithelial-Mesenchymal Transition in Ovarian Cancer. Cancer Lett. 2010;291:59–66. doi: 10.1016/j.canlet.2009.09.017. PubMed DOI
Bates R.C., Pursell B.M., Mercurio A.M. Epithelial-Mesenchymal Transition and Colorectal Cancer: Gaining Insights into Tumor Progression Using LIM 1863 Cells. Cells Tissues Organs. 2007;185:29–39. doi: 10.1159/000101300. PubMed DOI
Gavert N., Ben-Ze’ev A. Epithelial-Mesenchymal Transition and the Invasive Potential of Tumors. Trends Mol. Med. 2008;14:199–209. doi: 10.1016/j.molmed.2008.03.004. PubMed DOI
Chaves L.P., Melo C.M., Saggioro F.P., Dos Reis R.B., Squire J.A. Epithelial–Mesenchymal Transition Signaling and Prostate Cancer Stem Cells: Emerging Biomarkers and Opportunities for Precision Therapeutics. Genes. 2021;12:1900. doi: 10.3390/genes12121900. PubMed DOI PMC
Ruscetti M., Quach B., Dadashian E.L., Mulholland D.J., Wu H. Tracking and Functional Characterization of Epithelial-Mesenchymal Transition and Mesenchymal Tumor Cells during Prostate Cancer Metastasis. Cancer Res. 2015;75:2749–2759. doi: 10.1158/0008-5472.CAN-14-3476. PubMed DOI PMC
Li J., Yao H., Huang J., Li C., Zhang Y., Xu R., Wang Z., Long Z., Tang J., Wang L. METTL3 Promotes Prostatic Hyperplasia by Regulating PTEN Expression in an M6A-YTHDF2-Dependent Manner. Cell Death Dis. 2022;13:723. doi: 10.1038/s41419-022-05162-4. PubMed DOI PMC
Weilbaecher K.N., Guise T.A., McCauley L.K. Cancer to Bone: A Fatal Attraction. Nat. Rev. Cancer. 2011;11:411. doi: 10.1038/nrc3055. PubMed DOI PMC
Lu T., Lin W.J., Izumi K., Wang X., Xu D., Fang L.Y., Li L., Jiang Q., Jin J., Chang C. Targeting Androgen Receptor to Suppress Macrophage-Induced EMT and Benign Prostatic Hyperplasia (BPH) Development. Mol. Endocrinol. 2012;26:1707–1715. doi: 10.1210/me.2012-1079. PubMed DOI PMC
Zavadil J., Böttinger E.P. TGF-Beta and Epithelial-to-Mesenchymal Transitions. Oncogene. 2005;24:5764–5774. doi: 10.1038/sj.onc.1208927. PubMed DOI
Mathias R.A., Simpson R.J. Towards Understanding Epithelial–Mesenchymal Transition: A Proteomics Perspective. Biochim. Biophys. Acta BBA Proteins Proteom. 2009;1794:1325–1331. doi: 10.1016/j.bbapap.2009.05.001. PubMed DOI
Stemmer V., De Craene B., Berx G., Behrens J. Snail Promotes Wnt Target Gene Expression and Interacts with Beta-Catenin. Oncogene. 2008;27:5075–5080. doi: 10.1038/onc.2008.140. PubMed DOI
Klymkowsky M.W. β-Catenin and Its Regulatory Network. Hum. Pathol. 2005;36:225–227. doi: 10.1016/j.humpath.2005.02.002. PubMed DOI
Vignjevic D., Montagnac G. Reorganisation of the Dendritic Actin Network during Cancer Cell Migration and Invasion. Semin. Cancer Biol. 2008;18:12–22. doi: 10.1016/j.semcancer.2007.08.001. PubMed DOI
Hay E.D. An Overview of Epithelio-Mesenchymal Transformation. Acta Anat. 1995;154:8–20. doi: 10.1159/000147748. PubMed DOI
Buck E., Eyzaguirre A., Barr S., Thompson S., Sennello R., Young D., Iwata K.K., Gibson N.W., Cagnoni P., Haley J.D. Loss of Homotypic Cell Adhesion by Epithelial-Mesenchymal Transition or Mutation Limits Sensitivity to Epidermal Growth Factor Receptor Inhibition. Mol. Cancer Ther. 2007;6:532–541. doi: 10.1158/1535-7163.MCT-06-0462. PubMed DOI
Kurrey N.K., Jalgaonkar S.P., Joglekar A.V., Ghanate A.D., Chaskar P.D., Doiphode R.Y., Bapat S.A. Snail and Slug Mediate Radioresistance and Chemoresistance by Antagonizing P53-Mediated Apoptosis and Acquiring a Stem-like Phenotype in Ovarian Cancer Cells. Stem Cells. 2009;27:2059–2068. doi: 10.1002/stem.154. PubMed DOI
Kharaishvili G., Bouchal J. Ph.D. Thesis. Palacky University; Olomouc, Czech Republic: 2011. Extracellular Matrix Proteins and Epithelial Cell Plasticity in Progression of Breast and Prostate Cancer.
Janda E., Lehmann K., Killisch I., Jechlinger M., Herzig M., Downward J., Beug H., Grünert S. Ras and TGFβ Cooperatively Regulate Epithelial Cell Plasticity and Metastasis: Dissection of Ras Signaling Pathways. J. Cell Biol. 2002;156:299–313. doi: 10.1083/jcb.200109037. PubMed DOI PMC
Jenndahl L.E., Isakson P., Baeckström D. C-ErbB2-Induced Epithelial-Mesenchymal Transition in Mammary Epithelial Cells Is Suppressed by Cell-Cell Contact and Initiated Prior to E-Cadherin Downregulation. Int. J. Oncol. 2005;27:439–448. doi: 10.3892/ijo.27.2.439. PubMed DOI
Kupferman M.E., Jiffar T., El-Naggar A., Yilmaz T., Zhou G., Xie T., Feng L., Wang J., Holsinger F.C., Yu D., et al. TrkB Induces EMT and Has a Key Role in Invasion of Head and Neck Squamous Cell Carcinoma. Oncogene. 2010;29:2047. doi: 10.1038/onc.2009.486. PubMed DOI PMC
Smit M.A., Geiger T.R., Song J.-Y., Gitelman I., Peeper D.S. A Twist-Snail Axis Critical for TrkB-Induced Epithelial-Mesenchymal Transition-like Transformation, Anoikis Resistance, and Metastasis. Mol. Cell Biol. 2009;29:3722–3737. doi: 10.1128/MCB.01164-08. PubMed DOI PMC
Smit M.A., Peeper D.S. Epithelial-Mesenchymal Transition and Senescence: Two Cancer-Related Processes Are Crossing Paths. Aging. 2010;2:735. doi: 10.18632/aging.100209. PubMed DOI PMC
Stoker M., Perryman M. An Epithelial Scatter Factor Released by Embryo Fibroblasts. J. Cell Sci. 1985;77:209–223. doi: 10.1242/jcs.77.1.209. PubMed DOI
Grant C.M., Kyprianou N. Epithelial Mesenchymal Transition (EMT) in Prostate Growth and Tumor Progression. Transl. Androl. Urol. 2013;2:202–211. doi: 10.3978/J.ISSN.2223-4683.2013.09.04. PubMed DOI PMC
Lemster A.L., Sievers E., Pasternack H., Lazar-Karsten P., Klümper N., Sailer V., Offermann A., Brägelmann J., Perner S., Kirfel J. Histone Demethylase KDM5C Drives Prostate Cancer Progression by Promoting EMT. Cancers. 2022;14:1894. doi: 10.3390/cancers14081894. PubMed DOI PMC
Wu J., Ji H., Li T., Guo H., Xu H., Zhu J., Tian J., Gao M., Wang X., Zhang A. Targeting the Prostate Tumor Microenvironment by Plant-Derived Natural Products. Cell. Signal. 2024;115:111011. doi: 10.1016/j.cellsig.2023.111011. PubMed DOI
Yang J., Mani S.A., Donaher J.L., Ramaswamy S., Itzykson R.A., Come C., Savagner P., Gitelman I., Richardson A., Weinberg R.A. Twist, a Master Regulator of Morphogenesis, Plays an Essential Role in Tumor Metastasis. Cell. 2004;117:927–939. doi: 10.1016/j.cell.2004.06.006. PubMed DOI
Dave N., Guaita-Esteruelas S., Gutarra S., Frias À., Beltran M., Peiró S., De Herreros A.G. Functional Cooperation between Snail1 and Twist in the Regulation of ZEB1 Expression during Epithelial to Mesenchymal Transition. J. Biol. Chem. 2011;286:12024–12032. doi: 10.1074/jbc.M110.168625. PubMed DOI PMC
Li Q., Chen C., Kapadia A., Zhou Q., Harper M.K., Schaack J., LaBarbera D.V. 3D Models of Epithelial-Mesenchymal Transition in Breast Cancer Metastasis: High-Throughput Screening Assay Development, Validation, and Pilot Screen. J. Biomol. Screen. 2011;16:141–154. doi: 10.1177/1087057110392995. PubMed DOI
Otsuki S., Inokuchi M., Enjoji M., Ishikawa T., Takagi Y., Kato K., Yamada H., Kojima K., Sugihara K. Vimentin Expression Is Associated with Decreased Survival in Gastric Cancer. Oncol. Rep. 2011;25:1235–1242. doi: 10.3892/OR.2011.1185. PubMed DOI
Abdelrahman A.E., Arafa S.A., Ahmed R.A. Prognostic Value of Twist-1, E-Cadherin and EZH2 in Prostate Cancer: An Immunohistochemical Study. Turk. Patoloji Derg. 2017;1:198–210. doi: 10.5146/tjpath.2016.01392. PubMed DOI
Børretzen A., Gravdal K., Haukaas S.A., Mannelqvist M., Beisland C., Akslen L.A., Halvorsen O.J. The Epithelial–Mesenchymal Transition Regulators Twist, Slug, and Snail Are Associated with Aggressive Tumour Features and Poor Outcome in Prostate Cancer Patients. J. Pathol. Clin. Res. 2021;7:253–270. doi: 10.1002/cjp2.202. PubMed DOI PMC
Jin L., Zhou Y., Chen G., Dai G., Fu K., Yang D., Zhu J. EZH2-TROAP Pathway Promotes Prostate Cancer Progression Via TWIST Signals. Front. Oncol. 2021;10:592239. doi: 10.3389/fonc.2020.592239. PubMed DOI PMC
Nishioka R., Itoh S., Gui T., Gai Z., Oikawa K., Kawai M., Tani M., Yamaue H., Muragaki Y. SNAIL Induces Epithelial-to-Mesenchymal Transition in a Human Pancreatic Cancer Cell Line (BxPC3) and Promotes Distant Metastasis and Invasiveness in Vivo. Exp. Mol. Pathol. 2010;89:149–157. doi: 10.1016/j.yexmp.2010.05.008. PubMed DOI
Blanco M.J., Moreno-Bueno G., Sarrio D., Locascio A., Cano A., Palacios J., Nieto M.A. Correlation of Snail Expression with Histological Grade and Lymph Node Status in Breast Carcinomas. Oncogene. 2002;21:3241–3246. doi: 10.1038/sj.onc.1205416. PubMed DOI
Casas E., Kim J., Bendesky A., Ohno-Machado L., Wolfe C.J., Yang J. Snail2 Is an Essential Mediator of Twist1-Induced Epithelial-Mesenchymal Transition and Metastasis. Cancer Res. 2011;71:245. doi: 10.1158/0008-5472.CAN-10-2330. PubMed DOI PMC
Yu Q., Zhang K., Wang X., Liu X., Zhang Z. Expression of Transcription Factors Snail, Slug, and Twist in Human Bladder Carcinoma. J. Exp. Clin. Cancer Res. 2010;29:1–9. doi: 10.1186/1756-9966-29-119. PubMed DOI PMC
Xu S., Zhou Y., Biekemitoufu H., Wang H., Li C., Zhang W., Ma Y. Expression of Twist, Slug and Snail in Esophageal Squamous Cell Carcinoma and Their Prognostic Significance. Oncol. Lett. 2021;21:184. doi: 10.3892/ol.2021.12445. PubMed DOI PMC
Bhat-Nakshatri P., Appaiah H., Ballas C., Pick-Franke P., Goulet R., Badve S., Srour E.F., Nakshatri H. SLUG/SNAI2 and Tumor Necrosis Factor Generate Breast Cells with CD44+/CD24− Phenotype. BMC Cancer. 2010;10:411. doi: 10.1186/1471-2407-10-411. PubMed DOI PMC
Chua H.L., Bhat-Nakshatri P., Clare S.E., Morimiya A., Badve S., Nakshatri H. NF-ΚB Represses E-Cadherin Expression and Enhances Epithelial to Mesenchymal Transition of Mammary Epithelial Cells: Potential Involvement of ZEB-1 and ZEB-2. Oncogene. 2007;26:711–724. doi: 10.1038/sj.onc.1209808. PubMed DOI
Katoh M., Katoh M. Identification and Characterization of Human SNAIL3 (SNAI3) Gene in Silico. Int. J. Mol. Med. 2003;11:383–388. doi: 10.3892/ijmm.11.3.383. PubMed DOI
Smith B.N., Odero-Marah V.A. The Role of Snail in Prostate Cancer. Cell Adhes. Migr. 2012;6:433–441. doi: 10.4161/cam.21687. PubMed DOI PMC
Vandewalle C., Van Roy F., Berx G. The Role of the ZEB Family of Transcription Factors in Development and Disease. Cell. Mol. Life Sci. 2009;66:773–787. doi: 10.1007/s00018-008-8465-8. PubMed DOI PMC
Vega S., Morales A.V., Ocaña O.H., Valdés F., Fabregat I., Nieto M.A. Snail Blocks the Cell Cycle and Confers Resistance to Cell Death. Genes. Dev. 2004;18:1131–1143. doi: 10.1101/gad.294104. PubMed DOI PMC
Eger A., Aigner K., Sonderegger S., Dampier B., Oehler S., Schreiber M., Berx G., Cano A., Beug H., Foisner R. DeltaEF1 Is a Transcriptional Repressor of E-Cadherin and Regulates Epithelial Plasticity in Breast Cancer Cells. Oncogene. 2005;24:2375–2385. doi: 10.1038/sj.onc.1208429. PubMed DOI
Kajita M., McClinic K.N., Wade P.A. Aberrant Expression of the Transcription Factors Snail and Slug Alters the Response to Genotoxic Stress. Mol. Cell Biol. 2004;24:7559. doi: 10.1128/MCB.24.17.7559-7566.2004. PubMed DOI PMC
Hugo H.J., Kokkinos M.I., Blick T., Ackland M.L., Thompson E.W., Newgreen D.F. Defining the E-Cadherin Repressor Interactome in Epithelial-Mesenchymal Transition: The PMC42 Model as a Case Study. Cells Tissues Organs. 2010;193:23–40. doi: 10.1159/000320174. PubMed DOI
Hanrahan K., O’Neill A., Prencipe M., Bugler J., Murphy L., Fabre A., Puhr M., Culig Z., Murphy K., Watson R.W. The Role of Epithelial-Mesenchymal Transition Drivers ZEB1 and ZEB2 in Mediating Docetaxel-Resistant Prostate Cancer. Mol. Oncol. 2017;11:251–265. doi: 10.1002/1878-0261.12030. PubMed DOI PMC
Zavadil J., Narasimhan M., Blumenberg M., Schneider R.J. Transforming Growth Factor-β and MicroRNA:MRNA Regulatory Networks in Epithelial Plasticity. Cells Tissues Organs. 2007;185:157–161. doi: 10.1159/000101316. PubMed DOI
Gregory P.A., Bert A.G., Paterson E.L., Barry S.C., Tsykin A., Farshid G., Vadas M.A., Khew-Goodall Y., Goodall G.J. The MiR-200 Family and MiR-205 Regulate Epithelial to Mesenchymal Transition by Targeting ZEB1 and SIP1. Nat. Cell Biol. 2008;10:593–601. doi: 10.1038/ncb1722. PubMed DOI
Sossey-Alaoui K., Bialkowska K., Plow E.F. The MiR200 Family of MicroRNAs Regulates WAVE3-Dependent Cancer Cell Invasion. J. Biol. Chem. 2009;284:33019–33029. doi: 10.1074/jbc.M109.034553. PubMed DOI PMC
Sharma N., Baruah M.M. The MicroRNA Signatures: Aberrantly Expressed MiRNAs in Prostate Cancer. Clin. Transl. Oncol. 2019;21:126–144. doi: 10.1007/s12094-018-1910-8. PubMed DOI
Fabris L., Ceder Y., Chinnaiyan A.M., Jenster G.W., Sorensen K.D., Tomlins S., Visakorpi T., Calin G.A. The Potential of MicroRNAs as Prostate Cancer Biomarkers. Eur. Urol. 2016;70:312–322. doi: 10.1016/j.eururo.2015.12.054. PubMed DOI PMC
Sekhon K., Bucay N., Majid S., Dahiya R., Saini S. MicroRNAs and Epithelial-Mesenchymal Transition in Prostate Cancer. Oncotarget. 2016;7:67597–67611. doi: 10.18632/oncotarget.11708. PubMed DOI PMC
Dubey A., Prajapati K.S., Swamy M., Pachauri V. Heat Shock Proteins: A Therapeutic Target Worth to Consider. Vet. World. 2015;8:46. doi: 10.14202/vetworld.2015.46-51. PubMed DOI PMC
Fu X., Liu J., Yan X., DiSanto M.E., Zhang X. Heat Shock Protein 70 and 90 Family in Prostate Cancer. Life. 2022;12:1489. doi: 10.3390/life12101489. PubMed DOI PMC
Seclì L., Fusella F., Avalle L., Brancaccio M. The Dark-Side of the Outside: How Extracellular Heat Shock Proteins Promote Cancer. Cell. Mol. Life Sci. 2021;78:4069–4083. doi: 10.1007/s00018-021-03764-3. PubMed DOI PMC
Jiang B., Liang P., Deng G., Tu Z., Liu M., Xiao X. Increased Stability of Bcl-2 in HSP70-Mediated Protection against Apoptosis Induced by Oxidative Stress. Cell Stress. Chaperones. 2011;16:143. doi: 10.1007/s12192-010-0226-6. PubMed DOI PMC
Cultrara C.N., Kozuch S.D., Ramasundaram P., Heller C.J., Shah S., Beck A.E., Sabatino D., Zilberberg J. GRP78 Modulates Cell Adhesion Markers in Prostate Cancer and Multiple Myeloma Cell Lines. BMC Cancer. 2018;18:1263. doi: 10.1186/s12885-018-5178-8. PubMed DOI PMC
Teng Y., Ngoka L., Mei Y., Lesoon L., Cowell J.K. HSP90 and HSP70 Proteins Are Essential for Stabilization and Activation of WASF3 Metastasis-Promoting Protein. J. Biol. Chem. 2012;287:10051. doi: 10.1074/jbc.M111.335000. PubMed DOI PMC
Hance M.W., Dole K., Gopal U., Bohonowych J.E., Jezierska-Drutel A., Neumann C.A., Liu H., Garraway I.P., Isaacs J.S. Secreted Hsp90 Is a Novel Regulator of the Epithelial to Mesenchymal Transition (EMT) in Prostate Cancer. J. Biol. Chem. 2012;287:37732–37744. doi: 10.1074/jbc.M112.389015. PubMed DOI PMC
Chatterjee S., Burns T.F. Targeting Heat Shock Proteins in Cancer: A Promising Therapeutic Approach. Int. J. Mol. Sci. 2017;18:1978. doi: 10.3390/ijms18091978. PubMed DOI PMC
Nolan K.D., Franco O.E., Hance M.W., Hayward S.W., Isaacs J.S. Tumor-Secreted Hsp90 Subverts Polycomb Function to Drive Prostate Tumor Growth and Invasion. J. Biol. Chem. 2015;290:8271–8282. doi: 10.1074/jbc.M115.637496. PubMed DOI PMC
Coulter J.B., Easwaran H. Combining EZH2 and HDAC Inhibitors to Target Castration-Resistant Prostate Cancers. PLoS Biol. 2023;21:e3002081. doi: 10.1371/journal.pbio.3002081. PubMed DOI PMC
Liu Y.J., Du J., Li J., Tan X.P., Zhang Q. CTHRC1, a Novel Gene with Multiple Functions in Physiology, Disease and Solid Tumors (Review) Oncol. Lett. 2023;25:266. doi: 10.3892/ol.2023.13852. PubMed DOI PMC
Zhou Q., Xiong W., Zhou X., Gao R.S., Lin Q.F., Liu H.Y., Li J.N., Tian X.F. CTHRC1 and PD-1/PD-L1 Expression Predicts Tumor Recurrence in Prostate Cancer. Mol. Med. Rep. 2019;20:4244. doi: 10.3892/mmr.2019.10690. PubMed DOI PMC
Ma Z., Chao F., Wang S., Song Z., Zhuo Z., Zhang J., Xu G., Chen G. CTHRC1 Affects Malignant Tumor Cell Behavior and Is Regulated by MiR-30e-5p in Human Prostate Cancer. Biochem. Biophys. Res. Commun. 2020;525:418–424. doi: 10.1016/j.bbrc.2020.02.098. PubMed DOI
Wang Z., An J., Zhu D., Chen H., Lin A., Kang J., Liu W., Kang X. Periostin: An Emerging Activator of Multiple Signaling Pathways. J. Cell Commun. Signal. 2022;16:515. doi: 10.1007/s12079-022-00674-2. PubMed DOI PMC
Tian Y., Choi C.H., Li Q.K., Rahmatpanah F.B., Chen X., Kim S.R., Veltri R., Chia D., Zhang Z., Mercola D., et al. Overexpression of Periostin in Stroma Positively Associated with Aggressive Prostate Cancer. PLoS ONE. 2015;10:e0130333. doi: 10.1371/JOURNAL.PONE.0121502. PubMed DOI PMC
Hu Q., Tong S., Zhao X., Ding W., Gou Y., Xu K., Sun C., Xia G. Periostin Mediates TGF-β-Induced Epithelial Mesenchymal Transition in Prostate Cancer Cells. Cell. Physiol. Biochem. 2015;36:799–809. doi: 10.1159/000430139. PubMed DOI
Liao Y., Huang J., Liu P., Zhang C., Liu J., Xia M., Shang C., Ooi S., Chen Y., Qin S., et al. Downregulation of LNMAS Orchestrates Partial EMT and Immune Escape from Macrophage Phagocytosis to Promote Lymph Node Metastasis of Cervical Cancer. Oncogene. 2022;41:1931–1943. doi: 10.1038/s41388-022-02202-3. PubMed DOI PMC
Wang L., Li S., Luo H., Lu Q., Yu S. PCSK9 Promotes the Progression and Metastasis of Colon Cancer Cells through Regulation of EMT and PI3K/AKT Signaling in Tumor Cells and Phenotypic Polarization of Macrophages. J. Exp. Clin. Cancer Res. 2022;41:303. doi: 10.1186/s13046-022-02477-0. PubMed DOI PMC
Fang S., Yarmolinsky J., Gill D., Bull C.J., Perks C.M., Smith G.D., Gaunt T.R., Richardson T.G. Association between Genetically Proxied PCSK9 Inhibition and Prostate Cancer Risk: A Mendelian Randomisation Study. PLoS Med. 2023;20:e1003988. doi: 10.1371/journal.pmed.1003988. PubMed DOI PMC
Gan S.S., Ye J.Q., Wang L., Qu F.J., Chu C.M., Tian Y.J., Yang W., Cui X.G. Inhibition of PCSK9 Protects against Radiation-Induced Damage of Prostate Cancer Cells. OncoTargets Ther. 2017;10:2139. doi: 10.2147/OTT.S129413. PubMed DOI PMC
Sun L., Ding H., Jia Y., Shi M., Guo D., Yang P., Wang Y., Liu F., Zhang Y., Zhu Z. Associations of Genetically Proxied Inhibition of HMG-CoA Reductase, NPC1L1, and PCSK9 with Breast Cancer and Prostate Cancer. Breast Cancer Res. 2022;24:12. doi: 10.1186/s13058-022-01508-0. PubMed DOI PMC
Stopsack K.H., Gerke T.A., Andrén O., Andersson S.O., Giovannucci E.L., Mucci L.A., Rider J.R. Cholesterol Uptake and Regulation in High-Grade and Lethal Prostate Cancers. Carcinogenesis. 2017;38:806–811. doi: 10.1093/carcin/bgx058. PubMed DOI PMC
Datar I., Schalper K.A. Epithelial–Mesenchymal Transition and Immune Evasion during Lung Cancer Progression: The Chicken or the Egg? Clin. Cancer Res. 2016;22:3422. doi: 10.1158/1078-0432.CCR-16-0336. PubMed DOI PMC
Messex J.K., Liou G.Y. Impact of Immune Cells in the Tumor Microenvironment of Prostate Cancer Metastasis. Life. 2023;13:333. doi: 10.3390/life13020333. PubMed DOI PMC
Rice A.J., Cortes E., Lachowski D., Cheung B.C.H., Karim S.A., Morton J.P., Del Río Hernández A. Matrix Stiffness Induces Epithelial–Mesenchymal Transition and Promotes Chemoresistance in Pancreatic Cancer Cells. Oncogenesis. 2017;6:e352. doi: 10.1038/oncsis.2017.54. PubMed DOI PMC
Kharaishvili G., Simkova D., Bouchalova K., Gachechiladze M., Narsia N., Bouchal J. The Role of Cancer-Associated Fibroblasts, Solid Stress and Other Microenvironmental Factors in Tumor Progression and Therapy Resistance. Cancer Cell Int. 2014;14:41. doi: 10.1186/1475-2867-14-41. PubMed DOI PMC
Liu J., Shen J.X., Wu H.T., Li X.L., Wen X.F., Du C.W., Zhang G.J. Collagen 1A1 (COL1A1) Promotes Metastasis of Breast Cancer and Is a Potential Therapeutic Target. Discov. Med. 2018;25:211–223. PubMed
Hanley C.J., Noble F., Ward M., Bullock M., Drifka C., Mellone M., Manousopoulou A., Johnston H.E., Hayden A., Thirdborough S., et al. A Subset of Myofibroblastic Cancer-Associated Fibroblasts Regulate Collagen Fiber Elongation, Which Is Prognostic in Multiple Cancers. Oncotarget. 2015;7:6159–6174. doi: 10.18632/oncotarget.6740. PubMed DOI PMC
Levental K.R., Yu H., Kass L., Lakins J.N., Egeblad M., Erler J.T., Fong S.F.T., Csiszar K., Giaccia A., Weninger W., et al. Matrix Crosslinking Forces Tumor Progression by Enhancing Integrin Signaling. Cell. 2009;139:891–906. doi: 10.1016/j.cell.2009.10.027. PubMed DOI PMC
Kryza T., Silva L.M., Bock N., Fuhrman-Luck R.A., Stephens C.R., Gao J., Samaratunga H., Lawrence M.G., Hooper J.D., Dong Y., et al. Kallikrein-Related Peptidase 4 Induces Cancer-Associated Fibroblast Features in Prostate-Derived Stromal Cells. Mol. Oncol. 2017;11:1307–1329. doi: 10.1002/1878-0261.12075. PubMed DOI PMC
Wright K., Ly T., Kriet M., Czirok A., Thomas S.M. Cancer-Associated Fibroblasts: Master Tumor Microenvironment Modifiers. Cancers. 2023;15:1899. doi: 10.3390/cancers15061899. PubMed DOI PMC
Taddei M.L., Giannoni E., Comito G., Chiarugi P. Microenvironment and Tumor Cell Plasticity: An Easy Way Out. Cancer Lett. 2013;341:80–96. doi: 10.1016/j.canlet.2013.01.042. PubMed DOI
Giannoni E., Bianchini F., Masieri L., Serni S., Torre E., Calorini L., Chiarugi P. Reciprocal Activation of Prostate Cancer Cells and Cancer-Associated Fibroblasts Stimulates Epithelial-Mesenchymal Transition and Cancer Stemness. Cancer Res. 2010;70:6945–6956. doi: 10.1158/0008-5472.CAN-10-0785. PubMed DOI
Chen Q., Yang D., Zong H., Zhu L., Wang L., Wang X., Zhu X., Song X., Wang J. Growth-Induced Stress Enhances Epithelial-Mesenchymal Transition Induced by IL-6 in Clear Cell Renal Cell Carcinoma via the Akt/GSK-3β/β-Catenin Signaling Pathway. Oncogenesis. 2017;6:e375. doi: 10.1038/oncsis.2017.74. PubMed DOI PMC
Tse J.M., Cheng G., Tyrrell J.A., Wilcox-Adelman S.A., Boucher Y., Jain R.K., Munn L.L. Mechanical Compression Drives Cancer Cells toward Invasive Phenotype. Proc. Natl. Acad. Sci. USA. 2012;109:911–916. doi: 10.1073/pnas.1118910109. PubMed DOI PMC
Brown M.S., Muller K.E., Pattabiraman D.R. Quantifying the Epithelial-to-Mesenchymal Transition (EMT) from Bench to Bedside. Cancers. 2022;14:1138. doi: 10.3390/cancers14051138. PubMed DOI PMC
Mickova A., Kharaishvili G., Kurfurstova D., Gachechiladze M., Kral M., Vacek O., Pokryvkova B., Mistrik M., Soucek K., Bouchal J. Skp2 and Slug Are Coexpressed in Aggressive Prostate Cancer and Inhibited by Neddylation Blockade. Int. J. Mol. Sci. 2021;22:2844. doi: 10.3390/ijms22062844. PubMed DOI PMC
Leggett S.E., Sim J.Y., Rubins J.E., Neronha Z.J., Williams E.K., Wong I.Y. Morphological Single Cell Profiling of the Epithelial-Mesenchymal Transition. Integr. Biol. 2016;8:1133–1144. doi: 10.1039/C6IB00139D. PubMed DOI PMC
Meyer-Schaller N., Cardner M., Diepenbruck M., Saxena M., Tiede S., Lüönd F., Ivanek R., Beerenwinkel N., Christofori G. A Hierarchical Regulatory Landscape during the Multiple Stages of EMT. Dev. Cell. 2019;48:539–553.e6. doi: 10.1016/j.devcel.2018.12.023. PubMed DOI
Zhong W., Sun T. Editorial: Epithelial-Mesenchymal Transition (EMT) as a Therapeutic Target in Cancer, Volume II. Front. Oncol. 2023;13:1218855. doi: 10.3389/fonc.2023.1218855. PubMed DOI PMC
Qiao P., Tian Z. Atractylenolide I Inhibits EMT and Enhances the Antitumor Effect of Cabozantinib in Prostate Cancer via Targeting Hsp27. Front. Oncol. 2023;12:1084884. doi: 10.3389/fonc.2022.1084884. PubMed DOI PMC
Baritaki S., Huerta-Yepez S., Sahakyan A., Karagiannides I., Bakirtzi K., Jazirehi A.R., Bonavida B., Kugel J.F. Mechanisms of Nitric Oxide-Mediated Inhibition of EMT in Cancer: Inhibition of the Metastasis-Inducer Snail and Induction of the Metastasis-Suppressor RKIP. Cell Cycle. 2010;9:4931. doi: 10.4161/cc.9.24.14229. PubMed DOI PMC
Fischer K.R., Durrans A., Lee S., Sheng J., Li F., Wong S.T.C., Choi H., El Rayes T., Ryu S., Troeger J., et al. Epithelial-to-Mesenchymal Transition Is Not Required for Lung Metastasis but Contributes to Chemoresistance. Nature. 2015;527:472–476. doi: 10.1038/nature15748. PubMed DOI PMC
Castellón E.A., Indo S., Contreras H.R. Cancer Stemness/Epithelial-Mesenchymal Transition Axis Influences Metastasis and Castration Resistance in Prostate Cancer: Potential Therapeutic Target. Int. J. Mol. Sci. 2022;23:14917. doi: 10.3390/ijms232314917. PubMed DOI PMC
Slabáková E., Pernicová Z., Slavíčková E., Staršíchová A., Kozubík A., Souček K. TGF-Β1-Induced EMT of Non-Transformed Prostate Hyperplasia Cells Is Characterized by Early Induction of SNAI2/Slug. Prostate. 2011;71:1332–1343. doi: 10.1002/pros.21350. PubMed DOI
Gogola S., Rejzer M., Bahmad H.F., Abou-Kheir W., Omarzai Y., Poppiti R. Epithelial-to-Mesenchymal Transition-Related Markers in Prostate Cancer: From Bench to Bedside. Cancers. 2023;15:2309. doi: 10.3390/cancers15082309. PubMed DOI PMC
Allan A. Influence of EMT on CTCs and Disease Progression in Prostate Cancer. ClinicalTrials.gov Identifier: NTC04021394. [(accessed on 17 September 2023)]; Available online: https://clinicaltrials.gov/study/NCT04021394.
De Giorgi U. CTC, Free DNA, Stem Cells and EMT-Related Antigens as Biomarkers of Activity of Cabazitaxel in CRPC. ClinicalTrials.gov Identifier: NCT03381326. [(accessed on 17 September 2023)]; Available online: https://clinicaltrials.gov/study/NCT03381326.
Koinis F., Zafeiriou Z., Messaritakis I., Katsaounis P., Koumarianou A., Kontopodis E., Chantzara E., Aidarinis C., Lazarou A., Christodoulopoulos G., et al. Prognostic Role of Circulating Tumor Cells in Patients with Metastatic Castration-Resistant Prostate Cancer Receiving Cabazitaxel: A Prospective Biomarker Study. Cancers. 2023;15:4511. doi: 10.3390/cancers15184511. PubMed DOI PMC
Ramesh V., Brabletz T., Ceppi P. Targeting EMT in Cancer with Repurposed Metabolic Inhibitors. Trends Cancer. 2020;6:942–950. doi: 10.1016/j.trecan.2020.06.005. PubMed DOI
Caro-Maldonado A., Camacho L., Zabala-Letona A., Torrano V., Fernández-Ruiz S., Zamacola-Bascaran K., Arreal L., Valcárcel-Jiménez L., Martín-Martín N., Flores J.M., et al. Low-Dose Statin Treatment Increases Prostate Cancer Aggressiveness. Oncotarget. 2017;9:1494–1504. doi: 10.18632/oncotarget.22217. PubMed DOI PMC
Small E.J., Meyer M., Marshall M.E., Reyno L.M., Meyers F.J., Natale R.B., Lenehan P.F., Chen L., Slichenmyer W.J., Eisenberger M. Suramin Therapy for Patients with Symptomatic Hormone-Refractory Prostate Cancer: Results of a Randomized Phase III Trial Comparing Suramin plus Hydrocortisone to Placebo plus Hydrocortisone. J. Clin. Oncol. 2000;18:1440–1450. doi: 10.1200/JCO.2000.18.7.1440. PubMed DOI
Garcia-Schürmann J.M., Schulze H., Haupt G., Pastor J., Senge T. Suramin Treatment in Hormone- and Chemotherapy-Refractory Prostate Cancer. Urology. 1999;53:535–541. doi: 10.1016/S0090-4295(98)00544-5. PubMed DOI
Ganju A., Yallapu M.M., Khan S., Behrman S.W., Chauhan S.C., Jaggi M. Nanoways to Overcome Docetaxel Resistance in Prostate Cancer. Drug Resist. Updates. 2014;17:13–23. doi: 10.1016/j.drup.2014.04.001. PubMed DOI PMC
Kim J., Wu L., Zhao J.C., Jin H.J., Yu J. TMPRSS2-ERG Gene Fusions Induce Prostate Tumorigenesis by Modulating MicroRNA MiR-200c. Oncogene. 2014;33:5183–5192. doi: 10.1038/onc.2013.461. PubMed DOI PMC
Slovin S., Hussain S., Saad F., Garcia J., Picus J., Ferraldeschi R., Crespo M., Flohr P., Riisnaes R., Lin C., et al. Pharmacodynamic and Clinical Results from a Phase I/II Study of the Hsp90 Inhibitor Onalespib in Combination with Abiraterone Acetate in Prostate Cancer. Clin. Cancer Res. 2019;25:4624–4633. doi: 10.1158/1078-0432.CCR-18-3212. PubMed DOI PMC
Goetz M.P., Toft D.O., Ames M.M., Erlichman C. The Hsp90 Chaperone Complex as a Novel Target for Cancer Therapy. Ann. Oncol. 2003;14:1169–1176. doi: 10.1093/annonc/mdg316. PubMed DOI
Chen L., Li J., Farah E., Sarkar S., Ahmad N., Gupta S., Larner J., Liu X. Cotargeting HSP90 and Its Client Proteins for Treatment of Prostate Cancer. Mol. Cancer Ther. 2016;15:2107–2118. doi: 10.1158/1535-7163.MCT-16-0241. PubMed DOI PMC
Thakur M.K., Heilbrun L.K., Sheng S., Stein M., Liu G., Antonarakis E.S., Vaishampayan U., Dzinic S.H., Li X., Freeman S., et al. A Phase II Trial of Ganetespib, a Heat Shock Protein 90 Hsp90) Inhibitor, in Patients with Docetaxel-Pretreated Metastatic Castrate-Resistant Prostate Cancer (CRPC)-a Prostate Cancer Clinical Trials Consortium (PCCTC) Study. Investig. New Drugs. 2016;34:112–118. doi: 10.1007/s10637-015-0307-6. PubMed DOI PMC
Baker C., Retzik-Stahr C., Singh V., Plomondon R., Anderson V., Rasouli N. Should Metformin Remain the First-Line Therapy for Treatment of Type 2 Diabetes? Ther. Adv. Endocrinol. Metab. 2021;12:2042018820980225. doi: 10.1177/2042018820980225. PubMed DOI PMC
Wang M., Liu X., Chen Z., Chen H., Tan Y. Metformin Suppressed Tumor Necrosis Factor-α-Induced Epithelial- Mesenchymal Transition in Prostate Cancer by Inactivating the NF-ΚB Signaling Pathway. Transl. Cancer Res. 2020;9:6086–6095. doi: 10.21037/tcr-20-1186. PubMed DOI PMC
Tong D., Liu Q., Liu G., Xu J., Lan W., Jiang Y., Xiao H., Zhang D., Jiang J. Metformin inhibits castration-induced EMT in prostate cancer by repressing COX2/PGE2/STAT3 axis. Cancer Lett. 2017;389:23–32. doi: 10.1016/j.canlet.2016.12.031. PubMed DOI
Li S.H., Ryu J.H., Park S.E., Cho Y.S., Park J.W., Lee W.J., Chun Y.S. Vitamin C Supplementation Prevents Testosterone-Induced Hyperplasia of Rat Prostate by down-Regulating HIF-1alpha. J. Nutr. Biochem. 2010;21:801–808. doi: 10.1016/j.jnutbio.2009.06.004. PubMed DOI
Gasmi A., Roubaud G., Dariane C., Barret E., Beauval J.B., Brureau L., Créhange G., Fiard G., Fromont G., Gauthé M., et al. Overview of the Development and Use of Akt Inhibitors in Prostate Cancer. J. Clin. Med. 2021;11:160. doi: 10.3390/jcm11010160. PubMed DOI PMC
Shore N., Mellado B., Shah S., Hauke R., Costin D., Adra N., Cullberg M., Teruel C.F., Morris T. A Phase I Study of Capivasertib in Combination With Abiraterone Acetate in Patients With Metastatic Castration-Resistant Prostate Cancer. Clin. Genitourin. Cancer. 2023;21:278–285. doi: 10.1016/j.clgc.2022.11.017. PubMed DOI
Flaig T.W., Gustafson D.L., Su L.J., Zirrolli J.A., Crighton F., Harrison G.S., Pierson A.S., Agarwal R., Glodé L.M. A Phase I and Pharmacokinetic Study of Silybin-Phytosome in Prostate Cancer Patients. Investig. New Drugs. 2007;25:139–146. doi: 10.1007/s10637-006-9019-2. PubMed DOI