Spontaneous and Induced Tumors in Germ-Free Animals: A General Review

. 2021 Mar 11 ; 57 (3) : . [epub] 20210311

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid33799911

Grantová podpora
RVO 61388971 Akademie Věd České Republiky

Cancer, bacteria, and immunity relationships are much-debated topics in the last decade. Microbiome's importance for metabolic and immunologic modulation of the organism adaptation and responses has become progressively evident, and models to study these relationships, especially about carcinogenesis, have acquired primary importance. The availability of germ-free (GF) animals, i.e., animals born and maintained under completely sterile conditions avoiding the microbiome development offers a unique tool to investigate the role that bacteria can have in carcinogenesis and tumor development. The comparison between GF animals with the conventional (CV) counterpart with microbiome can help to evidence conditions and mechanisms directly involving bacterial activities in the modulation of carcinogenesis processes. Here, we review the literature about spontaneous cancer and cancer modeling in GF animals since the early studies, trying to offer a practical overview on the argument.

Zobrazit více v PubMed

Plonait H. Keimfreie Versuchstiere, ein neues Hilfsmittel veterinärmedizinischer Forschung [Germ-free experimental animals a new tool in veterinary research] Dtsch. Tierarztl. Wochenschr. 1963;70:485–489. PubMed

Trexler P.C. Gnotobiotics in science and medicine. Vet. Rec. 1967;81:474–478. doi: 10.1136/vr.81.19.474. PubMed DOI

Pollard M. The evolution of germ-free technology and cancer research. Prog. Clin. Biol. Res. 1983;132C:393–396. PubMed

Reddy B.S., el-Bayoumy K., Louis Y.M. Germfree animal as a tool to study role of gut microflora and nutrition in cancer. Prog. Clin. Biol. Res. 1985;181:293–296. PubMed

Stĕpánková R., Sinkora J., Hudcovic T., Kozáková H., Tlaskalová-Hogenová H. Differences in development of lymphocyte subpopulations from gut-associated lymphatic tissue (GALT) of germ-free and conventional rats: Effect of aging. Folia Microbiol. 1998;43:531–534. doi: 10.1007/BF02820814. PubMed DOI

Fiebiger U., Bereswill S., Heimesaat M.M. Dissecting the Interplay Between Intestinal Microbiota and Host Immunity in Health and Disease: Lessons Learned from Germfree and Gnotobiotic Animal Models. Eur. J. Microbiol. Immunol. 2016;6:253–271. doi: 10.1556/1886.2016.00036. PubMed DOI PMC

Yi P., Li L. The germ-free murine animal: An important animal model for research on the relationship between gut microbiota and the host. Vet. Microbiol. 2012;157 doi: 10.1016/j.vetmic.2011.10.024. PubMed DOI

Zhao Q., Elson C.O. Adaptive immune education by gut microbiota antigens. Immunology. 2018;154:28–37. doi: 10.1111/imm.12896. PubMed DOI PMC

Tlaskalova-Hogenova H., Vannucci L., Klimesova K., Stepankova R., Krizan J., Kverka M. Microbiome and colorectal carcinoma: Insights from germ-free and conventional animal models. Cancer J. 2014;20:217–224. doi: 10.1097/PPO.0000000000000052. PubMed DOI

Nicholson J.K., Holmes E., Kinross J., Burcelin R., Gibson G., Jia W., Pettersson S. Host-gut microbiota metabolic interactions. Science. 2012;336:1262–1267. doi: 10.1126/science.1223813. PubMed DOI

Reddy B.S., Narisawa T., Wright P., Vukusich D., Weisburger J.H., Wynder E.L. Colon carcinogenesis with azoxymethane and dimethylhydrazine in germ-free rats. Cancer Res. 1975;35:287–290. PubMed

Sacksteder M.R. Occurrence of spontaneous tumors in the germ-free F344 rat. J. Natl. Cancer. Inst. 1976;57:1371–1373. doi: 10.1093/jnci/57.6.1371. PubMed DOI

Chattopadhyay I., Dhar R., Pethusamy K., Seethy A., Srivastava T., Sah R., Sharma J., Karmakar S. Exploring the Role of Gut Microbiome in Colon Cancer. Appl. Biochem. Biotechnol. 2021 doi: 10.1007/s12010-021-03498-9. PubMed DOI

Reddy B.S., Narasawa T., Weisburger J.H., Wynder E.L. Promoting effect of sodium deoxycholate on colon adenocarcinomas in germ-free rats. J. Natl. Cancer Inst. 1976;56:441–442. doi: 10.1093/jnci/56.2.441. PubMed DOI

Reddy B.S., Narisawa T., Vukusich D., Weisburger J.H., Wynder E.L. Effect of quality and quantity of dietary fat and dimethylhydrazine in colon carcinogenesis in rats. Proc. Soc. Exp. Biol. Med. 1976;151:237–239. doi: 10.3181/00379727-151-39181. PubMed DOI

Reddy B.S., Watanabe K., Weisburger J.H., Wynder E.L. Promoting effect of bile acids in colon carcinogenesis in germ-free and conventional F344 rats. Cancer Res. 1977;37:3238–3242. PubMed

Vannucci L., Stepankova R., Grobarova V., Kozakova H., Rossmann P., Klimesova K., Benson V., Sima P., Fiserova A., Tlaskalova-Hogenova H. Colorectal carcinoma: Importance of colonic environment for anti-cancer response and systemic immunity. J. Immunotoxicol. 2009;6:217–226. doi: 10.3109/15476910903334343. PubMed DOI

Potter J.D. Risk factors for colon neoplasia—Epidemiology and biology. Eur. J. Cancer. 1995;31A:1033–1038. doi: 10.1016/0959-8049(95)00125-3. PubMed DOI

Le Marchand L., Wilkens L.R., Hankin J.H., Kolonel L.N., Lyu L.C. Independent and joint effects of family history and lifestyle on colorectal cancer risk: Implications for prevention. Cancer Epidemiol. Biomarkers Prev. 1999;8:45–51. PubMed

McGarr S.E., Ridlon J.M., Hylemon P.B. Diet, anaerobic bacterial metabolism, and colon cancer: A review of the literature. J. Clin. Gastroenterol. 2005;39:98–109. PubMed

Hope M.E., Hold G.L., Kain R., El-Omar E.M. Sporadic colorectal cancer—Role of the commensal microbiota. FEMS Microbiol. Lett. 2005;244 doi: 10.1016/j.femsle.2005.01.029. PubMed DOI

Horie H., Kanazawa K., Kobayashi E., Okada M., Fujimura A., Yamagiwa S., Abo T. Effects of intestinal bacteria on the development of colonic neoplasm II. Changes in the immunological environment. Eur. J. Cancer Prev. 1999;8:533–537. doi: 10.1097/00008469-199912000-00009. PubMed DOI

Debesa-Tur G., Pérez-Brocal V., Ruiz-Ruiz S., Castillejo A., Latorre A., Soto J.L., Moya A. Metagenomic analysis of formalin-fixed paraffin-embedded tumor and normal mucosa reveals differences in the microbiome of colorectal cancer patients. Sci. Rep. 2021;11:391. doi: 10.1038/s41598-020-79874-y. PubMed DOI PMC

Tlaskalová-Hogenová H., Stěpánková R., Kozáková H., Hudcovic T., Vannucci L., Tučková L., Rossmann P., Hrnčíř T., Kverka M., Zákostelská Z., et al. The role of gut microbiota (commensal bacteria) and the mucosal barrier in the pathogenesis of inflammatory and autoimmune diseases and cancer: Contribution of germ-free and gnotobiotic animal models of human diseases. Cell Mol. Immunol. 2011;8:110–120. doi: 10.1038/cmi.2010.67. PubMed DOI PMC

Christine F. Microbiota-metabolome interaction in depression: Could it be the new 42? Eur. Neuropsychopharmacol. 2021;43:22–24. doi: 10.1016/j.euroneuro.2020.12.007. PubMed DOI

Vannucci L., Stepankova R., Kozakova H., Fiserova A., Rossmann P., Tlaskalova-Hogenova H. Colorectal carcinogenesis in germ-free and conventionally reared rats: Different intestinal environments affect the systemic immunity. Int. J. Oncol. 2008;32:609–617. doi: 10.3892/ijo.32.3.609. PubMed DOI

Pollard M., Teah B.A. Spontaneous tumors in germ-free rats. J. Natl. Cancer Inst. 1963;31:457–465. PubMed

Pollard M., Kajima M. Lesions in aged germ-free Wistar rats. Am. J. Pathol. 1970;61:25–36. PubMed PMC

Prejean J.D., Peckham J.C., Casey A.E., Griswold D.P., Weisburger E.K., Weisburger J.H. Spontaneous tumors in Sprague-Dawley rats and Swiss mice. Cancer Res. 1973;33:2768–2773. PubMed

Pollard M. Spontaneous prostate adenocarcinomas in aged germ-free Wistar rats. J. Natl. Cancer Inst. 1973;51:1235–1241. doi: 10.1093/jnci/51.4.1235. PubMed DOI

Pilgrim H.I., Labrecque A.D. The incidence of mammary tumors in germ-free C3H mice. Cancer Res. 1967;27:584–586. PubMed

Smith C.S., Pilgrim H.I. Spontaneous neoplasms in germ-free BALB/cPi mice. Proc. Soc. Exp. Biol. Med. 1971;138:542–544. doi: 10.3181/00379727-138-35935. PubMed DOI

Pollard M., Kajima M., Teah B.A. Spontaneous leukemia in germ-free AK mice. Proc. Soc. Exp. Biol. Med. 1965;120:72–75. doi: 10.3181/00379727-120-30446. PubMed DOI

Mizutani T., Yamamoto T., Ozaki A., Oowada T., Mitsuoka T. Spontaneous polyposis in the small intestine of germ-free and conventionalized BALB/c mice. Cancer Lett. 1984;25:19–23. doi: 10.1016/S0304-3835(84)80021-X. PubMed DOI

Mizutani T., Mitsuoka T. Effect of intestinal bacteria on incidence of liver tumors in gnotobiotic C3H/He male mice. J. Natl. Cancer Inst. 1979;63:1365–1370. PubMed

Pollard M., Kajima M. Leukemia induced by 7,12-dimethylbenz[alpha]-anthracene in germ-free rats. J. Natl. Cancer Inst. 1967;39:135–141. PubMed

Pollard M. Chemical induction of mammary cancer in germ-free rats. Nature. 1963;200:1289–1291. doi: 10.1038/2001289a0. PubMed DOI

Pollard M., Matsuzawa T., Salomon J.C. Induction of neoplasms in germ-free rodents by 3-methylcholanthrene. J. Natl. Cancer Inst. 1964;33:93–99. PubMed

Walburg H.E., Jr., Cosgrove G.E. Methylcholanthrene-induced neoplasms in germ-free RFM mice. Int. J. Cancer. 1971;8:338–343. doi: 10.1002/ijc.2910080220. PubMed DOI

Pollard M., Salomon J.C. Oncogenic effect of methyl-cholanthrene in new-born germ-free mice. Proc. Soc. Exp. Biol. Med. 1963;112:256–259. doi: 10.3181/00379727-112-28009. PubMed DOI

Burstein N.A., McIntire K.R., Allison A.C. Pulmonary tumors in germ-free mice: Induction with urethan. J. Natl. Cancer Inst. 1970;44:211–214. PubMed

McIntire K.R., Princler G.L. Prolonged adjuvant stimulation in germ-free BALB-c mice: Development of plasma cell neoplasia. Immunology. 1969;17:481–487. PubMed PMC

Weisburger J.H., Reddy B.S., Narisawa T., Wynder E.L. Germ-free status and colon tumor induction by N-methyl-N′-nitro-N-nitrosoguanidine. Proc. Soc. Exp. Biol. Med. 1975;148:1119–1121. doi: 10.3181/00379727-148-38700. PubMed DOI

Sumi Y., Miyakawa M. Gastrointestinal carcinogenesis in germ-free rats given N-methyl-N′-nitro-N-nitrosoguanidine in drinking water. Cancer Res. 1979;39 Pt 1:2733–2736. PubMed

Evans I.A., Mason J. Carcinogenic activity of bracken. Nature. 1965;208:913–914. doi: 10.1038/208913a0. PubMed DOI

Pamukcu A.M., Price J.M. Induction of intestinal and urinary bladder cancer in rats by feeding bracken fern (Pteris aquilina) J. Natl. Cancer Inst. 1969;43:275–281. PubMed

Price J.M., Pamukcu A.M. The induction of neoplasms of the urinary bladder of the cow and the small intestine of the rat by feeding bracken fern (Pteris aquilina) Cancer Res. 1968;28:2247–2251. PubMed

Sumi Y., Hirono I., Hosaka S., Ueno I., Miyakawa M. Tumor induction in germ-free rats fed bracken (Pteridium aquilinum) Cancer Res. 1981;41:250–252. PubMed

Coleman O.I., Nunes T. Role of the Microbiota in Colorectal Cancer: Updates on Microbial Associations and Therapeutic Implications. Bioresour. Open Access. 2016;5:279–288. doi: 10.1089/biores.2016.0028. PubMed DOI PMC

Hill M.J., Drasar B.S., Hawksworth G., Aries V., Crowther J.S., Williams R.E. Bacteria and aetiology of cancer of large bowel. Lancet. 1971;1:95–100. doi: 10.1016/S0140-6736(71)90837-3. PubMed DOI

Wynder E.L., Reddy B.S. Editorial: Dietary fat and colon cancer. J. Natl. Cancer Inst. 1975;54:7–10. doi: 10.1093/jnci/54.1.7. PubMed DOI

Yang J., McDowell A., Kim E.K., Seo H., Lee W.H., CMKym S.M.M., Lee D.H., Park Y.S., Jee Y.K., Kim Y.K. Development of a colorectal cancer diagnostic model and dietary risk assessment through gut microbiome analysis. Exp. Mol. Med. 2019;51 doi: 10.1038/s12276-019-0313-4. PubMed DOI PMC

Chomchai C., Bhadrachari N., Nigro N.D. The effect of bile on the induction of experimental intestinal tumors in rats. Dis. Colon Rectum. 1974;17:310–312. doi: 10.1007/BF02586971. PubMed DOI

Reddy B.S., Weisburger J.H., Wynder E.L. Effects of dietary fat level and dimethylhydrazine on fecal acid and neutral sterol excretion and colon carcinogenesis in rats. J. Natl. Cancer Inst. 1974;52:507–511. doi: 10.1093/jnci/52.2.507. PubMed DOI

Reddy B.S., Watanabe K. Effect of cholesterol metabolites and promoting effect of lithocholic acid in colon carcinogenesis in germ-free and conventional F344 rats. Cancer Res. 1979;39:1521–1524. PubMed

Vannucci L., Fiserova A., Horvath O., Rossmann P., Mosca F., Pospisil M. Cancer evolution and immunity in a rat colorectal carcinogenesis model. Int. J. Oncol. 2004;25:973–981. PubMed

Cheah P.Y. Hypotheses for the etiology of colorectal cancer—An overview. Nutr.Cancer. 1990;14:5–13. doi: 10.1080/01635589009514073. PubMed DOI

Crowther J.S., Drasar B.S., Hill M.J.J., Maclennan R., Magnin D., Peach S., Teoh-chan C.H. Faecal steroids and bacteria and large bowel cancer in Hong Kong by socio-economic groups. Br. J. Cancer. 1976;34:191–198. doi: 10.1038/bjc.1976.142. PubMed DOI PMC

Domellof L., Darby L., Hanson D., Mathews L., Simi B., Reddy B.S. Fecal sterols and bacterial beta-glucuronidase activity: A preliminary metabolic epidemiology study of healthy volunteers from Umea, Sweden, and metropolitan New York. Nutr. Cancer. 1982;4:120–127. doi: 10.1080/01635588209513747. PubMed DOI

Hill M.J.J. Bile flow and colon cancer. Mutat. Res. 1990;238:313–320. doi: 10.1016/0165-1110(90)90023-5. PubMed DOI

Bayerdorffer E., Mannes G.A., Ochsenkuhn T., Dirschedl P., Paumgartner G. Variation of serum bile acids in ptients with colorectal adenomas during a one-year follow-up. Digestion. 1994;55:121–129. doi: 10.1159/000201136. PubMed DOI

Bayerdorffer E., Mannes T., Ochsenkuhn T., Dirschedl P., Wiebecke B., Paumgartner G. Unconjugated secondary bile acids in the serum of patients with colorectal adenomas. Gut. 1995;36:268–273. doi: 10.1136/gut.36.2.268. PubMed DOI PMC

Narisawa T., Magadia N.E., Weisburger J.H., Wynder E.L. Promoting effect of bile acids on colon carcinogenesis after intrarectal instillation of N-methyl-N′-nitro-N-nitrosoguanidine in rats. J. Natl. Cancer Inst. 1974;53:1093–1097. doi: 10.1093/jnci/53.4.1093. PubMed DOI

Song X., Sun X., Oh S.F., Wu M., Zhang Y., Zheng W., Geva-Zatorsky N., Jupp R., Mathis D., Benoist C., et al. Microbial bile acid metabolites modulate gut RORγ+ regulatory T cell homeostasis. Nature. 2020;577:410–415. doi: 10.1038/s41586-019-1865-0. PubMed DOI PMC

Wattenberg L.W. Studies of polycyclic hydrocarbon hydroxylases of the intestine possibly related to cancer. Effect of diet on benzpyrene hydroxylase activity. Cancer. 1971;28:99–102. doi: 10.1002/1097-0142(197107)28:1<99::AID-CNCR2820280118>3.0.CO;2-M. PubMed DOI

Reddy B.S., Wostmann B.S. Intestinal disaccharidase activities in the growing germ-free and conventional rats. Arch. Biochem. Biophys. 1966;113:609–616. doi: 10.1016/0003-9861(66)90238-4. PubMed DOI

Reddy B.S. Studies on the mechanism of calcium and magnesium absorption in germ-free rats. Arch. Biochem. Biophys. 1972;149:15–21. doi: 10.1016/0003-9861(72)90294-9. PubMed DOI

Reddy B.S., Narisawa T., Weisburger J.H. Colon carcinogenesis in germ-free rats with intrarectal 1,2-dimethylhydrazine and subcutaneous azoxymethane. Cancer Res. 1976;36:2874–2876. PubMed

Venkatachalam K., Vinayagam R., Anand M.A.V., Isa N.M., Ponnaiyan R. Biochemical and molecular aspects of 1,2-dimethylhydrazine (DMH)-induced colon carcinogenesis: A review. Toxicol. Res. 2020;9:2–18. doi: 10.1093/toxres/tfaa004. PubMed DOI PMC

Okayasu I., Hatakeyama S., Yamada M., Ohkusa T., Inagaki Y., Nakaya R. A novel method in the induction of reliable experimental acute and chronic ulcerative colitis in mice. Gastroenterology. 1990;98:694–702. doi: 10.1016/0016-5085(90)90290-H. PubMed DOI

Pei L.Y., Ke Y.S., Zhao H.H., Wang L., Jia C., Liu W.Z., Fu Q.H., Shi M.N., Cui J., Li S.C.C. Role of colonic microbiota in the pathogenesis of ulcerative colitis. BMC Gastroenterol. 2019;19:10. doi: 10.1186/s12876-019-0930-3. PubMed DOI PMC

Onderdonk A.B., Franklin M.L., Cisneros R.L. Production of experimental ulcerative colitis in gnotobiotic guinea pigs with simplified microflora. Infect. Immun. 1981;32:225–231. doi: 10.1128/IAI.32.1.225-231.1981. PubMed DOI PMC

Marcus A.J., Marcus S.N., Marcus R., Watt J. Rapid production of ulcerative disease of the colon in newly-weaned guinea-pigs by degraded carrageenan. J. Pharm. Pharmacol. 1989;41:423–426. doi: 10.1111/j.2042-7158.1989.tb06493.x. PubMed DOI

Kitajima S., Morimoto M., Sagara E., Shimizu C., Ikeda Y. Dextran sodium sulfate-induced colitis in germ-free IQI/Jic mice. Exp. Anim. 2001;50:387–395. doi: 10.1538/expanim.50.387. PubMed DOI

Kitajima S., Morimoto M., Sagara E. A model for dextran sodium sulfate (DSS)-induced mouse colitis: Bacterial degradation of DSS does not occur after incubation with mouse cecal contents. Exp. Anim. 2002;51:203–206. doi: 10.1538/expanim.51.203. PubMed DOI

Lee J.G., Lee Y.R., Lee A.R., Park C.H., Han D.S., Eun C.S. Role of the global gut microbial community in the development of colitis-associated cancer in a murine model. Biomed. Pharmacother. 2021;135:111206. doi: 10.1016/j.biopha.2020.111206. PubMed DOI

Hudcovic T., Stĕpánková R., Cebra J., Tlaskalová-Hogenová H. The role of microflora in the development of intestinal inflammation: Acute and chronic colitis induced by dextran sulfate in germ-free and conventionally reared immunocompetent and immunodeficient mice. Folia Microbiol. 2001;46:565–572. doi: 10.1007/BF02818004. PubMed DOI

Hudcovic T., Kolinska J., Klepetar J., RRezanka T.S., Srutkova D., Schwarzer M., Erban V., Du Z., Wells J.M., Hrncir T., et al. Protective effect of Clostridium tyrobutyricum in acute dextran sodium sulphate-induced colitis: Differential regulation of tumour necrosis factor-α and interleukin-18 in BALB/c and severe combined immunodeficiency mice. Clin. Exp. Immunol. 2012;167:356–365. doi: 10.1111/j.1365-2249.2011.04498.x. PubMed DOI PMC

Hudcovic T., Stepánková R., Kozákova H., Hrncír T., Tlaskalová-Hogenová H. Effects of monocolonization with Escherichia coli strains O6K13 and Nissle 1917 on the development of experimentally induced acute and chronic intestinal inflammation in germ-free immunocompetent and immunodeficient mice. Folia Microbiol. 2007;52:618–626. doi: 10.1007/BF02932191. PubMed DOI

Neufert C., Becker C., Neurath M.F. An inducible mouse model of colon carcinogenesis for the analysis of sporadic and inflammation-driven tumor progression. Nat. Protoc. 2007;2:1998–2004. doi: 10.1038/nprot.2007.279. PubMed DOI

Neufert C., Heichler C., Brabletz T., Scheibe K., Boonsanay V., Greten F.R., Neurath M.F. Inducible mouse models of colon cancer for the analysis of sporadic and inflammation-driven tumor progression and lymph node metastasis. Nat. Protoc. 2021;16:61–85. doi: 10.1038/s41596-020-00412-1. PubMed DOI

Zhan Y., Chen P.J., Sadler W.D., Wang F., Poe S., Núñez G., Eaton K.A., Chen G.Y. Gut microbiota protects against gastrointestinal tumorigenesis caused by epithelial injury. Cancer Res. 2013;73:7199–7210. doi: 10.1158/0008-5472.CAN-13-0827. PubMed DOI PMC

Bylund-Fellenius A.C., Landström E., Axelsson L.G., Midtvedt T. Experimental Colitis Induced by Dextran Sulphate in Normal and Germ-free Mice. Microb. Ecol. Health Dis. 1994;7:207–215.

Chiu C.C., Ching Y.H., Wang Y.C., Liu J.Y., Li Y.P., Huang Y.T., Chuang H.L. Monocolonization of germ-free mice with Bacteroides fragilis protects against dextran sulfate sodium-induced acute colitis. Biomed. Res. Int. 2014;2014:675786. doi: 10.1155/2014/675786. PubMed DOI PMC

Uronis J.M., Mühlbauer M., Herfarth H.H., Rubinas T.C., Jones G.S., Jobin C. Modulation of the intestinal microbiota alters colitis-associated colorectal cancer susceptibility. PLoS ONE. 2009;4:e6026. doi: 10.1371/journal.pone.0006026. PubMed DOI PMC

Ragonnaud E., Biragyn A. Gut microbiota as the key controllers of “healthy” aging of elderly people. Immun. Ageing. 2021;18:2. doi: 10.1186/s12979-020-00213-w. PubMed DOI PMC

Baffy G. Gut Microbiota and Cancer of the Host: Colliding Interests. Adv. Exp. Med. Biol. 2020;1219:93–107. PubMed

Hanahan D., Weinberg R.A. Hallmarks of cancer: The next generation. Cell. 2011;144:646–674. doi: 10.1016/j.cell.2011.02.013. PubMed DOI

Marelli G., Sica A., Vannucci L., Allavena P. Inflammation as target in cancer therapy. Curr. Opin. Pharmacol. 2017;35:57–65. doi: 10.1016/j.coph.2017.05.007. PubMed DOI

Hrncir T., Stepankova R., Kozakova H., Hudcovic T., Tlaskalova-Hogenova H. Gut microbiota and lipopolysaccharide content of the diet influence development of regulatory T cells: Studies in germ-free mice. BMC Immunol. 2008;9:65. doi: 10.1186/1471-2172-9-65. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...