Spontaneous and Induced Tumors in Germ-Free Animals: A General Review
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
RVO 61388971
Akademie Věd České Republiky
PubMed
33799911
PubMed Central
PMC8002107
DOI
10.3390/medicina57030260
PII: medicina57030260
Knihovny.cz E-zdroje
- Klíčová slova
- colorectal cancer, germ-free animals, induced tumors, microbiome, spontaneous tumors,
- MeSH
- Bacteria MeSH
- gnotobiologické modely * MeSH
- karcinogeneze MeSH
- mikrobiota * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Cancer, bacteria, and immunity relationships are much-debated topics in the last decade. Microbiome's importance for metabolic and immunologic modulation of the organism adaptation and responses has become progressively evident, and models to study these relationships, especially about carcinogenesis, have acquired primary importance. The availability of germ-free (GF) animals, i.e., animals born and maintained under completely sterile conditions avoiding the microbiome development offers a unique tool to investigate the role that bacteria can have in carcinogenesis and tumor development. The comparison between GF animals with the conventional (CV) counterpart with microbiome can help to evidence conditions and mechanisms directly involving bacterial activities in the modulation of carcinogenesis processes. Here, we review the literature about spontaneous cancer and cancer modeling in GF animals since the early studies, trying to offer a practical overview on the argument.
Zobrazit více v PubMed
Plonait H. Keimfreie Versuchstiere, ein neues Hilfsmittel veterinärmedizinischer Forschung [Germ-free experimental animals a new tool in veterinary research] Dtsch. Tierarztl. Wochenschr. 1963;70:485–489. PubMed
Trexler P.C. Gnotobiotics in science and medicine. Vet. Rec. 1967;81:474–478. doi: 10.1136/vr.81.19.474. PubMed DOI
Pollard M. The evolution of germ-free technology and cancer research. Prog. Clin. Biol. Res. 1983;132C:393–396. PubMed
Reddy B.S., el-Bayoumy K., Louis Y.M. Germfree animal as a tool to study role of gut microflora and nutrition in cancer. Prog. Clin. Biol. Res. 1985;181:293–296. PubMed
Stĕpánková R., Sinkora J., Hudcovic T., Kozáková H., Tlaskalová-Hogenová H. Differences in development of lymphocyte subpopulations from gut-associated lymphatic tissue (GALT) of germ-free and conventional rats: Effect of aging. Folia Microbiol. 1998;43:531–534. doi: 10.1007/BF02820814. PubMed DOI
Fiebiger U., Bereswill S., Heimesaat M.M. Dissecting the Interplay Between Intestinal Microbiota and Host Immunity in Health and Disease: Lessons Learned from Germfree and Gnotobiotic Animal Models. Eur. J. Microbiol. Immunol. 2016;6:253–271. doi: 10.1556/1886.2016.00036. PubMed DOI PMC
Yi P., Li L. The germ-free murine animal: An important animal model for research on the relationship between gut microbiota and the host. Vet. Microbiol. 2012;157 doi: 10.1016/j.vetmic.2011.10.024. PubMed DOI
Zhao Q., Elson C.O. Adaptive immune education by gut microbiota antigens. Immunology. 2018;154:28–37. doi: 10.1111/imm.12896. PubMed DOI PMC
Tlaskalova-Hogenova H., Vannucci L., Klimesova K., Stepankova R., Krizan J., Kverka M. Microbiome and colorectal carcinoma: Insights from germ-free and conventional animal models. Cancer J. 2014;20:217–224. doi: 10.1097/PPO.0000000000000052. PubMed DOI
Nicholson J.K., Holmes E., Kinross J., Burcelin R., Gibson G., Jia W., Pettersson S. Host-gut microbiota metabolic interactions. Science. 2012;336:1262–1267. doi: 10.1126/science.1223813. PubMed DOI
Reddy B.S., Narisawa T., Wright P., Vukusich D., Weisburger J.H., Wynder E.L. Colon carcinogenesis with azoxymethane and dimethylhydrazine in germ-free rats. Cancer Res. 1975;35:287–290. PubMed
Sacksteder M.R. Occurrence of spontaneous tumors in the germ-free F344 rat. J. Natl. Cancer. Inst. 1976;57:1371–1373. doi: 10.1093/jnci/57.6.1371. PubMed DOI
Chattopadhyay I., Dhar R., Pethusamy K., Seethy A., Srivastava T., Sah R., Sharma J., Karmakar S. Exploring the Role of Gut Microbiome in Colon Cancer. Appl. Biochem. Biotechnol. 2021 doi: 10.1007/s12010-021-03498-9. PubMed DOI
Reddy B.S., Narasawa T., Weisburger J.H., Wynder E.L. Promoting effect of sodium deoxycholate on colon adenocarcinomas in germ-free rats. J. Natl. Cancer Inst. 1976;56:441–442. doi: 10.1093/jnci/56.2.441. PubMed DOI
Reddy B.S., Narisawa T., Vukusich D., Weisburger J.H., Wynder E.L. Effect of quality and quantity of dietary fat and dimethylhydrazine in colon carcinogenesis in rats. Proc. Soc. Exp. Biol. Med. 1976;151:237–239. doi: 10.3181/00379727-151-39181. PubMed DOI
Reddy B.S., Watanabe K., Weisburger J.H., Wynder E.L. Promoting effect of bile acids in colon carcinogenesis in germ-free and conventional F344 rats. Cancer Res. 1977;37:3238–3242. PubMed
Vannucci L., Stepankova R., Grobarova V., Kozakova H., Rossmann P., Klimesova K., Benson V., Sima P., Fiserova A., Tlaskalova-Hogenova H. Colorectal carcinoma: Importance of colonic environment for anti-cancer response and systemic immunity. J. Immunotoxicol. 2009;6:217–226. doi: 10.3109/15476910903334343. PubMed DOI
Potter J.D. Risk factors for colon neoplasia—Epidemiology and biology. Eur. J. Cancer. 1995;31A:1033–1038. doi: 10.1016/0959-8049(95)00125-3. PubMed DOI
Le Marchand L., Wilkens L.R., Hankin J.H., Kolonel L.N., Lyu L.C. Independent and joint effects of family history and lifestyle on colorectal cancer risk: Implications for prevention. Cancer Epidemiol. Biomarkers Prev. 1999;8:45–51. PubMed
McGarr S.E., Ridlon J.M., Hylemon P.B. Diet, anaerobic bacterial metabolism, and colon cancer: A review of the literature. J. Clin. Gastroenterol. 2005;39:98–109. PubMed
Hope M.E., Hold G.L., Kain R., El-Omar E.M. Sporadic colorectal cancer—Role of the commensal microbiota. FEMS Microbiol. Lett. 2005;244 doi: 10.1016/j.femsle.2005.01.029. PubMed DOI
Horie H., Kanazawa K., Kobayashi E., Okada M., Fujimura A., Yamagiwa S., Abo T. Effects of intestinal bacteria on the development of colonic neoplasm II. Changes in the immunological environment. Eur. J. Cancer Prev. 1999;8:533–537. doi: 10.1097/00008469-199912000-00009. PubMed DOI
Debesa-Tur G., Pérez-Brocal V., Ruiz-Ruiz S., Castillejo A., Latorre A., Soto J.L., Moya A. Metagenomic analysis of formalin-fixed paraffin-embedded tumor and normal mucosa reveals differences in the microbiome of colorectal cancer patients. Sci. Rep. 2021;11:391. doi: 10.1038/s41598-020-79874-y. PubMed DOI PMC
Tlaskalová-Hogenová H., Stěpánková R., Kozáková H., Hudcovic T., Vannucci L., Tučková L., Rossmann P., Hrnčíř T., Kverka M., Zákostelská Z., et al. The role of gut microbiota (commensal bacteria) and the mucosal barrier in the pathogenesis of inflammatory and autoimmune diseases and cancer: Contribution of germ-free and gnotobiotic animal models of human diseases. Cell Mol. Immunol. 2011;8:110–120. doi: 10.1038/cmi.2010.67. PubMed DOI PMC
Christine F. Microbiota-metabolome interaction in depression: Could it be the new 42? Eur. Neuropsychopharmacol. 2021;43:22–24. doi: 10.1016/j.euroneuro.2020.12.007. PubMed DOI
Vannucci L., Stepankova R., Kozakova H., Fiserova A., Rossmann P., Tlaskalova-Hogenova H. Colorectal carcinogenesis in germ-free and conventionally reared rats: Different intestinal environments affect the systemic immunity. Int. J. Oncol. 2008;32:609–617. doi: 10.3892/ijo.32.3.609. PubMed DOI
Pollard M., Teah B.A. Spontaneous tumors in germ-free rats. J. Natl. Cancer Inst. 1963;31:457–465. PubMed
Pollard M., Kajima M. Lesions in aged germ-free Wistar rats. Am. J. Pathol. 1970;61:25–36. PubMed PMC
Prejean J.D., Peckham J.C., Casey A.E., Griswold D.P., Weisburger E.K., Weisburger J.H. Spontaneous tumors in Sprague-Dawley rats and Swiss mice. Cancer Res. 1973;33:2768–2773. PubMed
Pollard M. Spontaneous prostate adenocarcinomas in aged germ-free Wistar rats. J. Natl. Cancer Inst. 1973;51:1235–1241. doi: 10.1093/jnci/51.4.1235. PubMed DOI
Pilgrim H.I., Labrecque A.D. The incidence of mammary tumors in germ-free C3H mice. Cancer Res. 1967;27:584–586. PubMed
Smith C.S., Pilgrim H.I. Spontaneous neoplasms in germ-free BALB/cPi mice. Proc. Soc. Exp. Biol. Med. 1971;138:542–544. doi: 10.3181/00379727-138-35935. PubMed DOI
Pollard M., Kajima M., Teah B.A. Spontaneous leukemia in germ-free AK mice. Proc. Soc. Exp. Biol. Med. 1965;120:72–75. doi: 10.3181/00379727-120-30446. PubMed DOI
Mizutani T., Yamamoto T., Ozaki A., Oowada T., Mitsuoka T. Spontaneous polyposis in the small intestine of germ-free and conventionalized BALB/c mice. Cancer Lett. 1984;25:19–23. doi: 10.1016/S0304-3835(84)80021-X. PubMed DOI
Mizutani T., Mitsuoka T. Effect of intestinal bacteria on incidence of liver tumors in gnotobiotic C3H/He male mice. J. Natl. Cancer Inst. 1979;63:1365–1370. PubMed
Pollard M., Kajima M. Leukemia induced by 7,12-dimethylbenz[alpha]-anthracene in germ-free rats. J. Natl. Cancer Inst. 1967;39:135–141. PubMed
Pollard M. Chemical induction of mammary cancer in germ-free rats. Nature. 1963;200:1289–1291. doi: 10.1038/2001289a0. PubMed DOI
Pollard M., Matsuzawa T., Salomon J.C. Induction of neoplasms in germ-free rodents by 3-methylcholanthrene. J. Natl. Cancer Inst. 1964;33:93–99. PubMed
Walburg H.E., Jr., Cosgrove G.E. Methylcholanthrene-induced neoplasms in germ-free RFM mice. Int. J. Cancer. 1971;8:338–343. doi: 10.1002/ijc.2910080220. PubMed DOI
Pollard M., Salomon J.C. Oncogenic effect of methyl-cholanthrene in new-born germ-free mice. Proc. Soc. Exp. Biol. Med. 1963;112:256–259. doi: 10.3181/00379727-112-28009. PubMed DOI
Burstein N.A., McIntire K.R., Allison A.C. Pulmonary tumors in germ-free mice: Induction with urethan. J. Natl. Cancer Inst. 1970;44:211–214. PubMed
McIntire K.R., Princler G.L. Prolonged adjuvant stimulation in germ-free BALB-c mice: Development of plasma cell neoplasia. Immunology. 1969;17:481–487. PubMed PMC
Weisburger J.H., Reddy B.S., Narisawa T., Wynder E.L. Germ-free status and colon tumor induction by N-methyl-N′-nitro-N-nitrosoguanidine. Proc. Soc. Exp. Biol. Med. 1975;148:1119–1121. doi: 10.3181/00379727-148-38700. PubMed DOI
Sumi Y., Miyakawa M. Gastrointestinal carcinogenesis in germ-free rats given N-methyl-N′-nitro-N-nitrosoguanidine in drinking water. Cancer Res. 1979;39 Pt 1:2733–2736. PubMed
Evans I.A., Mason J. Carcinogenic activity of bracken. Nature. 1965;208:913–914. doi: 10.1038/208913a0. PubMed DOI
Pamukcu A.M., Price J.M. Induction of intestinal and urinary bladder cancer in rats by feeding bracken fern (Pteris aquilina) J. Natl. Cancer Inst. 1969;43:275–281. PubMed
Price J.M., Pamukcu A.M. The induction of neoplasms of the urinary bladder of the cow and the small intestine of the rat by feeding bracken fern (Pteris aquilina) Cancer Res. 1968;28:2247–2251. PubMed
Sumi Y., Hirono I., Hosaka S., Ueno I., Miyakawa M. Tumor induction in germ-free rats fed bracken (Pteridium aquilinum) Cancer Res. 1981;41:250–252. PubMed
Coleman O.I., Nunes T. Role of the Microbiota in Colorectal Cancer: Updates on Microbial Associations and Therapeutic Implications. Bioresour. Open Access. 2016;5:279–288. doi: 10.1089/biores.2016.0028. PubMed DOI PMC
Hill M.J., Drasar B.S., Hawksworth G., Aries V., Crowther J.S., Williams R.E. Bacteria and aetiology of cancer of large bowel. Lancet. 1971;1:95–100. doi: 10.1016/S0140-6736(71)90837-3. PubMed DOI
Wynder E.L., Reddy B.S. Editorial: Dietary fat and colon cancer. J. Natl. Cancer Inst. 1975;54:7–10. doi: 10.1093/jnci/54.1.7. PubMed DOI
Yang J., McDowell A., Kim E.K., Seo H., Lee W.H., CMKym S.M.M., Lee D.H., Park Y.S., Jee Y.K., Kim Y.K. Development of a colorectal cancer diagnostic model and dietary risk assessment through gut microbiome analysis. Exp. Mol. Med. 2019;51 doi: 10.1038/s12276-019-0313-4. PubMed DOI PMC
Chomchai C., Bhadrachari N., Nigro N.D. The effect of bile on the induction of experimental intestinal tumors in rats. Dis. Colon Rectum. 1974;17:310–312. doi: 10.1007/BF02586971. PubMed DOI
Reddy B.S., Weisburger J.H., Wynder E.L. Effects of dietary fat level and dimethylhydrazine on fecal acid and neutral sterol excretion and colon carcinogenesis in rats. J. Natl. Cancer Inst. 1974;52:507–511. doi: 10.1093/jnci/52.2.507. PubMed DOI
Reddy B.S., Watanabe K. Effect of cholesterol metabolites and promoting effect of lithocholic acid in colon carcinogenesis in germ-free and conventional F344 rats. Cancer Res. 1979;39:1521–1524. PubMed
Vannucci L., Fiserova A., Horvath O., Rossmann P., Mosca F., Pospisil M. Cancer evolution and immunity in a rat colorectal carcinogenesis model. Int. J. Oncol. 2004;25:973–981. PubMed
Cheah P.Y. Hypotheses for the etiology of colorectal cancer—An overview. Nutr.Cancer. 1990;14:5–13. doi: 10.1080/01635589009514073. PubMed DOI
Crowther J.S., Drasar B.S., Hill M.J.J., Maclennan R., Magnin D., Peach S., Teoh-chan C.H. Faecal steroids and bacteria and large bowel cancer in Hong Kong by socio-economic groups. Br. J. Cancer. 1976;34:191–198. doi: 10.1038/bjc.1976.142. PubMed DOI PMC
Domellof L., Darby L., Hanson D., Mathews L., Simi B., Reddy B.S. Fecal sterols and bacterial beta-glucuronidase activity: A preliminary metabolic epidemiology study of healthy volunteers from Umea, Sweden, and metropolitan New York. Nutr. Cancer. 1982;4:120–127. doi: 10.1080/01635588209513747. PubMed DOI
Hill M.J.J. Bile flow and colon cancer. Mutat. Res. 1990;238:313–320. doi: 10.1016/0165-1110(90)90023-5. PubMed DOI
Bayerdorffer E., Mannes G.A., Ochsenkuhn T., Dirschedl P., Paumgartner G. Variation of serum bile acids in ptients with colorectal adenomas during a one-year follow-up. Digestion. 1994;55:121–129. doi: 10.1159/000201136. PubMed DOI
Bayerdorffer E., Mannes T., Ochsenkuhn T., Dirschedl P., Wiebecke B., Paumgartner G. Unconjugated secondary bile acids in the serum of patients with colorectal adenomas. Gut. 1995;36:268–273. doi: 10.1136/gut.36.2.268. PubMed DOI PMC
Narisawa T., Magadia N.E., Weisburger J.H., Wynder E.L. Promoting effect of bile acids on colon carcinogenesis after intrarectal instillation of N-methyl-N′-nitro-N-nitrosoguanidine in rats. J. Natl. Cancer Inst. 1974;53:1093–1097. doi: 10.1093/jnci/53.4.1093. PubMed DOI
Song X., Sun X., Oh S.F., Wu M., Zhang Y., Zheng W., Geva-Zatorsky N., Jupp R., Mathis D., Benoist C., et al. Microbial bile acid metabolites modulate gut RORγ+ regulatory T cell homeostasis. Nature. 2020;577:410–415. doi: 10.1038/s41586-019-1865-0. PubMed DOI PMC
Wattenberg L.W. Studies of polycyclic hydrocarbon hydroxylases of the intestine possibly related to cancer. Effect of diet on benzpyrene hydroxylase activity. Cancer. 1971;28:99–102. doi: 10.1002/1097-0142(197107)28:1<99::AID-CNCR2820280118>3.0.CO;2-M. PubMed DOI
Reddy B.S., Wostmann B.S. Intestinal disaccharidase activities in the growing germ-free and conventional rats. Arch. Biochem. Biophys. 1966;113:609–616. doi: 10.1016/0003-9861(66)90238-4. PubMed DOI
Reddy B.S. Studies on the mechanism of calcium and magnesium absorption in germ-free rats. Arch. Biochem. Biophys. 1972;149:15–21. doi: 10.1016/0003-9861(72)90294-9. PubMed DOI
Reddy B.S., Narisawa T., Weisburger J.H. Colon carcinogenesis in germ-free rats with intrarectal 1,2-dimethylhydrazine and subcutaneous azoxymethane. Cancer Res. 1976;36:2874–2876. PubMed
Venkatachalam K., Vinayagam R., Anand M.A.V., Isa N.M., Ponnaiyan R. Biochemical and molecular aspects of 1,2-dimethylhydrazine (DMH)-induced colon carcinogenesis: A review. Toxicol. Res. 2020;9:2–18. doi: 10.1093/toxres/tfaa004. PubMed DOI PMC
Okayasu I., Hatakeyama S., Yamada M., Ohkusa T., Inagaki Y., Nakaya R. A novel method in the induction of reliable experimental acute and chronic ulcerative colitis in mice. Gastroenterology. 1990;98:694–702. doi: 10.1016/0016-5085(90)90290-H. PubMed DOI
Pei L.Y., Ke Y.S., Zhao H.H., Wang L., Jia C., Liu W.Z., Fu Q.H., Shi M.N., Cui J., Li S.C.C. Role of colonic microbiota in the pathogenesis of ulcerative colitis. BMC Gastroenterol. 2019;19:10. doi: 10.1186/s12876-019-0930-3. PubMed DOI PMC
Onderdonk A.B., Franklin M.L., Cisneros R.L. Production of experimental ulcerative colitis in gnotobiotic guinea pigs with simplified microflora. Infect. Immun. 1981;32:225–231. doi: 10.1128/IAI.32.1.225-231.1981. PubMed DOI PMC
Marcus A.J., Marcus S.N., Marcus R., Watt J. Rapid production of ulcerative disease of the colon in newly-weaned guinea-pigs by degraded carrageenan. J. Pharm. Pharmacol. 1989;41:423–426. doi: 10.1111/j.2042-7158.1989.tb06493.x. PubMed DOI
Kitajima S., Morimoto M., Sagara E., Shimizu C., Ikeda Y. Dextran sodium sulfate-induced colitis in germ-free IQI/Jic mice. Exp. Anim. 2001;50:387–395. doi: 10.1538/expanim.50.387. PubMed DOI
Kitajima S., Morimoto M., Sagara E. A model for dextran sodium sulfate (DSS)-induced mouse colitis: Bacterial degradation of DSS does not occur after incubation with mouse cecal contents. Exp. Anim. 2002;51:203–206. doi: 10.1538/expanim.51.203. PubMed DOI
Lee J.G., Lee Y.R., Lee A.R., Park C.H., Han D.S., Eun C.S. Role of the global gut microbial community in the development of colitis-associated cancer in a murine model. Biomed. Pharmacother. 2021;135:111206. doi: 10.1016/j.biopha.2020.111206. PubMed DOI
Hudcovic T., Stĕpánková R., Cebra J., Tlaskalová-Hogenová H. The role of microflora in the development of intestinal inflammation: Acute and chronic colitis induced by dextran sulfate in germ-free and conventionally reared immunocompetent and immunodeficient mice. Folia Microbiol. 2001;46:565–572. doi: 10.1007/BF02818004. PubMed DOI
Hudcovic T., Kolinska J., Klepetar J., RRezanka T.S., Srutkova D., Schwarzer M., Erban V., Du Z., Wells J.M., Hrncir T., et al. Protective effect of Clostridium tyrobutyricum in acute dextran sodium sulphate-induced colitis: Differential regulation of tumour necrosis factor-α and interleukin-18 in BALB/c and severe combined immunodeficiency mice. Clin. Exp. Immunol. 2012;167:356–365. doi: 10.1111/j.1365-2249.2011.04498.x. PubMed DOI PMC
Hudcovic T., Stepánková R., Kozákova H., Hrncír T., Tlaskalová-Hogenová H. Effects of monocolonization with Escherichia coli strains O6K13 and Nissle 1917 on the development of experimentally induced acute and chronic intestinal inflammation in germ-free immunocompetent and immunodeficient mice. Folia Microbiol. 2007;52:618–626. doi: 10.1007/BF02932191. PubMed DOI
Neufert C., Becker C., Neurath M.F. An inducible mouse model of colon carcinogenesis for the analysis of sporadic and inflammation-driven tumor progression. Nat. Protoc. 2007;2:1998–2004. doi: 10.1038/nprot.2007.279. PubMed DOI
Neufert C., Heichler C., Brabletz T., Scheibe K., Boonsanay V., Greten F.R., Neurath M.F. Inducible mouse models of colon cancer for the analysis of sporadic and inflammation-driven tumor progression and lymph node metastasis. Nat. Protoc. 2021;16:61–85. doi: 10.1038/s41596-020-00412-1. PubMed DOI
Zhan Y., Chen P.J., Sadler W.D., Wang F., Poe S., Núñez G., Eaton K.A., Chen G.Y. Gut microbiota protects against gastrointestinal tumorigenesis caused by epithelial injury. Cancer Res. 2013;73:7199–7210. doi: 10.1158/0008-5472.CAN-13-0827. PubMed DOI PMC
Bylund-Fellenius A.C., Landström E., Axelsson L.G., Midtvedt T. Experimental Colitis Induced by Dextran Sulphate in Normal and Germ-free Mice. Microb. Ecol. Health Dis. 1994;7:207–215.
Chiu C.C., Ching Y.H., Wang Y.C., Liu J.Y., Li Y.P., Huang Y.T., Chuang H.L. Monocolonization of germ-free mice with Bacteroides fragilis protects against dextran sulfate sodium-induced acute colitis. Biomed. Res. Int. 2014;2014:675786. doi: 10.1155/2014/675786. PubMed DOI PMC
Uronis J.M., Mühlbauer M., Herfarth H.H., Rubinas T.C., Jones G.S., Jobin C. Modulation of the intestinal microbiota alters colitis-associated colorectal cancer susceptibility. PLoS ONE. 2009;4:e6026. doi: 10.1371/journal.pone.0006026. PubMed DOI PMC
Ragonnaud E., Biragyn A. Gut microbiota as the key controllers of “healthy” aging of elderly people. Immun. Ageing. 2021;18:2. doi: 10.1186/s12979-020-00213-w. PubMed DOI PMC
Baffy G. Gut Microbiota and Cancer of the Host: Colliding Interests. Adv. Exp. Med. Biol. 2020;1219:93–107. PubMed
Hanahan D., Weinberg R.A. Hallmarks of cancer: The next generation. Cell. 2011;144:646–674. doi: 10.1016/j.cell.2011.02.013. PubMed DOI
Marelli G., Sica A., Vannucci L., Allavena P. Inflammation as target in cancer therapy. Curr. Opin. Pharmacol. 2017;35:57–65. doi: 10.1016/j.coph.2017.05.007. PubMed DOI
Hrncir T., Stepankova R., Kozakova H., Hudcovic T., Tlaskalova-Hogenova H. Gut microbiota and lipopolysaccharide content of the diet influence development of regulatory T cells: Studies in germ-free mice. BMC Immunol. 2008;9:65. doi: 10.1186/1471-2172-9-65. PubMed DOI PMC