Contribution of Infectious Agents to the Development of Celiac Disease
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
TH03010019
Technology Agency of the Czech Republic
Strategy AV21-19
The Czech Academy of Sciences
PubMed
33800833
PubMed Central
PMC8001938
DOI
10.3390/microorganisms9030547
PII: microorganisms9030547
Knihovny.cz E-zdroje
- Klíčová slova
- celiac disease, gluten-free diet, immune response, infections, microbiota, parasites,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
The ingestion of wheat gliadin (alcohol-soluble proteins, an integral part of wheat gluten) and related proteins induce, in genetically predisposed individuals, celiac disease (CD), which is characterized by immune-mediated impairment of the small intestinal mucosa. The lifelong omission of gluten and related grain proteins, i.e., a gluten-free diet (GFD), is at present the only therapy for CD. Although a GFD usually reduces CD symptoms, it does not entirely restore the small intestinal mucosa to a fully healthy state. Recently, the participation of microbial components in pathogenetic mechanisms of celiac disease was suggested. The present review provides information on infectious diseases associated with CD and the putative role of infections in CD development. Moreover, the involvement of the microbiota as a factor contributing to pathological changes in the intestine is discussed. Attention is paid to the mechanisms by which microbes and their components affect mucosal immunity, including tolerance to food antigens. Modulation of microbiota composition and function and the potential beneficial effects of probiotics in celiac disease are discussed.
Zobrazit více v PubMed
Megiorni F., Pizzuti A. HLA-DQA1 and HLA-DQB1 in celiac disease predisposition: Practical implications of the HLA molecular typing. J. Biomed. Sci. 2012;19:88. doi: 10.1186/1423-0127-19-88. PubMed DOI PMC
Kim C.Y., Quarsten H., Bergseng E., Khosla C., Sollid L.M. Structural basis for HLA-DQ2-mediated presentation of gluten epitopes in celiac disease. Proc. Natl. Acad. Sci. USA. 2004;101:4175–4179. doi: 10.1073/pnas.0306885101. PubMed DOI PMC
Husby S., Koletzko S., Korponay-Szabó I.R., Kurppa K., Mearin M.L., Ribes-Koninckx C., Shamir R., Troncone R., Auricchio R., Castillejo G., et al. European Society Pediatric Gastroenterology, Hepatology and Nutrition guidelines for diagnosing coeliac disease 2020. J. Paediatr. Gastroenterol. Nutr. 2020;70:141–156. doi: 10.1097/MPG.0000000000002497. PubMed DOI
Hoffmanová I., Sánchez D., Szczepanková A., Tlaskalová-Hogenová H. The pros and cons of using oat in a gluten-free diet for celiac patients. Nutrients. 2019;11:2345. doi: 10.3390/nu11102345. PubMed DOI PMC
Harris K.M., Fasano A., Mann D.L. Monocytes differentiated with IL-15 support Th17 and Th1 responses to wheat gliadin: Implications for celiac disease. Clin. Immunol. 2010;135:430–439. doi: 10.1016/j.clim.2010.01.003. PubMed DOI PMC
Gujral N., Freeman H.J., Thomson A.B.R. Celiac disease: Prevalence, diagnosis, pathogenesis and treatment. World J. Gastroenterol. 2012;18:6036–6059. doi: 10.3748/wjg.v18.i42.6036. PubMed DOI PMC
Jabri B., Kasarda D.D., Green P.H.R. Innate and adaptive immunity: The yin and yang of celiac disease. Immunol. Rev. 2005;206:219–231. doi: 10.1111/j.0105-2896.2005.00294.x. PubMed DOI
Dingeo C., Difonzo G., Paradiso V.M., Rizzello C.G., Pontonio E. Teff type-I sourdough to produce gluten-free muffin. Microorganisms. 2020;8:1149. doi: 10.3390/microorganisms8081149. PubMed DOI PMC
Caio G., Volta U., Sapone A., Leffler D.A., De Giorgio R., Catassi C., Fasano A. Celiac disease: A comprehensive current review. BMC Med. 2019;17:142. doi: 10.1186/s12916-019-1380-z. PubMed DOI PMC
Hadjivassiliou M., Grünewald R.A., Chattopadhyay A.K., Davies-Jones G.A., Gibson A., Jarratt J.A., Kandler R.H., Lobo A., Powell T., Smith C.M. Clinical, radiological, neurophysiological, and neuropathological characteristics of gluten ataxia. Lancet. 1998;352:1582–1585. doi: 10.1016/S0140-6736(98)05342-2. PubMed DOI
Reunala T. Dermatitis herpetiformis: Coeliac disease of the skin. Ann. Med. 1998;30:416–418. doi: 10.3109/07853899809002482. PubMed DOI
Obrenovich M.E.M. Leaky gut, leaky brain? Microorganisms. 2018;6:107. doi: 10.3390/microorganisms6040107. PubMed DOI PMC
Edwards C., Williams A., Asquith P. Bronchopulmonary disease in coeliac patients. J. Clin. Pathol. 1985;38:361–367. doi: 10.1136/jcp.38.4.361. PubMed DOI PMC
Sarath Balaji B., Kalpana S., Elilarasi S., Sundari S. Respiratory symptoms as atypical manifestation of celiac disease. Pediatr. Oncall J. 2016;13:46–47.
Hoffmanová I., Sánchez D., Tučková L., Tlaskalová-Hogenová H. Celiac disease and liver disorders: From putative pathogenesis to clinical implications. Nutrients. 2018;10:892. doi: 10.3390/nu10070892. PubMed DOI PMC
Stene L.C., Honeyman M.C., Hoffenberg E.J., Haas J.E., Sokol R.J., Emery L., Taki I., Norris J.M., Erlich H.A., Eisenbarth G.S., et al. Rotavirus infection frequency and risk of celiac disease autoimmunity in early childhood: A longitudinal study. Am. J. Gastroenterol. 2006;101:2333–2340. doi: 10.1111/j.1572-0241.2006.00741.x. PubMed DOI
Myléus A., Stenlung H., Hernell O., Gothefors L., Hammarström M.L., Persson L.Å., Ivarsson A. Early vaccinations are not risk factors for celiac disease. Pediatrics. 2012;130:e63–e70. doi: 10.1542/peds.2011-2806. PubMed DOI
Fasano A., Shea-Donohue T. Mechanisms of disease: The role of intestinal barrier function in the pathogenesis of gastrointestinal autoimmune diseases. Nat. Clin. Pract. Gastroenterol. Hepatol. 2005;2:416–422. doi: 10.1038/ncpgasthep0259. PubMed DOI
Plot L., Amital H., Barzilai O., Ram M., Bizzaro N., Shoenfeld Y. Infections may have a protective role in the etiopathogenesis of celiac disease. Ann. N. Y. Acad. Sci. 2009;1173:670–674. doi: 10.1111/j.1749-6632.2009.04814.x. PubMed DOI
Canova C., Zabeo V., Pitter G., Romor P., Baldovin T., Zanotti R., Simonato L. Association of maternal education, early infections, and antibiotic use with celiac disease: A population-based birth cohort study in northeastern Italy. Am. J. Epidemiol. 2014;180:76–85. doi: 10.1093/aje/kwu101. PubMed DOI
Beyerlein A., Donnachie E., Ziegler A.G. Infections in early life and development of celiac disease. Am. J. Epidemiol. 2017;186:1277–1280. doi: 10.1093/aje/kwx190. PubMed DOI
Kemppainen K.M., Vehik K., Lynch K.F., Larsson H.E., Canepa R.J., Simell V., Koletzko S., Liu E., Simell O.G., Toppari J., et al. Environmental Dermatitis of Diabetes in Young (TEDDY) Study Group. Association between early-life antibiotic use and the risk of islet or celiac disease autoimmunity. JAMA Pediatr. 2017;171:1217–1225. doi: 10.1001/jamapediatrics.2017.2905. PubMed DOI PMC
Bascuñán K.A., Araya M., Roncoroni M., Doneda L., Elli L. Dietary gluten as a conditioning factor of the gut microbiota in celiac disease. Adv. Nutr. 2020;11:160–174. doi: 10.1093/advances/nmz080. PubMed DOI PMC
Caminero A., McCarville J.L., Galipeau H.J., Deraison C., Bernier S.P., Constante M., Rolland C., Meisel M., Murray J.A., Yu X.B., et al. Duodenal bacterial proteolytic activity determines sensitivity to dietary antigen through protease-activated receptor-2. Nat. Commun. 2019;10:1198. doi: 10.1038/s41467-019-09037-9. PubMed DOI PMC
Caminero A., Verdu E.F. Celiac disease: Should we care about microbes? Am. J. Physiol. Gastrointest. Liver Physiol. 2019;317:G161–G170. doi: 10.1152/ajpgi.00099.2019. PubMed DOI PMC
Bonder M.J., Tigchelaar E.F., Cai X., Trynka G., Cenit M.C., Hrdlickova B., Zhong H., Vatanen T., Gevers D., Wijmenga C., et al. The influence of short-term gluten-free diet on the human gut microbiome. Genome Med. 2016;8:45. doi: 10.1186/s13073-016-0295-y. PubMed DOI PMC
Catassi C., Kryszak D., Bhatti B., Sturgeon C., Helzlsouer K., Clipp S.L., Gelfond D., Puppa E., Sferruzza A., Fasano A. Natural history of celiac disease autoimmunity in a USA cohort followed since 1974. Ann. Med. 2010;42:530–538. doi: 10.3109/07853890.2010.514285. PubMed DOI
Serena G., Lima R., Fasano A. Genetic and environmental contributors for for celiac disease. Curr. Allergy Asthma Rep. 2019;19:40. doi: 10.1007/s11882-019-0871-5. PubMed DOI
Greco L., Romino R., Coto I., Di Cosmo N., Percopo S., Maglio M., Paparo F., Gasperi V., Limongelli M.G., Cotichini R., et al. The first large population based twin study of coeliac disease. Gut. 2002;50:624–628. doi: 10.1136/gut.50.5.624. PubMed DOI PMC
Valitutti F., Cucchiara S., Fasano A. Celiac disease and the microbiome. Nutrients. 2019;11:2403. doi: 10.3390/nu11102403. PubMed DOI PMC
Cenit M.C., Olivares M., Codoñer-Franch P., Sanz Y. Intestinal microbiota and celiac disease: Cause, consequence or co-evolution? Nutrients. 2015;7:6900–6923. doi: 10.3390/nu7085314. PubMed DOI PMC
Verdu E.F., Galipeau H.J., Jabri B. Novel players in coeliac disease pathogenesis: Role of the gut microbiota. Nat. Rev. Gastroenterol. Hepatol. 2015;12:497–506. doi: 10.1038/nrgastro.2015.90. PubMed DOI PMC
Cukrowska B., Sowińska A., Bierła J.B., Czarnowska E., Rybak A., Grzybowska-Chlebowczyk U. Intestinal epithelium, intraepithelial lymphocytes and the gut microbiota—Key players in the pathogenesis of celiac disease. World J. Gastroenterol. 2017;23:7505–7518. doi: 10.3748/wjg.v23.i42.7505. PubMed DOI PMC
Marasco G., Di Biase A.R., Schiumerini R., Eusebi L.H., Iughetti L., Ravaioli F., Scaioli E., Colecchia A., Festi D. Gut microbiota and celiac disease. Dig. Dis. Sci. 2016;61:1461–1472. doi: 10.1007/s10620-015-4020-2. PubMed DOI
Di Biase A.R., Marasco G., Ravaioli F., Dajti E., Colecchia L., Righi B., D’Amico V., Festi D., Iughetti L., Colecchia A. Gut microbiota signatures and clinical manifestations in celiac disease children at onset: A pilot study. J. Gastroenterol. Hepatol. 2020 doi: 10.1111/jgh.15183. Online ahead of print. PubMed DOI
Zafeiropoulou K., Nichols B., Mackinder M., Biskou O., Rizou E., Karanikolou A., Clark C., Buchanan E., Cardigan T., Duncan H., et al. Alterations in intestinal microbiota of children with celiac disease at the time of diagnosis and on a gluten-free diet. Gastroenterology. 2020;159:2039–2051. doi: 10.1053/j.gastro.2020.08.007. PubMed DOI PMC
Verdu E.F., Caminero A. How infection can incite sensitivity to food. Science. 2017;356:29–30. doi: 10.1126/science.aan1500. PubMed DOI
Mårild K., Fredlund H., Ludvigsson J.F. Increased risk of hospital admission for influenza in patients with celiac disease: A nationwide cohort study in Sweden. Am. J. Gastroenterol. 2010;105:2465–2473. doi: 10.1038/ajg.2010.352. PubMed DOI
Röckert Tjernberg A., Ludvigsson J.F. Children with celiac disease are more likely to have attended hospital for prior respiratory syncytial virus infection. Dig. Dis. Sci. 2014;59:1502–1508. doi: 10.1007/s10620-014-3046-1. PubMed DOI
Simons M., Scott-Sheldon L.A.J., Risech-Neyman Y., Moss S.F., Ludvigsson J.F., Green P.H.R. Celiac disease and increased risk of pneumococcal infection: A systematic review and meta-analysis. Am. J. Med. 2018;131:83–89. doi: 10.1016/j.amjmed.2017.07.021. PubMed DOI
Röckert Tjernberg A., Bonnedahl J., Inghammar M., Egesten A., Kahlmeter G., Nauclér P., Henriques-Normark B., Ludvigsson J.F. Coeliac disease and invasive pneumococcal disease: A population-based cohort study. Epidemiol. Infect. 2017;145:1203–1209. doi: 10.1017/S0950268816003204. PubMed DOI PMC
Thomas H.J., Wotton C.J., Yeates D., Ahmad T., Jewell D.P., Goldacre M.J. Pneumococcal infection in patients with coeliac disease. Eur. J. Gastroenterol. Hepatol. 2008;20:624–628. doi: 10.1097/MEG.0b013e3282f45764. PubMed DOI
Ludvigsson J.F., Olén O., Bell M., Ekbom A., Montgomery S.M. Coeliac disease and risk of sepsis. Gut. 2008;57:1074–1080. doi: 10.1136/gut.2007.133868. PubMed DOI
Kemppainen K.M., Lynch K.F., Liu E., Lönnrot M., Simell V., Briese T., Koletzko S., Hagopian W., Rewers M., She J.X., et al. TEDDY Study Group. Factors that increase risk of celiac disease autoimmunity after a gastrointestinal infection in early life. Clin. Gastroenterol. Hepatol. 2017;15:694–702.e5. doi: 10.1016/j.cgh.2016.10.033. PubMed DOI PMC
Mårild K., Kahrs C.R., Tapia G., Stene L.C., Størdal K. Infections and risk of celiac disease in childhood: A prospective nationwide cohort study. Am. J. Gastroenterol. 2015;110:1475–1484. doi: 10.1038/ajg.2015.287. PubMed DOI
Ruggeri C., La Masa A.T., Rudi S., Squadrito G., Di Pasquale G., Maimone S., Caccamo G., Pellegrino S., Raimondo G., Magazzù G. Celiac disease and non-organ-specific autoantibodies in patients with chronic hepatitis C virus infection. Dig. Dis. Sci. 2008;53:2151–2155. doi: 10.1007/s10620-007-0146-1. PubMed DOI
Lebwohl B., Nobel Y.R., Green P.H.R., Blaser M.J., Ludvigsson J.F. Risk of Clostridium difficile infection in patients with celiac disease: A population-based study. Am. J. Gastroenterol. 2017;112:1878–1884. doi: 10.1038/ajg.2017.400. PubMed DOI PMC
Tumgor G., Agin M., Doran F., Cetiner S. Frequency of celiac disease in children with peptic ulcers. Dig. Dis. Sci. 2018;63:2681–2686. doi: 10.1007/s10620-018-5174-5. PubMed DOI
Bodkhe R., Shetty S.A., Dhotre D.P., Verma A.K., Bhatia K., Mishra A., Kaur G., Pande P., Bangarusamy D.K., Santosh B.P., et al. Comparison of small gut and whole gut microbiota of first-degree relatives with adult celiac disease patients and controls. Front. Microbiol. 2019;10:164. doi: 10.3389/fmicb.2019.00164. PubMed DOI PMC
Heavey E. Protecting adults with celiac disease from pulmonary infections. Nursing. 2019;49:68–69. doi: 10.1097/01.NURSE.0000585976.71350.2e. PubMed DOI
Ludvigsson J.F., Wahlstrom J., Grunewald J., Ekbom A., Montgomery S.M. Coeliac disease and risk of tuberculosis: A population based cohort study. Thorax. 2007;62:23–28. doi: 10.1136/thx.2006.059451. PubMed DOI PMC
Ludvigsson J.F., Bai J.C., Biagi F., Card T.R., Ciacci C., Ciclitira P.J., Green P.H.R., Hadjivassiliou M., Holdoway A., van Heel D.A., et al. Diagnosis and management of adult coeliac disease: Guidelines from the British Society of Gastroenterology. Gut. 2014;63:1210–1228. doi: 10.1136/gutjnl-2013-306578. PubMed DOI PMC
Canova C., Ludvigsson J., Baldo V., Barbiellini Amidei C., Zanier L., Zingone F. Risk of bacterial pneumonia and pneumococcal infection in youths with celiac disease—A population-based study. Dig. Liver Dis. 2019;51:1101–1105. doi: 10.1016/j.dld.2019.02.010. PubMed DOI
Casella G., Ingravalle F., Abbate G., Monti C., Bonetti F., Bassotti G., Mansueto P., Villanacci V., Carroccio A. Pneumococcal vaccination in celiac disease. Expert. Rev. Gastroeneterol. Hepatol. 2019;13:541–546. doi: 10.1080/17474124.2019.1607295. PubMed DOI
Ouseph M.M., Simons M., Treaba D.O., Yakirevich E., Green P.H., Bhagat G., Moss S.F., Mangray S. Fatal Streptococcus pneumoniae sepsis in a patient with celiac disease-associated hyposplenism. ACG Case Rep. J. 2016;3:e140. doi: 10.14309/crj.2016.113. PubMed DOI PMC
Röckert Tjernberg A., Woksepp H., Sandholm K., Johansson M., Dahle C., Ludvigsson J.F., Bonnedahl J., Nilsson P., Ekdahl K.N. Celiac disease and complement activation in response to Streptococcus pneumoniae. Eur. J. Pediatr. 2020;179:133–140. doi: 10.1007/s00431-019-03490-w. PubMed DOI PMC
Comba A., Atan D. Evaluation of nasal mucociliary clearance time in children with celiac disease. Int. J. Pediatr. Otorhinolaryngol. 2020;133:109936. doi: 10.1016/j.ijporl.2020.109936. PubMed DOI
Grainge M.J., West J., Card T.R., Holmes G.K. Causes of death in people with celiac disease spanning the pre- and post-serology era: A population-based cohort study from Derby, UK. Am. J. Gastroenterol. 2011;106:933–939. doi: 10.1038/ajg.2010.506. PubMed DOI
Peters U., Asking J., Gridley G., Ekbom A., Linet M. Causes of death in patients with celiac disease in a population-based Swedish cohort. Arch. Intern. Med. 2003;163:1566–1572. doi: 10.1001/archinte.163.13.1566. PubMed DOI
Kagnoff M.F., Austin R.K., Hubert J.J., Bernardin J.E., Kasarda D.D. Possible role for a human adenovirus in the pathogenesis of celiac disease. J. Exp. Med. 1984;160:1544–1557. doi: 10.1084/jem.160.5.1544. PubMed DOI PMC
Kagnoff M.F., Paterson Y.J., Kumar P.J., Kasarda D.D., Carbone F.R., Unsworth D.J., Austin R.K. Evidence for the role of human intestinal adenovirus in the pathogenesis of celiac disease. Gut. 1987;28:995–1001. doi: 10.1136/gut.28.8.995. PubMed DOI PMC
Lähdeaho M.L., Lehtinen M., Rissa H.R., Hyöty H., Reunala T., Mäki M. Antipeptide antibodies to adenovirus E1b protein indicate enhanced risk of celiac disease and dermatitis herpetiformis. Int. Arch. Allergy Immunol. 1993;101:272–276. doi: 10.1159/000236457. PubMed DOI
Jansen M.A.E., Beth S.A., van den Heuvel D., Kiefte-de Jong J.C., Raat H., Jaddoe V.W.V., van Zelm M.C., Moll H.A. Ethnic differences in coeliac disease autoimmunity in childhood: The Generation R Study. Arch. Dis. Child. 2017;102:529–534. doi: 10.1136/archdischild-2016-311343. PubMed DOI
Das P., Gahlot G.P.S., Mehta R., Makharia A., Verma A.K., Sreenivas V., Panda S.K., Ahuja V., Datta Gupta S., Makharia G.K. Patients with mild enteropathy have apoptotic injury of enterocytes similar to that in advanced enteropathy in celiac disease. Dig. Liver. Dis. 2016;48:1290–1295. doi: 10.1016/j.dld.2016.06.013. PubMed DOI
Silvester J.A., Leffler D.A. Is autoimmunity infectious? The effect of gastrointestinal viral infections and vaccination on risk of celiac disease autoimmunity. Clin. Gastroenterol. Hepatol. 2017;15:703–705. doi: 10.1016/j.cgh.2016.12.014. PubMed DOI
Hemming-Harlo M., Lähdeaho M.L., Mäki M., Vesikari T. Rotavirus vaccination does not increase type 1 diabetes and may decrease celiac disease in children and adolescents. Pediatr. Infect. Dis. J. 2019;38:539–541. doi: 10.1097/INF.0000000000002281. PubMed DOI
Gatti S., Lionetti E., Balanzoni L., Verma A.K., Galeazzi T., Gesuita R., Scattolo N., Cinquetti M., Fasano A., Catassi C. Increased prevalence of celiac disease in school-age children in Italy. Clin. Gastroenterol. Hepatol. 2020;18:596–603. doi: 10.1016/j.cgh.2019.06.013. PubMed DOI
Moser L.A., Carter M., Schultz-Cherry S. Astrovirus increases epithelial barrier permeability independently of viral replication. J. Virol. 2007;81:11937–11945. doi: 10.1128/JVI.00942-07. PubMed DOI PMC
Brown J.J., Short S.P., Stencel-Baerenwald J., Urbanek K., Pruijssers A.J., McAllister N., Ikizler M., Taylor G., Aravamudhan P., Khomandiak S., et al. Reovirus-induced apoptosis in the intestine limits establishment of enteric infection. J. Virol. 2018;92:e02062-17. doi: 10.1128/JVI.02062-17. PubMed DOI PMC
Bouziat R., Hinterleitner R., Brown J.J., Stencel-Baerenwald J.E., Ikizler M., Mayassi T., Meisel M., Kim S.M., Discepolo V., Pruijssers A.J., et al. Reovirus infection triggers inflammatory responses to dietary antigens and development of celiac disease. Science. 2017;356:44–50. doi: 10.1126/science.aah5298. PubMed DOI PMC
Oikarinen M., Tauriainen S., Oikarinen S., Honkanen T., Collin P., Rantala I., Mäki M., Kaukinen K., Hyöty H. Type 1 diabetes is associated with enterovirus infection in gut mucosa. Diabetes. 2012;61:687–691. doi: 10.2337/db11-1157. PubMed DOI PMC
Lindfors K., Lin J., Lee H.S., Hyöty H., Nykter M., Kurppa K., Liu E., Koletzko S., Rewers M., Hagopian W., et al. Metagenomics of the faecal virome indicate a cumulative effect of enterovirus and gluten amount on the risk of coeliac disease autoimmunity in genetically at risk children: The TEDDY study. Gut. 2020;69:1416–1422. doi: 10.1136/gutjnl-2019-319809. PubMed DOI PMC
Lerner A., Arleevskaya M., Schmiedl A., Matthias T. Microbes and viruses are bugging the gut in celiac disease. Are they friends or foes? Front. Microbiol. 2017;8:1392. doi: 10.3389/fmicb.2017.01392. PubMed DOI PMC
Rostami K., Rostami Nejad M. Vaccinations in celiac disease. J. Pediatr. Gastroenterol. Nutr. 2013;56:341–342. doi: 10.1097/MPG.0b013e31827af217. PubMed DOI
Hviid A., Svanström H., Scheller N.M., Grönlung O., Pasternak B., Arnheim-Dahlström L. Human papillomavirus vaccination of adult women and risk of autoimmune and neurological diseases. J. Intern. Med. 2018;283:154–165. doi: 10.1111/joim.12694. PubMed DOI
Kårhus L.L., Gunnes N., Størdal K., Bakken I.J., Tapia G., Stene L.C., Håberg S.E., Mårild K. Influenza and risk of later celiac disease: A cohort study of 2.6 million people. Scand. J. Gastroenterol. 2018;53:15–23. doi: 10.1080/00365521.2017.1362464. PubMed DOI
Jansen M.A.E., van den Heuvel D., van der Zwet K.V.M., Jaddoe V.W.V., Hofman A., Escher J.C., Fraaij P.L.A., Hooijkaas H., van Zelm M.C., Moll H.A. Herpesvirus infections and transglutaminase type 2 antibody positivity in childhood: The Generation R Study. J. Pediatr. Gastroenterol. Nutr. 2016;63:423–430. doi: 10.1097/MPG.0000000000001163. PubMed DOI
Nieuwenhuizen W.F., Pieters R.H.H., Knippels L.M.J., Jansen M.C.J.F., Koppelman S.J. Is Candida albicans a trigger in the onset of coeliac disease? Lancet. 2003;351:2152–2154. doi: 10.1016/S0140-6736(03)13695-1. PubMed DOI
Corouge M., Loridant S., Fradin C., Salleron J., Damiens S., Moragues M.D., Souplet V., Jouault T., Robert R., Dubucquoi S., et al. Humoral immunity links Candida albicans infection and celiac disease. PLoS ONE. 2015;10:e0121776. doi: 10.1371/journal.pone.0121776. PubMed DOI PMC
Rostami Nejad M., Ishaq S., Al Dulaimi D., Zali M.R., Rostami K. The role of infectious mediators and gut microbiome in the pathogenesis of celiac disease. Arch. Iran Med. 2015;18:244–249. PubMed
Hanevik K., Wik E., Langeland N., Hausken T. Transient elevation of anti-transglutaminase and anti-endomysium antibodies in Giardia infection. Scand. J. Gastroenterol. 2018;53:809–812. doi: 10.1080/00365521.2018.1481522. PubMed DOI
Tlaskalová-Hogenová H., Tucková L., Lodinová-Zádniková R., Stepánková R., Cukrowska B., Funda D.P., Striz I., Kozáková H., Trebichavský I., Sokol D., et al. Mucosal immunity: Its role in defense and allergy. Int. Arch. Allergy Immunol. 2002;128:77–89. doi: 10.1159/000059397. PubMed DOI
Tlaskalová-Hogenová H., Štěpánková R., Hudcovic T., Tučková L., Cukrowska B., Lodinová-Žádníková R., Kozáková H., Rossmann P., Bártová J., Sokol D., et al. Commensal bacterial (normal microflora), mucosal immunity and chronic inflammatory and autoimmune diseases. Immunol. Lett. 2004;93:97–108. doi: 10.1016/j.imlet.2004.02.005. PubMed DOI
Tlaskalová-Hogenová H., Stěpanková R., Kozáková H., Hudcovic T., Vannuci L., Tučková L., Rossmann P., Hrnčíř T., Kverka M., Zákostelská Z., et al. The role of gut microbiota (commensal bacteria) and the mucosal barrier in the pathogenesis of inflammatory and autoimmune diseases and cancer: Contribution of germ-free and gnotobiotic animal models of human diseases. Cell. Mol. Immunol. 2011;8:110–120. doi: 10.1038/cmi.2010.67. PubMed DOI PMC
Iaffaldano L., Granata I., Pagliuca C., Esposito M.V., Casaburi G., Salerno G., Colicchio R., Piccirillo M., Ciacci C., Del Vecchio Blanco G., et al. Oropharyngeal microbiome evaluation highlights Neisseria abundance in active celiac patients. Sci. Rep. 2018;8:11047. doi: 10.1038/s41598-018-29443-1. PubMed DOI PMC
Tian N., Faller L., Leffler D.A., Kelly C.P., Hansen J., Bosch J.A., Wei G., Paster B.J., Schuppan D., Helmerhorst E.J. Salivary gluten degradation and oral microbial profiles in healthy individuals and celiac disease patients. Appl. Environ. Microbiol. 2017;83:e03330. doi: 10.1128/AEM.03330-16. PubMed DOI PMC
Collado M.C., Donat E., Ribes-Koninckx C., Calabuig M., Sanz Y. Specific duodenal and faecal bacterial groups associated with paediatric coeliac disease. J. Clin. Pathol. 2009;62:264–269. doi: 10.1136/jcp.2008.061366. PubMed DOI
De Palma G., Cinová J., Štěpánková R., Tučková L., Sanz Y. Pivotal advance: Bifidobacteria and gram-negative bacteria differentially influence immune responses in the proinflammatory milieu of celiac disease. J. Leukoc. Biol. 2010;87:765–778. doi: 10.1189/jlb.0709471. PubMed DOI
Olivares M., Benítez-Páez A., De Palma G., Capilla A., Nova E., Castillejo G., Varea V., Marcos A., Garrote J.A., Polanco I., et al. Increased prevalence of pathogenic bacteria in the gut microbiota of infants at risk of developing celiac disease: The PROFICEL study. Gut Microbes. 2018;9:551–558. doi: 10.1080/19490976.2018.1451276. PubMed DOI PMC
Sánchez E., Ribes-Koninckx C., Calabuing M., Sanz Y. Intestinal Staphylococcus spp. and virulent features associated with celiac disease. J. Clin. Pathology. 2012;65:830–834. doi: 10.1136/jclinpath-2012-200759. PubMed DOI
Wacklin P., Kaukinen K., Tuovinen E., Collin P., Lindfors K., Partanen J., Mäki M., Mättö J. The duodenal microbiota composition of adult celiac disease patients is associated with the clinical manifestation of the disease. Inflamm. Bowel Dis. 2013;19:934–941. doi: 10.1097/MIB.0b013e31828029a9. PubMed DOI
D´Argenio V., Casaburi G., Precone V., Pagliuca C., Colicchio R., Sarnataro D., Discepolo V., Kim S.M., Russo I., Del Vecchio Blanco G., et al. Metagenomics reveals dysbiosis and a potentially pathogenic N. flavescens strain in duodenum of adult celiac patients. Am. J. Gastroenterol. 2016;111:879–890. doi: 10.1038/ajg.2016.95. PubMed DOI PMC
De Palma G., Nadal I., Medina M., Donat E., Ribes-Koninckx C., Calabuig M., Sanz Y. Intestinal dysbiosis and reduced immunoglobulin-coated bacteria associated with coeliac disease in children. BMC Microbiol. 2010;10:63. doi: 10.1186/1471-2180-10-63. PubMed DOI PMC
Sánchez E., Laparra J.M., Sanz Y. Discerning the role of Bacteroides fragilis in celiac disease pathogenesis. Appl. Environ. Microbiol. 2012;78:6507–6515. doi: 10.1128/AEM.00563-12. PubMed DOI PMC
Sacchetti L., Nardelli C. Gut microbiome investigation in celiac disease: From methods to its pathogenetic role. Clin. Chem. Lab. Med. 2020;58:340–349. doi: 10.1515/cclm-2019-0657. PubMed DOI
Schippa S., Iebba V., Barbato M., Di Nardo G., Totino V., Checchi M.P., Longhi C., Maiella G., Cucchiara S., Conte M.P. A distinctive “microbial signature” in celiac pediatric patients. BMC Microbiol. 2010;10:175. doi: 10.1186/1471-2180-10-175. PubMed DOI PMC
Ou G., Hedberg M., Hörstedt P., Baranov V., Forsberg G., Drobni M., Sandström O., Wai S.N., Johansson I., Hammarström M.L., et al. Proximal small intestinal microbiota and identification of rod-shaped bacteria associated with childhood celiac disease. Am. J. Gastroenterol. 2009;104:3058–3067. doi: 10.1038/ajg.2009.524. PubMed DOI
Fukuda S., Toh H., Hase K., Oshima K., Nakanishi Y., Yoshimura K., Tobe T., Clarke J.M., Topping D.L., Suzuki T., et al. Bifidobacteria can protect from enteropathogenic infection through production of acetate. Nature. 2011;469:543–547. doi: 10.1038/nature09646. PubMed DOI
Berger P., Kouzel I.U., Berger M., Haarmann N., Dobrindt U., Koudelka G.B., Mellmann A. Carriage of Shiga toxin phage profoundly affects Escherichia coli gene expression and carbon source utilization. BMC Genomics. 2019;20:504. doi: 10.1186/s12864-019-5892-x. PubMed DOI PMC
Martín R., Chamignon C., Mhedbi-Hajri N., Chain F., Derrien M., Escribano-Vázquez U., Garault P., Cotillard A., Pham H.P., Chervaux C., et al. The potential probiotic Lactobacillus rhamnosus CNCM I-3690 strain protects the intestinal barrier by stimulating both mucus production and cytoprotective response. Sci. Rep. 2019;9:5398. doi: 10.1038/s41598-019-41738-5. PubMed DOI PMC
van der Lugt B., van Beek A.A., Aalvink S., Meijer B., Sovran B., Vermeij W.P., Brandt R.M.C., de Vos W.W., Savelkoul H.F.J., Steegenga W.T., et al. Akkermansia muciniphila ameliorates the age-related decline in colonic mucus thickness and attenuates immune activation in accelerated aging Ercc1-/Δ7 mice. Immun. Ageing. 2019;16:6. doi: 10.1186/s12979-019-0145-z. PubMed DOI PMC
Shen X.M., Cui H.X., Xu X.R. Orally administered Lactobacillus casei exhibited several probiotic properties in artificially suckling rabbits. Asian-Australas J. Anim. Sci. 2019;15:1352–1359. doi: 10.5713/ajas.18.0973. PubMed DOI PMC
Sarshar M., Scribano D., Ambrosi C., Palamara A.T., Masotti A. Fecal microRNAs as innovative biomarkers of intestinal diseases and effective players in host-microbiome interactions. Cancers. 2020;12:2174. doi: 10.3390/cancers12082174. PubMed DOI PMC
Sellitto M., Bai G., Serena G., Fricke W.F., Sturgeon C., Gajer P., White J.R., Koenig S.S.K., Sakamoto J., Boothe D., et al. Proof of concept of microbiome-metabolome analysis and delayed gluten exposure on celiac disease autoimmunity in genetically at-risk infants. PLoS ONE. 2012;7:e33387. doi: 10.1371/journal.pone.0033387. PubMed DOI PMC
Bibbò S., Ianiro G., Giorgio V., Scaldaferri F., Masucci L., Gasbarrini A., Cammarota G. The role of diet on gut microbiota composition. Eur. Rev. Med. Pharmacol. Sci. 2016;20:4742–4749. PubMed
Woo V., Alenghat T. Host-microbiota interactions: Epigenomic regulation. Curr. Opin. Immunol. 2017;44:52–60. doi: 10.1016/j.coi.2016.12.001. PubMed DOI PMC
Sun M., Wu W., Liu Z., Cong Y. Microbiota metabolite short chain fatty acids, GPCR, and inflammatory bowel diseases. J. Gastroenterol. 2017;52:1–8. doi: 10.1007/s00535-016-1242-9. PubMed DOI PMC
Schilderink R., Verseijden C., de Jonge W.J. Dietary inhibitors of histone deacetylases in intestinal immunity and homeostasis. Front. Immunol. 2013;4:226. doi: 10.3389/fimmu.2013.00226. PubMed DOI PMC
Wardwell L.H., Huttenhower C., Garrett W.S. Current concepts of the intestinal microbiota and the pathogenesis of infection. Curr. Infect. Dis. Rep. 2011;13:28–34. doi: 10.1007/s11908-010-0147-7. PubMed DOI PMC
Fasano A. All disease begins in the (leaky) gut: Role of zonulin-mediated gut permeability in the pathogenesis of some chronic inflammatory diseases. F1000Res. 2020;9 doi: 10.12688/f1000research.20510.1. PubMed DOI PMC
Hoffmanová I., Sánchez D., Hábová V., Anděl M., Tučková L., Tlaskalová-Hogenová H. Serological markers of enterocyte damage and apoptosis in patients with celiac disease, autoimmune diabetes mellitus and diabetes mellitus type 2. Physiol. Res. 2015;64:537–546. doi: 10.33549/physiolres.932916. PubMed DOI
Sánchez D., Tučková L., Šebo P., Michalak M., Whelan A., Šterzl I., Jelínková L., Havrdová E., Imramovská M., Beneš Z., et al. Occurrence of IgA and IgG autoantibodies to calreticulin in coeliac disease and various autoimmune diseases. J. Autoimmun. 2000;15:441–449. doi: 10.1006/jaut.2000.0452. PubMed DOI
Stulík J., Hernychová L., Porkertová S., Pozler O., Tucková L., Sánchez D., Bures J. Identification of new celiac disease autoantigens using proteomic analysis. Proteomics. 2003;3:951–956. doi: 10.1002/pmic.200300370. PubMed DOI
Sánchez D., Tučková L., Mothes T., Kreisel W., Beneš Z., Tlaskalová-Hogenová H. Epitopes of calreticulin recognised by IgA autoantibodies from patients with hepatic and coeliac disease. J. Autoimmun. 2003;21:383–392. doi: 10.1016/S0896-8411(03)00137-9. PubMed DOI
Sánchez D., Palová-Jelínková L., Felsberg J., Simsová M., Pekáriková A., Pecharová B., Swoboda I., Mothes T., Mulder C.J.J., Benes Z., et al. Anti-calreticulin immunoglobulin A (IgA) antibodies in refractory coeliac disease. Clin. Exp. Immunol. 2008;153:351–359. doi: 10.1111/j.1365-2249.2008.03701.x. PubMed DOI PMC
Sánchez D., Champier G., Cuvillier A., Cogné M., Pekáriková A., Tlaskalová-Hogenová H., Hoffmanová I., Drastich P., Mothes T., Tučková L. Similarity of fine specificity of IgA anti-gliadin antibodies between patients with celiac disease and humanized α1KI mice. J. Agric. Food. Chem. 2011;59:3092–3100. doi: 10.1021/jf1044519. PubMed DOI
Huebener S., Tanaka C.K., Uhde M., Zone J.J., Vensel W.H., Kasarda D.D., Beams L., Briani C., Green P.H.R., Altenbach S.B., et al. Specific nongluten proteins of wheat are novel target antigens in celiac disease humoral response. J. Proteome. Res. 2015;14:503–511. doi: 10.1021/pr500809b. PubMed DOI PMC
Sánchez D., Štěpánová Honzová S., Hospodková M., Hoffmanová I., Hábová V., Halada P., Tlaskalová-Hogenová H., Tučková L. Occurrence of serum antibodies against wheat alpha-amylase inhibitor 0.19 in celiac disease. Physiol. Res. 2018;67:613–622. doi: 10.33549/physiolres.933876. PubMed DOI
Ménard S., Lebreton C., Schumann M., Matysiak-Budnik T., Dugave C., Bouhnik Y., Malamut G., Cellier C., Allez M., Crenn P., et al. Paracellular versus transcellular intestinal permeability to gliadin peptides in active celiac disease. Am. J. Pathol. 2012;18:608–615. doi: 10.1016/j.ajpath.2011.10.019. PubMed DOI
Glotfelty L.G., Zahs A., Hodges K., Shan K., Alto N.M., Hecht G.A. Enteropathogenic E. coli effectors EspG1/G2 disrupt microtubules, contribute to tight junction perturbation and inhibit restoration. Cell. Microbiol. 2014;16:1767–1783. doi: 10.1111/cmi.12323. PubMed DOI PMC
Dubreuil J.D. Enterotoxigenic Escherichia coli targeting intestinal epithelial tight junctions: An effective way to alter the barrier integrity. Microb. Pathog. 2017;113:129–134. doi: 10.1016/j.micpath.2017.10.037. PubMed DOI
Johal S.S., Solomon K., Dodson S., Borriello S.P., Mahida Y.R. Differential effects of varying concentrations of Clostridium difficile toxin A on epithelial barrier function and expression of cytokines. J. Infect. Dis. 2004;189:2110–2119. doi: 10.1086/386287. PubMed DOI
Ciccocioppo R., Di Sabatino A., Corazza G.R. The immune recognition of gluten in coeliac disease. Clin. Exp. Immunol. 2005;140:408–416. doi: 10.1111/j.1365-2249.2005.02783.x. PubMed DOI PMC
Peterson D.A., McNulty N.P., Guruge J.L., Gordon J.I. IgA response to symbiotic bacteria as a mediator gut homeostasis. Cell Host Microbe. 2007;2:328–339. doi: 10.1016/j.chom.2007.09.013. PubMed DOI
Olivares M., Walker A.W., Capilla A., Benítez-Páez A., Palau F., Parkhill J., Castillejo G., Sanz Y. Gut microbiota trajectory in early life may predict development of celiac disease. Microbiome. 2018;6:36. doi: 10.1186/s40168-018-0415-6. PubMed DOI PMC
Hollon J., Puppa E.L., Greenwald B., Goldberg E., Guerrerio A., Fasano A. Effect of gliadin on permeability of intestinal biopsy explants from celiac disease patients and patients with non-celiac gluten sensitivity. Nutrients. 2015;7:1565–1576. doi: 10.3390/nu7031565. PubMed DOI PMC
Lerner A., Matthias T. Celiac disease: Intestinal, heart and skin interconnections. Int. J. Celiac Dis. 2015;3:28–30. doi: 10.12691/ijcd-3-1-6. DOI
Lerner A., Matthias T. Rheumatoid arthritis-celiac disease relationship: Joints get that gut feeling. Autoimmun. Rev. 2015;14:1038–1047. doi: 10.1016/j.autrev.2015.07.007. PubMed DOI
Bloomfield S.F., Rook G.A., Scott E.A., Shanahan F., Stanwell-Smith R., Turner P. Time to abandon the hygiene hypothesis: New perspectives on allergic disease, the human microbiome, infectious disease prevention and the role of targeted hygiene. Perspect. Public. Health. 2016;136:213–224. doi: 10.1177/1757913916650225. PubMed DOI PMC
Kverka M., Tlaskalová-Hogenová H. Intestinal microbiota: Facts and fiction. Dig. Dis. 2017;35:139–147. doi: 10.1159/000449095. PubMed DOI
Stearns J.C., Lynch M.D., Senadheera D.B., Tenenbaum H.C., Goldberg M.B., Cvitkovitch D.G., Croitoru K., Moreno-Hagelsieb G., Neufeld J.D. Bacterial biogeography of the human digestive tract. Sci. Rep. 2011;1:170. doi: 10.1038/srep00170. PubMed DOI PMC
Rinninella E., Raoul P., Cintoni M., Franceschi F., Miggiano G.A.D., Gasbarrini A., Mele M.C. What is the healthy gut microbiota composition? A changing ecosystem across age, environment, diet and diseases. Microorganisms. 2019;7:14. doi: 10.3390/microorganisms7010014. PubMed DOI PMC
De Palma G., Capilla A., Nova E., Castillejo G., Varea V., Pozo T., Garrote J.A., Polanco I., López A., Ribes-Koninckx C., et al. Influence of milk-feeding type and genetic risk of developing coeliac disease on intestinal microbiota of infants: The PROFICEL study. PLoS ONE. 2012;7:e30791. doi: 10.1371/journal.pone.0030791. PubMed DOI PMC
Olivares M., Neef A., Castillejo G., De Palma G., Varea V., Capilla A., Palau F., Nova E., Marcos A., Polanco I., et al. The HLA-DQ2 genotype selects for early intestinal microbiota composition in infants at high risk of developing coeliac disease. Gut. 2015;64:406–417. doi: 10.1136/gutjnl-2014-306931. PubMed DOI
Neu J., Rushing J. Cesarean versus vaginal delivery: Long-term infant outcomes and the hygiene hypothesis. Clin. Perinatol. 2011;38:321–331. doi: 10.1016/j.clp.2011.03.008. PubMed DOI PMC
Dominguez-Bello M.G., Costello E.K., Contreras M., Magris M., Hidalgo G., Fierer N., Knight R. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc. Natl. Acad. Sci. USA. 2010;107:11971–11975. doi: 10.1073/pnas.1002601107. PubMed DOI PMC
Francavilla R., Cristofori F., Tripaldi M.E., Indrio F. Intervention for dysbiosis in children born by C-section. Ann. Nutr. Metab. 2018;73(Suppl. 3):33–39. doi: 10.1159/000490847. PubMed DOI
Decker E., Hornef M., Stockinger S. Cesarean delivery is associated with celiac disease but not inflammatory bowel disease in children. Gut Microbes. 2011;2:91–98. doi: 10.4161/gmic.2.2.15414. PubMed DOI
Adlercreutz E.H., Wingren C.J., Vincente R.P., Merlo J., Agardh D. Perinatal risk factors increase the risk of being affected by both type 1 diabetes and coeliac disease. Acta Paediatr. 2015;104:178–184. doi: 10.1111/apa.12836. PubMed DOI
Rutayisire E., Huang K., Liu Y., Tao F. The mode of delivery affects the diversity and colonization pattern of the gut microbiota during the first year of infants’ life: A systematic review. BMC Gastroenterol. 2016;16:86. doi: 10.1186/s12876-016-0498-0. PubMed DOI PMC
Jakobsson H.E., Abrahamsson T.R., Jenmalm M.C., Harris K., Quince C., Jernberg C., Björkstén B., Engstrand L., Andersson A.F. Decreased gut microbiota diversity, delayed Bacteroidetes colonisation and reduced Th1 responses in infants delivered by Caesarean section. Gut. 2014;63:559–566. doi: 10.1136/gutjnl-2012-303249. PubMed DOI
Koren O., Goodrich J.K., Cullender T.C., Spor A., Laitinen K., Bäckhed H.K., Gonzalez A., Werner J.J., Angenent L.T., Knight R., et al. Host remodeling of the gut microbiome and metabolic changes during pregnancy. Cell. 2012;150:470–480. doi: 10.1016/j.cell.2012.07.008. PubMed DOI PMC
Aagaard K., Ma J., Antony K.M., Ganu R., Petrosino J., Versalovic J. The placenta harbors a unique microbiome. Sci. Transl. Med. 2014;6:237ra65. doi: 10.1126/scitranslmed.3008599. PubMed DOI PMC
Wilczyńska P., Skarżyńska E., Lisowska-Myjak B. Meconium microbiome as a new source of information about long-term health and disease: Questions and answers. J. Matern. Fetal Neonatal Med. 2019;32:681–686. doi: 10.1080/14767058.2017.1387888. PubMed DOI
Szajewska H., Chmielewska A., Pieścik-Lech M., Ivarsson A., Kolacek S., Koletzko S., Mearin M.L., Shamir R., Auricchio R., Troncone R., et al. Systematic review: Early infant feeding and the prevention of coeliac disease. Aliment. Pharmacol. Ther. 2012;36:607–618. doi: 10.1111/apt.12023. PubMed DOI
Asakuma S., Hatakeyama E., Urashima T., Yoshida E., Katayama T., Yamamoto K., Kumagai H., Ashida H., Hirose J., Kitaoka M. Physiology of consumption of human milk oligosaccharides by infant gut-associated bifidobacteria. J. Biol. Chem. 2011;286:34583–34592. doi: 10.1074/jbc.M111.248138. PubMed DOI PMC
Nguyen T.T., Kim J.W., Park J.S., Hwang K.H., Jang T.S., Kim C.H., Kim D. Identification of oligosaccharides in human milk bound onto the toxin A carbohydrate binding site of Clostridium difficile. J. Microbiol. Biotechnol. 2016;26:659–665. doi: 10.4014/jmb.1509.09034. PubMed DOI
De Sousa Moraes L.F., Grzeskowiak L.M., de Sales Teixeira T.F., Pelúzio M.D.C.G. Intestinal microbiota and probiotics in celiac disease. Clin. Microbiol. Rev. 2014;27:482–489. doi: 10.1128/CMR.00106-13. PubMed DOI PMC
De Palma G., Nadal I., Collado M.C., Sanz Y. Effects of a gluten-free diet on gut microbiota and immune function in healthy adult human subjects. Br. J. Nutr. 2009;102:1154–1160. doi: 10.1017/S0007114509371767. PubMed DOI
Marasco G., Colecchia A., Festi D. Dysbiosis in celiac disease patients with persistent symptoms on gluten-free diet: A condition similar to that present in irritable bowel syndrome patients? Am. J. Gastroenterol. 2015;110:598. doi: 10.1038/ajg.2015.54. PubMed DOI
Tjellström B., Stenhammar L., Högberg L., Fälth-Magnusson K., Magnusson K.E., Midtvedt T., Sundqvist T., Norin E. Gut microflora associated characteristics in children with celiac disease. Am. J. Gastroenterol. 2005;100:2784–2788. doi: 10.1111/j.1572-0241.2005.00313.x. PubMed DOI
Nistal E., Caminero A., Vivas S., Ruiz de Morales J.M., Sáenz de Miera L.E., Rodríguez-Aparicio L.B., Casqueiro J. Differences in faecal bacteria populations and faecal bacteria metabolism in healthy adults and celiac disease patients. Biochimie. 2012;94:1724–1729. doi: 10.1016/j.biochi.2012.03.025. PubMed DOI
Jackson F.W. Effects of a gluten-free diet on gut microbiota and immune function in healthy adult human subjects-comment by Jackson. Br. J. Nutr. 2010;104:773. doi: 10.1017/S0007114510001960. PubMed DOI
Cristofori F., Indrio F., Miniello V.L., De Angelis M., Francavilla R. Probiotics in celiac disease. Nutrients. 2018;10:1824. doi: 10.3390/nu10121824. PubMed DOI PMC
Wacklin P., Laurikka P., Lindfors K., Mättö J., Kurppa K., Kaukinen K. Response to Marasco et al. Am. J. Gastroenterol. 2015;110:598–599. doi: 10.1038/ajg.2015.59. PubMed DOI
Bach J.F. Current concepts of autoimmunity. Rev. Neurol. 2002;158:881–886. PubMed
Shoenfeld Y., Sherer Y., Kalden J.R. The expanding world of autoimmunity. Trends Immunol. 2002;23:278–279. doi: 10.1016/S1471-4906(02)02234-2. PubMed DOI
Karczewski J., Poniedziałek B., Adamski Z., Rzymski P. The effects of the microbiota on the host immune system. Autoimmunity. 2014;47:494–504. doi: 10.3109/08916934.2014.938322. PubMed DOI
Kuhn K.A., Pedraza I., Demoruelle M.K. Mucosal immune responses to microbiota in the development of autoimmune disease. Rheum. Dis. Clin. N. Am. 2014;40:711–725. doi: 10.1016/j.rdc.2014.07.013. PubMed DOI
Ruff W.E., Kriegel M.A. Autoimmune host-microbiota interactions at barrier sites and beyond. Trends Mol. Med. 2015;21:233–244. doi: 10.1016/j.molmed.2015.02.006. PubMed DOI PMC
Paun A., Danska J.S. Immuno-ecology: How the microbiome regulates tolerance and autoimmunity. Curr. Opin. Immunol. 2015;37:34–39. doi: 10.1016/j.coi.2015.09.004. PubMed DOI
Wucherpfennig K.W. Infectious triggers for inflammatory neurological diseases. Nat. Med. 2002;8:455–457. doi: 10.1038/nm0502-455. PubMed DOI
Ide A., Babu S.R., Robles D.T., Wang T., Erlich H.A., Bugawan T.L., Rewers M., Fain P.R., Eisenbarth G.S. Homozygosity for premature stop codon of the MHC class I chain-related gene A (MIC-A) is associated with early activation of islet autoimmunity of DR3/4-DQ2/8 high risk DAISY relatives. J. Clin. Immunol. 2005;25:303–308. doi: 10.1007/s10875-005-4826-3. PubMed DOI
Sundberg E.J., Deng L., Mariuzza R.A. TCR recognition of peptide/MHC class II complexes and superantigens. Semin. Immunol. 2007;19:262–271. doi: 10.1016/j.smim.2007.04.006. PubMed DOI PMC
Getts D.R., Chastain E.M.L., Terry R.L., Miller S.D. Virus infection, antiviral immunity, and autoimmunity. Immunol. Rev. 2013;255:197–209. doi: 10.1111/imr.12091. PubMed DOI PMC
Loss H., Aschenbach J.R., Ebner F., Tedin K., Lodemann U. Effects of pathogenic ETEC strain and a probiotic Enterococcus faecium strain on the inflammasome response in porcine dendritic cells. Vet. Immunol. Immunopathol. 2018;203:78–87. doi: 10.1016/j.vetimm.2018.08.004. PubMed DOI
Linehan J.L., Harrison O.J., Han S.J., Byrd A.L., Vujkovic-Cvijin I., Villarino A.V., Sen S.K., Shaik J., Smelkinson M., Tamoutounour S., et al. Non-classical immunity controls microbiota impact on skin immunity and tissue repair. Cell. 2018;172:784–796.e18. doi: 10.1016/j.cell.2017.12.033. PubMed DOI PMC
Bolhassani A., Agi E. Heat shock proteins in infection. Clin. Chim. Acta. 2019;498:90–100. doi: 10.1016/j.cca.2019.08.015. PubMed DOI
Kotzin B.L., Leung D.Y., Kappler J., Marrack P. Superantigens and their potential role in human disease. Adv. Immunol. 1993;54:99–166. PubMed
Bachert C., Gevaert P., van Cauwenberge P. Staphylococcus aureus superantigens and airway disease. Curr. Allergy Asthma Rep. 2002;2:252–258. doi: 10.1007/s11882-002-0027-9. PubMed DOI
Fujinami R.S., von Herrath M.G., Christen U., Whitton J.L. Molecular mimicry, bystander activation, or viral persistence: Infections and autoimmune disease. Clin. Microbiol. Rev. 2006;19:80–94. doi: 10.1128/CMR.19.1.80-94.2006. PubMed DOI PMC
Vojdani A. Molecular mimicry as a mechanism for food immune reactivities and autoimmunity. Altern. Ther. Health Med. 2015;21(Suppl. 1):34–45. PubMed
Pacheco Y., Acosta-Ampudia Y., Monsalve D.M., Chang C., Gershwin M.E., Anaya J.M. Bystander activation and autoimmunity. J. Autoimmun. 2019;103:102301. doi: 10.1016/j.jaut.2019.06.012. PubMed DOI
Rojas M., Restrepo-Jiménez P., Monsalve D.M., Pacheco Y., Acosta-Ampudia Y., Ramírez-Santana C., Leung P.S.C., Ansari A.A., Gershwin M.E., Anaya J.M. Molecular mimicry and autoimmunity. J. Autoimmun. 2018;95:100–123. doi: 10.1016/j.jaut.2018.10.012. PubMed DOI
Smatti M.K., Cyprian F.S., Nasrallah G.K., Al Thani A.A., Almishal R.O., Yassine H.M. Viruses and autoimmunity: A review on the potential interaction and molecular mechanisms. Viruses. 2019;11:762. doi: 10.3390/v11080762. PubMed DOI PMC
Singh B., Read S., Asseman C., Malmström V., Mottet C., Stephens L.A., Stepankova R., Tlaskalova H., Powrie F. Control of intestinal inflammation by regulatory T cells. Immunol. Rev. 2001;182:190–200. doi: 10.1034/j.1600-065X.2001.1820115.x. PubMed DOI
Hudcovic T., Stepánková R., Kozáková H., Hrncír T., Tlaskalová-Hogenová H. Effects of monocolonization with Escherichia coli strains O6K13 and Nissle 1917 on the development of experimentally induced acute and chronic intestinal inflammation in germ-free immunocompetent and immunodeficient mice. Folia Microbiol. 2007;52:618–626. doi: 10.1007/BF02932191. PubMed DOI
Hrncir T., Hrncirova L., Kverka M., Tlaskalova-Hogenova H. The role of gut microbiota in intestinal and liver diseases. Lab. Anim. 2019;53:271–280. doi: 10.1177/0023677218818605. PubMed DOI
Zákostelská Z., Málková J., Klimešová K., Rossmann P., Hornová M., Novosádová I., Stehlíková Z., Kostovčík M., Hudcovic T., Štěpánková R., et al. Intestinal microbiota promotes psoriasis-like skin inflammation by enhancing Th17 response. PLoS ONE. 2016;11:e0159539. doi: 10.1371/journal.pone.0159539. PubMed DOI PMC
Heissigerova J., Seidler Stangova P., Klimova A., Svozilkova P., Hrncir T., Stepankova R., Kverka M., Tlaskalova-Hogenova H., Forrester J.V. The microbiota determines susceptibility to experimental autoimmune uveoretinitis. J. Immunol. Res. 2016;2016:5065703. doi: 10.1155/2016/5065703. PubMed DOI PMC
Schwarzer M., Srutkova D., Hermanova P., Leulier F., Kozakova H., Schabussova I. Diet matters: Endotoxin in the diet impacts the level of allergic sensitization in germ-free mice. PLoS ONE. 2017;12:e0167786. doi: 10.1371/journal.pone.0167786. PubMed DOI PMC
Stehlikova Z., Kostovcikova K., Kverka M., Rossmann P., Dvorak J., Novosadová I., Kostovcik M., Coufal S., Srutkova D., Prochazkova P., et al. Crucial role of microbiota in experimental psoriasis revealed by a gnotobiotic mouse model. Front. Microbiol. 2019;10:236. doi: 10.3389/fmicb.2019.00236. PubMed DOI PMC
Szebeni B., Veres G., Dezsofi A., Rusai K., Vannay A., Bokodi G., Vásárhelyi B., Korponay-Szabó I.R., Tulassay T., Arató A. Increased mucosal expression of Toll-like receptor (TLR)2 and TLR4 in coeliac disease. J. Pediatr. Gastroenterol. Nutr. 2007;45:187–193. doi: 10.1097/MPG.0b013e318064514a. PubMed DOI
Zhernakova A., Elbers C.C., Ferwerda B., Romanos J., Trynka G., Dubois P.C., de Kovel C.G., Franke L., Oosting M., Barisani D., et al. Evolutionary and functional analysis of celiac risk loci reveals SH2B3 as protective factor against bacterial infection. Am. J. Hum. Genet. 2010;86:970–977. doi: 10.1016/j.ajhg.2010.05.004. PubMed DOI PMC
Wittig B., Schmidt M., Scheithauer W., Schmoll H.J. MGN1703, an immunomodulator and toll-like receptor 9 (TLR-9) agonist: From bench to bedside. Crit. Rev. Oncol. Hematol. 2015;94:31–44. doi: 10.1016/j.critrevonc.2014.12.002. PubMed DOI
Cheng J., Kalliomäki M., Heilig H.G.H.J., Palva A., Lähteenoja H., de Vos W.M., Salojärvi J., Satokari R. Duodenal microbiota composition and mucosal homeostasis in pediatric celiac disease. BMC Gastroenterol. 2013;13:113. doi: 10.1186/1471-230X-13-113. PubMed DOI PMC
Kalliomäki M., Satokari R., Lähteenoja H., Vähämiko S., Grönlund J., Routi T., Salminen S. Expression of microbiota, Toll-like receptors, and their regulators in the small intestinal mucosa in celiac disease. J. Pediatr. Gastroenterol. Nutr. 2012;54:727–732. doi: 10.1097/MPG.0b013e318241cfa8. PubMed DOI
Flo T.H., Halaas O., Torp S., Ryan E., Lien E., Dybdahl B., Sundan A., Espevik T. Differential expression of Toll-like receptor 2 in human cells. J. Leukoc. Biol. 2001;69:474–481. PubMed
Preiss S., Thompson A., Chen X., Rodgers S., Markovska V., Desmond P., Visvanathan K., Li K., Locarnini S., Revill P. Characterization of the innate immune signalling pathways in hepatocyte cell lines. J. Viral. Hepat. 2008;15:888–900. doi: 10.1111/j.1365-2893.2008.01001.x. PubMed DOI
Leoni V., Gianni T., Salvioli S., Campadelli-Fiume G. Herpes simplex virus glycoproteins gH/gL and gB bind Toll-like receptor 2, and soluble gH/gL is sufficient to activate NF-kappa B. J. Virol. 2012;86:6555–6562. doi: 10.1128/JVI.00295-12. PubMed DOI PMC
Otte J.M., Cario E., Podolsky D.K. Mechanisms of cross hyporesponsiveness to Toll-like receptor bacterial ligands in intestinal epithelial cells. Gastroenterology. 2004;126:1054–1070. doi: 10.1053/j.gastro.2004.01.007. PubMed DOI
Sjöberg V., Sandström O., Hedberg M., Hammarström S., Hernell O., Hammarström M.L. Intestinal T-cell responses in celiac disease—Impact of celiac disease associated bacteria. PLoS ONE. 2013;8:e53441. doi: 10.1371/journal.pone.0053414. PubMed DOI PMC
La Scaleia R., Barba M., Di Nardo G., Bonamico M., Oliva S., Nenna R., Valitutti F., Mennini M., Barbato M., Montuori M., et al. Size and dynamics of mucosal and peripheral IL-17A+ T-cell pools in pediatric age, and their disturbance in celiac disease. Mucosal Immunol. 2012;5:513–523. doi: 10.1038/mi.2012.26. PubMed DOI
Azad M.B., Konya T., Maughan H., Guttman D.S., Field C.J., Chari R.S., Sears M.R., Becker A.B., Scott J.A., Kozyrskyj A.L. CHILD Study Investigators. Gut microbiota of healthy Canadian infants: Profiles by mode of delivery and infant diet at 4 months. CMAJ. 2013;185:385–394. doi: 10.1503/cmaj.121189. PubMed DOI PMC
Hills R.D., Jr., Pontefract B.A., Mishcon H.R., Black C.A., Sutton S.C., Theberge C.R. Gut Microbiome: Profound implications for Diet and Disease. Nutrients. 2019;11:1613. doi: 10.3390/nu11071613. PubMed DOI PMC
Le Barz M., Daniel N., Varin T.V., Naimi S., Demers-Mathieu V., Pilon G., Audy J., Laurin É., Roy D., Urdaci M.C., et al. In vivo screening of multiple bacterial strains identifies Lactobacillus rhamnosus Lb102 and Bifidobacterium animalis ssp. lactis Bf141 as probiotics that improve metabolic disorders in a mouse model of obesity. FASEB J. 2019;33:4921–4935. PubMed
Marasco G., Cirota G.G., Rossini B., Lungaro L., Di Biase A.R., Colecchia A., Volta U., De Giorgio R., Festi D., Caio G. Probiotics, prebiotics and other dietary supplements for gut microbiota modulation in celiac disease patients. Nutrients. 2020;12:2674. doi: 10.3390/nu12092674. PubMed DOI PMC
Zyrek A.A., Cichon C., Helms S., Enders C., Sonnenborn U., Schmidt M.A. Molecular mechanisms underlying the probiotic effects of Escherichia coli Nissle 1917 involve ZO-2 and PKCzeta redistribution resulting in tight junction and epithelial barrier repair. Cell Microbiol. 2007;9:804–816. doi: 10.1111/j.1462-5822.2006.00836.x. PubMed DOI
Lindfors K., Blomqvist T., Juuti-Uusitalo K., Stenman S., Venäläinen J., Mäki M., Kaukinen K. Live probiotics Bifidobacterium lactis bacteria inhibit the toxic effects induced by wheat gliadin in epithelial cell culture. Clin. Exp. Immunol. 2008;152:552–558. doi: 10.1111/j.1365-2249.2008.03635.x. PubMed DOI PMC
Fang S.B., Lee H.C., Hu J.J., Hou S.Y., Liu H.L., Fang H.W. Dose-dependent effect of Lactobacillus rhamnosus on quantitative reduction of faecal rotavirus shedding in children. J. Trop. Pediatr. 2009;55:297–301. doi: 10.1093/tropej/fmp001. PubMed DOI
Vandenplas Y., Salvatore S., Vieira M., Devreker T., Hauser B. Probiotics in infectious diarrhoea in children: Are they indicated? Eur. J. Pediatr. 2007;166:1211–1218. doi: 10.1007/s00431-007-0497-9. PubMed DOI
Sander D.S., Nybo Andersen A.M., Murray J.A., Karlstad Ø., Husby S., Størdal K. Association between antibiotics in the first year of life and celiac disease. Gastroenterology. 2019;156:2217–2229. doi: 10.1053/j.gastro.2019.02.039. PubMed DOI
Mårild K., Ye W., Lebwohl B., Green P.H.R., Blaser M.J., Card T., Ludvigsson J.F. Antibiotic exposure and the development of coeliac disease: A nationwide case-control study. BMC Gastroenterol. 2013;13:109. doi: 10.1186/1471-230X-13-109. PubMed DOI PMC
Smecuol E., Hwang H.J., Sugai E., Corso L., Cherñavsky A.C., Bellavite F.P., González A., Vodánovich F., Moreno M.L., Vázquez H., et al. Exploratory, randomized, double-blind, placebo-controlled study on the effects of Bifidobacterium infantis natren life start strain in active celiac disease. J. Clin. Gastroenterol. 2013;47:139–147. doi: 10.1097/MCG.0b013e31827759ac. PubMed DOI
Pinto-Sánchez M.I., Smecuol E.C., Temprano M.P., Sugai E., González A., Moreno M.L., Huang X., Bercik P., Cabanne A., Vázquez H. Bifidobacterium infantis NLS super strain reduces the expression of α-defensin-5, a marker of innate immunity, in the mucosa of active celiac disease patients. J. Clin. Gastroenterol. 2017;51:814–817. doi: 10.1097/MCG.0000000000000687. PubMed DOI
Gassler N. Paneth cells in intestinal physiology and pathophysiology. World J. Gastrointest. Pathophysiol. 2017;8:150–160. doi: 10.4291/wjgp.v8.i4.150. PubMed DOI PMC
Valitutti F., Trovato C.M., Montuori M., Cucchiara S. Pediatric celiac disease: Follow-up in spotlight. Adv. Nutr. 2017;8:356–361. doi: 10.3945/an.116.013292. PubMed DOI PMC
Norsa L., Tomba C., Agostoni C., Branchi F., Bardella M.T., Roncoroni L., Conte D., Elli L. Gluten-free diet or alternative therapy: A survey on what parents of celiac children want. Int. J. Food Sci. Nutr. 2015;66:590–594. doi: 10.3109/09637486.2015.1064872. PubMed DOI
Laparra J.M., Sanz Y. Bifidobacteria inhibit the inflammatory response induced by gliadins in intestinal epithelial cells via modifications of toxic peptide generation during digestion. J. Cell. Biochem. 2010;109:801–807. doi: 10.1002/jcb.22459. PubMed DOI
Fernandez-Feo M., Wei G., Blumenkranz G., Dewhirst F.E., Schuppan D., Oppenheim F.G., Helmerhorst E.J. The cultivable human oral gluten-degrading microbiome and its potential implications in coeliac disease and gluten sensitivity. Clin. Microbiol. Infect. 2013;19:E386–E394. doi: 10.1111/1469-0691.12249. PubMed DOI PMC
Zamakhchari M., Wei G., Dewhirst F., Lee J., Schuppan D., Oppenheim F.G., Helmerhorst E.J. Identification of Rothia bacteria as gluten-degrading natural colonizers of the upper gastrointestinal tract. PLoS ONE. 2011;6:e24455. doi: 10.1371/journal.pone.0024455. PubMed DOI PMC