Contribution of Infectious Agents to the Development of Celiac Disease

. 2021 Mar 06 ; 9 (3) : . [epub] 20210306

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid33800833

Grantová podpora
TH03010019 Technology Agency of the Czech Republic
Strategy AV21-19 The Czech Academy of Sciences

Odkazy

PubMed 33800833
PubMed Central PMC8001938
DOI 10.3390/microorganisms9030547
PII: microorganisms9030547
Knihovny.cz E-zdroje

The ingestion of wheat gliadin (alcohol-soluble proteins, an integral part of wheat gluten) and related proteins induce, in genetically predisposed individuals, celiac disease (CD), which is characterized by immune-mediated impairment of the small intestinal mucosa. The lifelong omission of gluten and related grain proteins, i.e., a gluten-free diet (GFD), is at present the only therapy for CD. Although a GFD usually reduces CD symptoms, it does not entirely restore the small intestinal mucosa to a fully healthy state. Recently, the participation of microbial components in pathogenetic mechanisms of celiac disease was suggested. The present review provides information on infectious diseases associated with CD and the putative role of infections in CD development. Moreover, the involvement of the microbiota as a factor contributing to pathological changes in the intestine is discussed. Attention is paid to the mechanisms by which microbes and their components affect mucosal immunity, including tolerance to food antigens. Modulation of microbiota composition and function and the potential beneficial effects of probiotics in celiac disease are discussed.

Zobrazit více v PubMed

Megiorni F., Pizzuti A. HLA-DQA1 and HLA-DQB1 in celiac disease predisposition: Practical implications of the HLA molecular typing. J. Biomed. Sci. 2012;19:88. doi: 10.1186/1423-0127-19-88. PubMed DOI PMC

Kim C.Y., Quarsten H., Bergseng E., Khosla C., Sollid L.M. Structural basis for HLA-DQ2-mediated presentation of gluten epitopes in celiac disease. Proc. Natl. Acad. Sci. USA. 2004;101:4175–4179. doi: 10.1073/pnas.0306885101. PubMed DOI PMC

Husby S., Koletzko S., Korponay-Szabó I.R., Kurppa K., Mearin M.L., Ribes-Koninckx C., Shamir R., Troncone R., Auricchio R., Castillejo G., et al. European Society Pediatric Gastroenterology, Hepatology and Nutrition guidelines for diagnosing coeliac disease 2020. J. Paediatr. Gastroenterol. Nutr. 2020;70:141–156. doi: 10.1097/MPG.0000000000002497. PubMed DOI

Hoffmanová I., Sánchez D., Szczepanková A., Tlaskalová-Hogenová H. The pros and cons of using oat in a gluten-free diet for celiac patients. Nutrients. 2019;11:2345. doi: 10.3390/nu11102345. PubMed DOI PMC

Harris K.M., Fasano A., Mann D.L. Monocytes differentiated with IL-15 support Th17 and Th1 responses to wheat gliadin: Implications for celiac disease. Clin. Immunol. 2010;135:430–439. doi: 10.1016/j.clim.2010.01.003. PubMed DOI PMC

Gujral N., Freeman H.J., Thomson A.B.R. Celiac disease: Prevalence, diagnosis, pathogenesis and treatment. World J. Gastroenterol. 2012;18:6036–6059. doi: 10.3748/wjg.v18.i42.6036. PubMed DOI PMC

Jabri B., Kasarda D.D., Green P.H.R. Innate and adaptive immunity: The yin and yang of celiac disease. Immunol. Rev. 2005;206:219–231. doi: 10.1111/j.0105-2896.2005.00294.x. PubMed DOI

Dingeo C., Difonzo G., Paradiso V.M., Rizzello C.G., Pontonio E. Teff type-I sourdough to produce gluten-free muffin. Microorganisms. 2020;8:1149. doi: 10.3390/microorganisms8081149. PubMed DOI PMC

Caio G., Volta U., Sapone A., Leffler D.A., De Giorgio R., Catassi C., Fasano A. Celiac disease: A comprehensive current review. BMC Med. 2019;17:142. doi: 10.1186/s12916-019-1380-z. PubMed DOI PMC

Hadjivassiliou M., Grünewald R.A., Chattopadhyay A.K., Davies-Jones G.A., Gibson A., Jarratt J.A., Kandler R.H., Lobo A., Powell T., Smith C.M. Clinical, radiological, neurophysiological, and neuropathological characteristics of gluten ataxia. Lancet. 1998;352:1582–1585. doi: 10.1016/S0140-6736(98)05342-2. PubMed DOI

Reunala T. Dermatitis herpetiformis: Coeliac disease of the skin. Ann. Med. 1998;30:416–418. doi: 10.3109/07853899809002482. PubMed DOI

Obrenovich M.E.M. Leaky gut, leaky brain? Microorganisms. 2018;6:107. doi: 10.3390/microorganisms6040107. PubMed DOI PMC

Edwards C., Williams A., Asquith P. Bronchopulmonary disease in coeliac patients. J. Clin. Pathol. 1985;38:361–367. doi: 10.1136/jcp.38.4.361. PubMed DOI PMC

Sarath Balaji B., Kalpana S., Elilarasi S., Sundari S. Respiratory symptoms as atypical manifestation of celiac disease. Pediatr. Oncall J. 2016;13:46–47.

Hoffmanová I., Sánchez D., Tučková L., Tlaskalová-Hogenová H. Celiac disease and liver disorders: From putative pathogenesis to clinical implications. Nutrients. 2018;10:892. doi: 10.3390/nu10070892. PubMed DOI PMC

Stene L.C., Honeyman M.C., Hoffenberg E.J., Haas J.E., Sokol R.J., Emery L., Taki I., Norris J.M., Erlich H.A., Eisenbarth G.S., et al. Rotavirus infection frequency and risk of celiac disease autoimmunity in early childhood: A longitudinal study. Am. J. Gastroenterol. 2006;101:2333–2340. doi: 10.1111/j.1572-0241.2006.00741.x. PubMed DOI

Myléus A., Stenlung H., Hernell O., Gothefors L., Hammarström M.L., Persson L.Å., Ivarsson A. Early vaccinations are not risk factors for celiac disease. Pediatrics. 2012;130:e63–e70. doi: 10.1542/peds.2011-2806. PubMed DOI

Fasano A., Shea-Donohue T. Mechanisms of disease: The role of intestinal barrier function in the pathogenesis of gastrointestinal autoimmune diseases. Nat. Clin. Pract. Gastroenterol. Hepatol. 2005;2:416–422. doi: 10.1038/ncpgasthep0259. PubMed DOI

Plot L., Amital H., Barzilai O., Ram M., Bizzaro N., Shoenfeld Y. Infections may have a protective role in the etiopathogenesis of celiac disease. Ann. N. Y. Acad. Sci. 2009;1173:670–674. doi: 10.1111/j.1749-6632.2009.04814.x. PubMed DOI

Canova C., Zabeo V., Pitter G., Romor P., Baldovin T., Zanotti R., Simonato L. Association of maternal education, early infections, and antibiotic use with celiac disease: A population-based birth cohort study in northeastern Italy. Am. J. Epidemiol. 2014;180:76–85. doi: 10.1093/aje/kwu101. PubMed DOI

Beyerlein A., Donnachie E., Ziegler A.G. Infections in early life and development of celiac disease. Am. J. Epidemiol. 2017;186:1277–1280. doi: 10.1093/aje/kwx190. PubMed DOI

Kemppainen K.M., Vehik K., Lynch K.F., Larsson H.E., Canepa R.J., Simell V., Koletzko S., Liu E., Simell O.G., Toppari J., et al. Environmental Dermatitis of Diabetes in Young (TEDDY) Study Group. Association between early-life antibiotic use and the risk of islet or celiac disease autoimmunity. JAMA Pediatr. 2017;171:1217–1225. doi: 10.1001/jamapediatrics.2017.2905. PubMed DOI PMC

Bascuñán K.A., Araya M., Roncoroni M., Doneda L., Elli L. Dietary gluten as a conditioning factor of the gut microbiota in celiac disease. Adv. Nutr. 2020;11:160–174. doi: 10.1093/advances/nmz080. PubMed DOI PMC

Caminero A., McCarville J.L., Galipeau H.J., Deraison C., Bernier S.P., Constante M., Rolland C., Meisel M., Murray J.A., Yu X.B., et al. Duodenal bacterial proteolytic activity determines sensitivity to dietary antigen through protease-activated receptor-2. Nat. Commun. 2019;10:1198. doi: 10.1038/s41467-019-09037-9. PubMed DOI PMC

Caminero A., Verdu E.F. Celiac disease: Should we care about microbes? Am. J. Physiol. Gastrointest. Liver Physiol. 2019;317:G161–G170. doi: 10.1152/ajpgi.00099.2019. PubMed DOI PMC

Bonder M.J., Tigchelaar E.F., Cai X., Trynka G., Cenit M.C., Hrdlickova B., Zhong H., Vatanen T., Gevers D., Wijmenga C., et al. The influence of short-term gluten-free diet on the human gut microbiome. Genome Med. 2016;8:45. doi: 10.1186/s13073-016-0295-y. PubMed DOI PMC

Catassi C., Kryszak D., Bhatti B., Sturgeon C., Helzlsouer K., Clipp S.L., Gelfond D., Puppa E., Sferruzza A., Fasano A. Natural history of celiac disease autoimmunity in a USA cohort followed since 1974. Ann. Med. 2010;42:530–538. doi: 10.3109/07853890.2010.514285. PubMed DOI

Serena G., Lima R., Fasano A. Genetic and environmental contributors for for celiac disease. Curr. Allergy Asthma Rep. 2019;19:40. doi: 10.1007/s11882-019-0871-5. PubMed DOI

Greco L., Romino R., Coto I., Di Cosmo N., Percopo S., Maglio M., Paparo F., Gasperi V., Limongelli M.G., Cotichini R., et al. The first large population based twin study of coeliac disease. Gut. 2002;50:624–628. doi: 10.1136/gut.50.5.624. PubMed DOI PMC

Valitutti F., Cucchiara S., Fasano A. Celiac disease and the microbiome. Nutrients. 2019;11:2403. doi: 10.3390/nu11102403. PubMed DOI PMC

Cenit M.C., Olivares M., Codoñer-Franch P., Sanz Y. Intestinal microbiota and celiac disease: Cause, consequence or co-evolution? Nutrients. 2015;7:6900–6923. doi: 10.3390/nu7085314. PubMed DOI PMC

Verdu E.F., Galipeau H.J., Jabri B. Novel players in coeliac disease pathogenesis: Role of the gut microbiota. Nat. Rev. Gastroenterol. Hepatol. 2015;12:497–506. doi: 10.1038/nrgastro.2015.90. PubMed DOI PMC

Cukrowska B., Sowińska A., Bierła J.B., Czarnowska E., Rybak A., Grzybowska-Chlebowczyk U. Intestinal epithelium, intraepithelial lymphocytes and the gut microbiota—Key players in the pathogenesis of celiac disease. World J. Gastroenterol. 2017;23:7505–7518. doi: 10.3748/wjg.v23.i42.7505. PubMed DOI PMC

Marasco G., Di Biase A.R., Schiumerini R., Eusebi L.H., Iughetti L., Ravaioli F., Scaioli E., Colecchia A., Festi D. Gut microbiota and celiac disease. Dig. Dis. Sci. 2016;61:1461–1472. doi: 10.1007/s10620-015-4020-2. PubMed DOI

Di Biase A.R., Marasco G., Ravaioli F., Dajti E., Colecchia L., Righi B., D’Amico V., Festi D., Iughetti L., Colecchia A. Gut microbiota signatures and clinical manifestations in celiac disease children at onset: A pilot study. J. Gastroenterol. Hepatol. 2020 doi: 10.1111/jgh.15183. Online ahead of print. PubMed DOI

Zafeiropoulou K., Nichols B., Mackinder M., Biskou O., Rizou E., Karanikolou A., Clark C., Buchanan E., Cardigan T., Duncan H., et al. Alterations in intestinal microbiota of children with celiac disease at the time of diagnosis and on a gluten-free diet. Gastroenterology. 2020;159:2039–2051. doi: 10.1053/j.gastro.2020.08.007. PubMed DOI PMC

Verdu E.F., Caminero A. How infection can incite sensitivity to food. Science. 2017;356:29–30. doi: 10.1126/science.aan1500. PubMed DOI

Mårild K., Fredlund H., Ludvigsson J.F. Increased risk of hospital admission for influenza in patients with celiac disease: A nationwide cohort study in Sweden. Am. J. Gastroenterol. 2010;105:2465–2473. doi: 10.1038/ajg.2010.352. PubMed DOI

Röckert Tjernberg A., Ludvigsson J.F. Children with celiac disease are more likely to have attended hospital for prior respiratory syncytial virus infection. Dig. Dis. Sci. 2014;59:1502–1508. doi: 10.1007/s10620-014-3046-1. PubMed DOI

Simons M., Scott-Sheldon L.A.J., Risech-Neyman Y., Moss S.F., Ludvigsson J.F., Green P.H.R. Celiac disease and increased risk of pneumococcal infection: A systematic review and meta-analysis. Am. J. Med. 2018;131:83–89. doi: 10.1016/j.amjmed.2017.07.021. PubMed DOI

Röckert Tjernberg A., Bonnedahl J., Inghammar M., Egesten A., Kahlmeter G., Nauclér P., Henriques-Normark B., Ludvigsson J.F. Coeliac disease and invasive pneumococcal disease: A population-based cohort study. Epidemiol. Infect. 2017;145:1203–1209. doi: 10.1017/S0950268816003204. PubMed DOI PMC

Thomas H.J., Wotton C.J., Yeates D., Ahmad T., Jewell D.P., Goldacre M.J. Pneumococcal infection in patients with coeliac disease. Eur. J. Gastroenterol. Hepatol. 2008;20:624–628. doi: 10.1097/MEG.0b013e3282f45764. PubMed DOI

Ludvigsson J.F., Olén O., Bell M., Ekbom A., Montgomery S.M. Coeliac disease and risk of sepsis. Gut. 2008;57:1074–1080. doi: 10.1136/gut.2007.133868. PubMed DOI

Kemppainen K.M., Lynch K.F., Liu E., Lönnrot M., Simell V., Briese T., Koletzko S., Hagopian W., Rewers M., She J.X., et al. TEDDY Study Group. Factors that increase risk of celiac disease autoimmunity after a gastrointestinal infection in early life. Clin. Gastroenterol. Hepatol. 2017;15:694–702.e5. doi: 10.1016/j.cgh.2016.10.033. PubMed DOI PMC

Mårild K., Kahrs C.R., Tapia G., Stene L.C., Størdal K. Infections and risk of celiac disease in childhood: A prospective nationwide cohort study. Am. J. Gastroenterol. 2015;110:1475–1484. doi: 10.1038/ajg.2015.287. PubMed DOI

Ruggeri C., La Masa A.T., Rudi S., Squadrito G., Di Pasquale G., Maimone S., Caccamo G., Pellegrino S., Raimondo G., Magazzù G. Celiac disease and non-organ-specific autoantibodies in patients with chronic hepatitis C virus infection. Dig. Dis. Sci. 2008;53:2151–2155. doi: 10.1007/s10620-007-0146-1. PubMed DOI

Lebwohl B., Nobel Y.R., Green P.H.R., Blaser M.J., Ludvigsson J.F. Risk of Clostridium difficile infection in patients with celiac disease: A population-based study. Am. J. Gastroenterol. 2017;112:1878–1884. doi: 10.1038/ajg.2017.400. PubMed DOI PMC

Tumgor G., Agin M., Doran F., Cetiner S. Frequency of celiac disease in children with peptic ulcers. Dig. Dis. Sci. 2018;63:2681–2686. doi: 10.1007/s10620-018-5174-5. PubMed DOI

Bodkhe R., Shetty S.A., Dhotre D.P., Verma A.K., Bhatia K., Mishra A., Kaur G., Pande P., Bangarusamy D.K., Santosh B.P., et al. Comparison of small gut and whole gut microbiota of first-degree relatives with adult celiac disease patients and controls. Front. Microbiol. 2019;10:164. doi: 10.3389/fmicb.2019.00164. PubMed DOI PMC

Heavey E. Protecting adults with celiac disease from pulmonary infections. Nursing. 2019;49:68–69. doi: 10.1097/01.NURSE.0000585976.71350.2e. PubMed DOI

Ludvigsson J.F., Wahlstrom J., Grunewald J., Ekbom A., Montgomery S.M. Coeliac disease and risk of tuberculosis: A population based cohort study. Thorax. 2007;62:23–28. doi: 10.1136/thx.2006.059451. PubMed DOI PMC

Ludvigsson J.F., Bai J.C., Biagi F., Card T.R., Ciacci C., Ciclitira P.J., Green P.H.R., Hadjivassiliou M., Holdoway A., van Heel D.A., et al. Diagnosis and management of adult coeliac disease: Guidelines from the British Society of Gastroenterology. Gut. 2014;63:1210–1228. doi: 10.1136/gutjnl-2013-306578. PubMed DOI PMC

Canova C., Ludvigsson J., Baldo V., Barbiellini Amidei C., Zanier L., Zingone F. Risk of bacterial pneumonia and pneumococcal infection in youths with celiac disease—A population-based study. Dig. Liver Dis. 2019;51:1101–1105. doi: 10.1016/j.dld.2019.02.010. PubMed DOI

Casella G., Ingravalle F., Abbate G., Monti C., Bonetti F., Bassotti G., Mansueto P., Villanacci V., Carroccio A. Pneumococcal vaccination in celiac disease. Expert. Rev. Gastroeneterol. Hepatol. 2019;13:541–546. doi: 10.1080/17474124.2019.1607295. PubMed DOI

Ouseph M.M., Simons M., Treaba D.O., Yakirevich E., Green P.H., Bhagat G., Moss S.F., Mangray S. Fatal Streptococcus pneumoniae sepsis in a patient with celiac disease-associated hyposplenism. ACG Case Rep. J. 2016;3:e140. doi: 10.14309/crj.2016.113. PubMed DOI PMC

Röckert Tjernberg A., Woksepp H., Sandholm K., Johansson M., Dahle C., Ludvigsson J.F., Bonnedahl J., Nilsson P., Ekdahl K.N. Celiac disease and complement activation in response to Streptococcus pneumoniae. Eur. J. Pediatr. 2020;179:133–140. doi: 10.1007/s00431-019-03490-w. PubMed DOI PMC

Comba A., Atan D. Evaluation of nasal mucociliary clearance time in children with celiac disease. Int. J. Pediatr. Otorhinolaryngol. 2020;133:109936. doi: 10.1016/j.ijporl.2020.109936. PubMed DOI

Grainge M.J., West J., Card T.R., Holmes G.K. Causes of death in people with celiac disease spanning the pre- and post-serology era: A population-based cohort study from Derby, UK. Am. J. Gastroenterol. 2011;106:933–939. doi: 10.1038/ajg.2010.506. PubMed DOI

Peters U., Asking J., Gridley G., Ekbom A., Linet M. Causes of death in patients with celiac disease in a population-based Swedish cohort. Arch. Intern. Med. 2003;163:1566–1572. doi: 10.1001/archinte.163.13.1566. PubMed DOI

Kagnoff M.F., Austin R.K., Hubert J.J., Bernardin J.E., Kasarda D.D. Possible role for a human adenovirus in the pathogenesis of celiac disease. J. Exp. Med. 1984;160:1544–1557. doi: 10.1084/jem.160.5.1544. PubMed DOI PMC

Kagnoff M.F., Paterson Y.J., Kumar P.J., Kasarda D.D., Carbone F.R., Unsworth D.J., Austin R.K. Evidence for the role of human intestinal adenovirus in the pathogenesis of celiac disease. Gut. 1987;28:995–1001. doi: 10.1136/gut.28.8.995. PubMed DOI PMC

Lähdeaho M.L., Lehtinen M., Rissa H.R., Hyöty H., Reunala T., Mäki M. Antipeptide antibodies to adenovirus E1b protein indicate enhanced risk of celiac disease and dermatitis herpetiformis. Int. Arch. Allergy Immunol. 1993;101:272–276. doi: 10.1159/000236457. PubMed DOI

Jansen M.A.E., Beth S.A., van den Heuvel D., Kiefte-de Jong J.C., Raat H., Jaddoe V.W.V., van Zelm M.C., Moll H.A. Ethnic differences in coeliac disease autoimmunity in childhood: The Generation R Study. Arch. Dis. Child. 2017;102:529–534. doi: 10.1136/archdischild-2016-311343. PubMed DOI

Das P., Gahlot G.P.S., Mehta R., Makharia A., Verma A.K., Sreenivas V., Panda S.K., Ahuja V., Datta Gupta S., Makharia G.K. Patients with mild enteropathy have apoptotic injury of enterocytes similar to that in advanced enteropathy in celiac disease. Dig. Liver. Dis. 2016;48:1290–1295. doi: 10.1016/j.dld.2016.06.013. PubMed DOI

Silvester J.A., Leffler D.A. Is autoimmunity infectious? The effect of gastrointestinal viral infections and vaccination on risk of celiac disease autoimmunity. Clin. Gastroenterol. Hepatol. 2017;15:703–705. doi: 10.1016/j.cgh.2016.12.014. PubMed DOI

Hemming-Harlo M., Lähdeaho M.L., Mäki M., Vesikari T. Rotavirus vaccination does not increase type 1 diabetes and may decrease celiac disease in children and adolescents. Pediatr. Infect. Dis. J. 2019;38:539–541. doi: 10.1097/INF.0000000000002281. PubMed DOI

Gatti S., Lionetti E., Balanzoni L., Verma A.K., Galeazzi T., Gesuita R., Scattolo N., Cinquetti M., Fasano A., Catassi C. Increased prevalence of celiac disease in school-age children in Italy. Clin. Gastroenterol. Hepatol. 2020;18:596–603. doi: 10.1016/j.cgh.2019.06.013. PubMed DOI

Moser L.A., Carter M., Schultz-Cherry S. Astrovirus increases epithelial barrier permeability independently of viral replication. J. Virol. 2007;81:11937–11945. doi: 10.1128/JVI.00942-07. PubMed DOI PMC

Brown J.J., Short S.P., Stencel-Baerenwald J., Urbanek K., Pruijssers A.J., McAllister N., Ikizler M., Taylor G., Aravamudhan P., Khomandiak S., et al. Reovirus-induced apoptosis in the intestine limits establishment of enteric infection. J. Virol. 2018;92:e02062-17. doi: 10.1128/JVI.02062-17. PubMed DOI PMC

Bouziat R., Hinterleitner R., Brown J.J., Stencel-Baerenwald J.E., Ikizler M., Mayassi T., Meisel M., Kim S.M., Discepolo V., Pruijssers A.J., et al. Reovirus infection triggers inflammatory responses to dietary antigens and development of celiac disease. Science. 2017;356:44–50. doi: 10.1126/science.aah5298. PubMed DOI PMC

Oikarinen M., Tauriainen S., Oikarinen S., Honkanen T., Collin P., Rantala I., Mäki M., Kaukinen K., Hyöty H. Type 1 diabetes is associated with enterovirus infection in gut mucosa. Diabetes. 2012;61:687–691. doi: 10.2337/db11-1157. PubMed DOI PMC

Lindfors K., Lin J., Lee H.S., Hyöty H., Nykter M., Kurppa K., Liu E., Koletzko S., Rewers M., Hagopian W., et al. Metagenomics of the faecal virome indicate a cumulative effect of enterovirus and gluten amount on the risk of coeliac disease autoimmunity in genetically at risk children: The TEDDY study. Gut. 2020;69:1416–1422. doi: 10.1136/gutjnl-2019-319809. PubMed DOI PMC

Lerner A., Arleevskaya M., Schmiedl A., Matthias T. Microbes and viruses are bugging the gut in celiac disease. Are they friends or foes? Front. Microbiol. 2017;8:1392. doi: 10.3389/fmicb.2017.01392. PubMed DOI PMC

Rostami K., Rostami Nejad M. Vaccinations in celiac disease. J. Pediatr. Gastroenterol. Nutr. 2013;56:341–342. doi: 10.1097/MPG.0b013e31827af217. PubMed DOI

Hviid A., Svanström H., Scheller N.M., Grönlung O., Pasternak B., Arnheim-Dahlström L. Human papillomavirus vaccination of adult women and risk of autoimmune and neurological diseases. J. Intern. Med. 2018;283:154–165. doi: 10.1111/joim.12694. PubMed DOI

Kårhus L.L., Gunnes N., Størdal K., Bakken I.J., Tapia G., Stene L.C., Håberg S.E., Mårild K. Influenza and risk of later celiac disease: A cohort study of 2.6 million people. Scand. J. Gastroenterol. 2018;53:15–23. doi: 10.1080/00365521.2017.1362464. PubMed DOI

Jansen M.A.E., van den Heuvel D., van der Zwet K.V.M., Jaddoe V.W.V., Hofman A., Escher J.C., Fraaij P.L.A., Hooijkaas H., van Zelm M.C., Moll H.A. Herpesvirus infections and transglutaminase type 2 antibody positivity in childhood: The Generation R Study. J. Pediatr. Gastroenterol. Nutr. 2016;63:423–430. doi: 10.1097/MPG.0000000000001163. PubMed DOI

Nieuwenhuizen W.F., Pieters R.H.H., Knippels L.M.J., Jansen M.C.J.F., Koppelman S.J. Is Candida albicans a trigger in the onset of coeliac disease? Lancet. 2003;351:2152–2154. doi: 10.1016/S0140-6736(03)13695-1. PubMed DOI

Corouge M., Loridant S., Fradin C., Salleron J., Damiens S., Moragues M.D., Souplet V., Jouault T., Robert R., Dubucquoi S., et al. Humoral immunity links Candida albicans infection and celiac disease. PLoS ONE. 2015;10:e0121776. doi: 10.1371/journal.pone.0121776. PubMed DOI PMC

Rostami Nejad M., Ishaq S., Al Dulaimi D., Zali M.R., Rostami K. The role of infectious mediators and gut microbiome in the pathogenesis of celiac disease. Arch. Iran Med. 2015;18:244–249. PubMed

Hanevik K., Wik E., Langeland N., Hausken T. Transient elevation of anti-transglutaminase and anti-endomysium antibodies in Giardia infection. Scand. J. Gastroenterol. 2018;53:809–812. doi: 10.1080/00365521.2018.1481522. PubMed DOI

Tlaskalová-Hogenová H., Tucková L., Lodinová-Zádniková R., Stepánková R., Cukrowska B., Funda D.P., Striz I., Kozáková H., Trebichavský I., Sokol D., et al. Mucosal immunity: Its role in defense and allergy. Int. Arch. Allergy Immunol. 2002;128:77–89. doi: 10.1159/000059397. PubMed DOI

Tlaskalová-Hogenová H., Štěpánková R., Hudcovic T., Tučková L., Cukrowska B., Lodinová-Žádníková R., Kozáková H., Rossmann P., Bártová J., Sokol D., et al. Commensal bacterial (normal microflora), mucosal immunity and chronic inflammatory and autoimmune diseases. Immunol. Lett. 2004;93:97–108. doi: 10.1016/j.imlet.2004.02.005. PubMed DOI

Tlaskalová-Hogenová H., Stěpanková R., Kozáková H., Hudcovic T., Vannuci L., Tučková L., Rossmann P., Hrnčíř T., Kverka M., Zákostelská Z., et al. The role of gut microbiota (commensal bacteria) and the mucosal barrier in the pathogenesis of inflammatory and autoimmune diseases and cancer: Contribution of germ-free and gnotobiotic animal models of human diseases. Cell. Mol. Immunol. 2011;8:110–120. doi: 10.1038/cmi.2010.67. PubMed DOI PMC

Iaffaldano L., Granata I., Pagliuca C., Esposito M.V., Casaburi G., Salerno G., Colicchio R., Piccirillo M., Ciacci C., Del Vecchio Blanco G., et al. Oropharyngeal microbiome evaluation highlights Neisseria abundance in active celiac patients. Sci. Rep. 2018;8:11047. doi: 10.1038/s41598-018-29443-1. PubMed DOI PMC

Tian N., Faller L., Leffler D.A., Kelly C.P., Hansen J., Bosch J.A., Wei G., Paster B.J., Schuppan D., Helmerhorst E.J. Salivary gluten degradation and oral microbial profiles in healthy individuals and celiac disease patients. Appl. Environ. Microbiol. 2017;83:e03330. doi: 10.1128/AEM.03330-16. PubMed DOI PMC

Collado M.C., Donat E., Ribes-Koninckx C., Calabuig M., Sanz Y. Specific duodenal and faecal bacterial groups associated with paediatric coeliac disease. J. Clin. Pathol. 2009;62:264–269. doi: 10.1136/jcp.2008.061366. PubMed DOI

De Palma G., Cinová J., Štěpánková R., Tučková L., Sanz Y. Pivotal advance: Bifidobacteria and gram-negative bacteria differentially influence immune responses in the proinflammatory milieu of celiac disease. J. Leukoc. Biol. 2010;87:765–778. doi: 10.1189/jlb.0709471. PubMed DOI

Olivares M., Benítez-Páez A., De Palma G., Capilla A., Nova E., Castillejo G., Varea V., Marcos A., Garrote J.A., Polanco I., et al. Increased prevalence of pathogenic bacteria in the gut microbiota of infants at risk of developing celiac disease: The PROFICEL study. Gut Microbes. 2018;9:551–558. doi: 10.1080/19490976.2018.1451276. PubMed DOI PMC

Sánchez E., Ribes-Koninckx C., Calabuing M., Sanz Y. Intestinal Staphylococcus spp. and virulent features associated with celiac disease. J. Clin. Pathology. 2012;65:830–834. doi: 10.1136/jclinpath-2012-200759. PubMed DOI

Wacklin P., Kaukinen K., Tuovinen E., Collin P., Lindfors K., Partanen J., Mäki M., Mättö J. The duodenal microbiota composition of adult celiac disease patients is associated with the clinical manifestation of the disease. Inflamm. Bowel Dis. 2013;19:934–941. doi: 10.1097/MIB.0b013e31828029a9. PubMed DOI

D´Argenio V., Casaburi G., Precone V., Pagliuca C., Colicchio R., Sarnataro D., Discepolo V., Kim S.M., Russo I., Del Vecchio Blanco G., et al. Metagenomics reveals dysbiosis and a potentially pathogenic N. flavescens strain in duodenum of adult celiac patients. Am. J. Gastroenterol. 2016;111:879–890. doi: 10.1038/ajg.2016.95. PubMed DOI PMC

De Palma G., Nadal I., Medina M., Donat E., Ribes-Koninckx C., Calabuig M., Sanz Y. Intestinal dysbiosis and reduced immunoglobulin-coated bacteria associated with coeliac disease in children. BMC Microbiol. 2010;10:63. doi: 10.1186/1471-2180-10-63. PubMed DOI PMC

Sánchez E., Laparra J.M., Sanz Y. Discerning the role of Bacteroides fragilis in celiac disease pathogenesis. Appl. Environ. Microbiol. 2012;78:6507–6515. doi: 10.1128/AEM.00563-12. PubMed DOI PMC

Sacchetti L., Nardelli C. Gut microbiome investigation in celiac disease: From methods to its pathogenetic role. Clin. Chem. Lab. Med. 2020;58:340–349. doi: 10.1515/cclm-2019-0657. PubMed DOI

Schippa S., Iebba V., Barbato M., Di Nardo G., Totino V., Checchi M.P., Longhi C., Maiella G., Cucchiara S., Conte M.P. A distinctive “microbial signature” in celiac pediatric patients. BMC Microbiol. 2010;10:175. doi: 10.1186/1471-2180-10-175. PubMed DOI PMC

Ou G., Hedberg M., Hörstedt P., Baranov V., Forsberg G., Drobni M., Sandström O., Wai S.N., Johansson I., Hammarström M.L., et al. Proximal small intestinal microbiota and identification of rod-shaped bacteria associated with childhood celiac disease. Am. J. Gastroenterol. 2009;104:3058–3067. doi: 10.1038/ajg.2009.524. PubMed DOI

Fukuda S., Toh H., Hase K., Oshima K., Nakanishi Y., Yoshimura K., Tobe T., Clarke J.M., Topping D.L., Suzuki T., et al. Bifidobacteria can protect from enteropathogenic infection through production of acetate. Nature. 2011;469:543–547. doi: 10.1038/nature09646. PubMed DOI

Berger P., Kouzel I.U., Berger M., Haarmann N., Dobrindt U., Koudelka G.B., Mellmann A. Carriage of Shiga toxin phage profoundly affects Escherichia coli gene expression and carbon source utilization. BMC Genomics. 2019;20:504. doi: 10.1186/s12864-019-5892-x. PubMed DOI PMC

Martín R., Chamignon C., Mhedbi-Hajri N., Chain F., Derrien M., Escribano-Vázquez U., Garault P., Cotillard A., Pham H.P., Chervaux C., et al. The potential probiotic Lactobacillus rhamnosus CNCM I-3690 strain protects the intestinal barrier by stimulating both mucus production and cytoprotective response. Sci. Rep. 2019;9:5398. doi: 10.1038/s41598-019-41738-5. PubMed DOI PMC

van der Lugt B., van Beek A.A., Aalvink S., Meijer B., Sovran B., Vermeij W.P., Brandt R.M.C., de Vos W.W., Savelkoul H.F.J., Steegenga W.T., et al. Akkermansia muciniphila ameliorates the age-related decline in colonic mucus thickness and attenuates immune activation in accelerated aging Ercc1-/Δ7 mice. Immun. Ageing. 2019;16:6. doi: 10.1186/s12979-019-0145-z. PubMed DOI PMC

Shen X.M., Cui H.X., Xu X.R. Orally administered Lactobacillus casei exhibited several probiotic properties in artificially suckling rabbits. Asian-Australas J. Anim. Sci. 2019;15:1352–1359. doi: 10.5713/ajas.18.0973. PubMed DOI PMC

Sarshar M., Scribano D., Ambrosi C., Palamara A.T., Masotti A. Fecal microRNAs as innovative biomarkers of intestinal diseases and effective players in host-microbiome interactions. Cancers. 2020;12:2174. doi: 10.3390/cancers12082174. PubMed DOI PMC

Sellitto M., Bai G., Serena G., Fricke W.F., Sturgeon C., Gajer P., White J.R., Koenig S.S.K., Sakamoto J., Boothe D., et al. Proof of concept of microbiome-metabolome analysis and delayed gluten exposure on celiac disease autoimmunity in genetically at-risk infants. PLoS ONE. 2012;7:e33387. doi: 10.1371/journal.pone.0033387. PubMed DOI PMC

Bibbò S., Ianiro G., Giorgio V., Scaldaferri F., Masucci L., Gasbarrini A., Cammarota G. The role of diet on gut microbiota composition. Eur. Rev. Med. Pharmacol. Sci. 2016;20:4742–4749. PubMed

Woo V., Alenghat T. Host-microbiota interactions: Epigenomic regulation. Curr. Opin. Immunol. 2017;44:52–60. doi: 10.1016/j.coi.2016.12.001. PubMed DOI PMC

Sun M., Wu W., Liu Z., Cong Y. Microbiota metabolite short chain fatty acids, GPCR, and inflammatory bowel diseases. J. Gastroenterol. 2017;52:1–8. doi: 10.1007/s00535-016-1242-9. PubMed DOI PMC

Schilderink R., Verseijden C., de Jonge W.J. Dietary inhibitors of histone deacetylases in intestinal immunity and homeostasis. Front. Immunol. 2013;4:226. doi: 10.3389/fimmu.2013.00226. PubMed DOI PMC

Wardwell L.H., Huttenhower C., Garrett W.S. Current concepts of the intestinal microbiota and the pathogenesis of infection. Curr. Infect. Dis. Rep. 2011;13:28–34. doi: 10.1007/s11908-010-0147-7. PubMed DOI PMC

Fasano A. All disease begins in the (leaky) gut: Role of zonulin-mediated gut permeability in the pathogenesis of some chronic inflammatory diseases. F1000Res. 2020;9 doi: 10.12688/f1000research.20510.1. PubMed DOI PMC

Hoffmanová I., Sánchez D., Hábová V., Anděl M., Tučková L., Tlaskalová-Hogenová H. Serological markers of enterocyte damage and apoptosis in patients with celiac disease, autoimmune diabetes mellitus and diabetes mellitus type 2. Physiol. Res. 2015;64:537–546. doi: 10.33549/physiolres.932916. PubMed DOI

Sánchez D., Tučková L., Šebo P., Michalak M., Whelan A., Šterzl I., Jelínková L., Havrdová E., Imramovská M., Beneš Z., et al. Occurrence of IgA and IgG autoantibodies to calreticulin in coeliac disease and various autoimmune diseases. J. Autoimmun. 2000;15:441–449. doi: 10.1006/jaut.2000.0452. PubMed DOI

Stulík J., Hernychová L., Porkertová S., Pozler O., Tucková L., Sánchez D., Bures J. Identification of new celiac disease autoantigens using proteomic analysis. Proteomics. 2003;3:951–956. doi: 10.1002/pmic.200300370. PubMed DOI

Sánchez D., Tučková L., Mothes T., Kreisel W., Beneš Z., Tlaskalová-Hogenová H. Epitopes of calreticulin recognised by IgA autoantibodies from patients with hepatic and coeliac disease. J. Autoimmun. 2003;21:383–392. doi: 10.1016/S0896-8411(03)00137-9. PubMed DOI

Sánchez D., Palová-Jelínková L., Felsberg J., Simsová M., Pekáriková A., Pecharová B., Swoboda I., Mothes T., Mulder C.J.J., Benes Z., et al. Anti-calreticulin immunoglobulin A (IgA) antibodies in refractory coeliac disease. Clin. Exp. Immunol. 2008;153:351–359. doi: 10.1111/j.1365-2249.2008.03701.x. PubMed DOI PMC

Sánchez D., Champier G., Cuvillier A., Cogné M., Pekáriková A., Tlaskalová-Hogenová H., Hoffmanová I., Drastich P., Mothes T., Tučková L. Similarity of fine specificity of IgA anti-gliadin antibodies between patients with celiac disease and humanized α1KI mice. J. Agric. Food. Chem. 2011;59:3092–3100. doi: 10.1021/jf1044519. PubMed DOI

Huebener S., Tanaka C.K., Uhde M., Zone J.J., Vensel W.H., Kasarda D.D., Beams L., Briani C., Green P.H.R., Altenbach S.B., et al. Specific nongluten proteins of wheat are novel target antigens in celiac disease humoral response. J. Proteome. Res. 2015;14:503–511. doi: 10.1021/pr500809b. PubMed DOI PMC

Sánchez D., Štěpánová Honzová S., Hospodková M., Hoffmanová I., Hábová V., Halada P., Tlaskalová-Hogenová H., Tučková L. Occurrence of serum antibodies against wheat alpha-amylase inhibitor 0.19 in celiac disease. Physiol. Res. 2018;67:613–622. doi: 10.33549/physiolres.933876. PubMed DOI

Ménard S., Lebreton C., Schumann M., Matysiak-Budnik T., Dugave C., Bouhnik Y., Malamut G., Cellier C., Allez M., Crenn P., et al. Paracellular versus transcellular intestinal permeability to gliadin peptides in active celiac disease. Am. J. Pathol. 2012;18:608–615. doi: 10.1016/j.ajpath.2011.10.019. PubMed DOI

Glotfelty L.G., Zahs A., Hodges K., Shan K., Alto N.M., Hecht G.A. Enteropathogenic E. coli effectors EspG1/G2 disrupt microtubules, contribute to tight junction perturbation and inhibit restoration. Cell. Microbiol. 2014;16:1767–1783. doi: 10.1111/cmi.12323. PubMed DOI PMC

Dubreuil J.D. Enterotoxigenic Escherichia coli targeting intestinal epithelial tight junctions: An effective way to alter the barrier integrity. Microb. Pathog. 2017;113:129–134. doi: 10.1016/j.micpath.2017.10.037. PubMed DOI

Johal S.S., Solomon K., Dodson S., Borriello S.P., Mahida Y.R. Differential effects of varying concentrations of Clostridium difficile toxin A on epithelial barrier function and expression of cytokines. J. Infect. Dis. 2004;189:2110–2119. doi: 10.1086/386287. PubMed DOI

Ciccocioppo R., Di Sabatino A., Corazza G.R. The immune recognition of gluten in coeliac disease. Clin. Exp. Immunol. 2005;140:408–416. doi: 10.1111/j.1365-2249.2005.02783.x. PubMed DOI PMC

Peterson D.A., McNulty N.P., Guruge J.L., Gordon J.I. IgA response to symbiotic bacteria as a mediator gut homeostasis. Cell Host Microbe. 2007;2:328–339. doi: 10.1016/j.chom.2007.09.013. PubMed DOI

Olivares M., Walker A.W., Capilla A., Benítez-Páez A., Palau F., Parkhill J., Castillejo G., Sanz Y. Gut microbiota trajectory in early life may predict development of celiac disease. Microbiome. 2018;6:36. doi: 10.1186/s40168-018-0415-6. PubMed DOI PMC

Hollon J., Puppa E.L., Greenwald B., Goldberg E., Guerrerio A., Fasano A. Effect of gliadin on permeability of intestinal biopsy explants from celiac disease patients and patients with non-celiac gluten sensitivity. Nutrients. 2015;7:1565–1576. doi: 10.3390/nu7031565. PubMed DOI PMC

Lerner A., Matthias T. Celiac disease: Intestinal, heart and skin interconnections. Int. J. Celiac Dis. 2015;3:28–30. doi: 10.12691/ijcd-3-1-6. DOI

Lerner A., Matthias T. Rheumatoid arthritis-celiac disease relationship: Joints get that gut feeling. Autoimmun. Rev. 2015;14:1038–1047. doi: 10.1016/j.autrev.2015.07.007. PubMed DOI

Bloomfield S.F., Rook G.A., Scott E.A., Shanahan F., Stanwell-Smith R., Turner P. Time to abandon the hygiene hypothesis: New perspectives on allergic disease, the human microbiome, infectious disease prevention and the role of targeted hygiene. Perspect. Public. Health. 2016;136:213–224. doi: 10.1177/1757913916650225. PubMed DOI PMC

Kverka M., Tlaskalová-Hogenová H. Intestinal microbiota: Facts and fiction. Dig. Dis. 2017;35:139–147. doi: 10.1159/000449095. PubMed DOI

Stearns J.C., Lynch M.D., Senadheera D.B., Tenenbaum H.C., Goldberg M.B., Cvitkovitch D.G., Croitoru K., Moreno-Hagelsieb G., Neufeld J.D. Bacterial biogeography of the human digestive tract. Sci. Rep. 2011;1:170. doi: 10.1038/srep00170. PubMed DOI PMC

Rinninella E., Raoul P., Cintoni M., Franceschi F., Miggiano G.A.D., Gasbarrini A., Mele M.C. What is the healthy gut microbiota composition? A changing ecosystem across age, environment, diet and diseases. Microorganisms. 2019;7:14. doi: 10.3390/microorganisms7010014. PubMed DOI PMC

De Palma G., Capilla A., Nova E., Castillejo G., Varea V., Pozo T., Garrote J.A., Polanco I., López A., Ribes-Koninckx C., et al. Influence of milk-feeding type and genetic risk of developing coeliac disease on intestinal microbiota of infants: The PROFICEL study. PLoS ONE. 2012;7:e30791. doi: 10.1371/journal.pone.0030791. PubMed DOI PMC

Olivares M., Neef A., Castillejo G., De Palma G., Varea V., Capilla A., Palau F., Nova E., Marcos A., Polanco I., et al. The HLA-DQ2 genotype selects for early intestinal microbiota composition in infants at high risk of developing coeliac disease. Gut. 2015;64:406–417. doi: 10.1136/gutjnl-2014-306931. PubMed DOI

Neu J., Rushing J. Cesarean versus vaginal delivery: Long-term infant outcomes and the hygiene hypothesis. Clin. Perinatol. 2011;38:321–331. doi: 10.1016/j.clp.2011.03.008. PubMed DOI PMC

Dominguez-Bello M.G., Costello E.K., Contreras M., Magris M., Hidalgo G., Fierer N., Knight R. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc. Natl. Acad. Sci. USA. 2010;107:11971–11975. doi: 10.1073/pnas.1002601107. PubMed DOI PMC

Francavilla R., Cristofori F., Tripaldi M.E., Indrio F. Intervention for dysbiosis in children born by C-section. Ann. Nutr. Metab. 2018;73(Suppl. 3):33–39. doi: 10.1159/000490847. PubMed DOI

Decker E., Hornef M., Stockinger S. Cesarean delivery is associated with celiac disease but not inflammatory bowel disease in children. Gut Microbes. 2011;2:91–98. doi: 10.4161/gmic.2.2.15414. PubMed DOI

Adlercreutz E.H., Wingren C.J., Vincente R.P., Merlo J., Agardh D. Perinatal risk factors increase the risk of being affected by both type 1 diabetes and coeliac disease. Acta Paediatr. 2015;104:178–184. doi: 10.1111/apa.12836. PubMed DOI

Rutayisire E., Huang K., Liu Y., Tao F. The mode of delivery affects the diversity and colonization pattern of the gut microbiota during the first year of infants’ life: A systematic review. BMC Gastroenterol. 2016;16:86. doi: 10.1186/s12876-016-0498-0. PubMed DOI PMC

Jakobsson H.E., Abrahamsson T.R., Jenmalm M.C., Harris K., Quince C., Jernberg C., Björkstén B., Engstrand L., Andersson A.F. Decreased gut microbiota diversity, delayed Bacteroidetes colonisation and reduced Th1 responses in infants delivered by Caesarean section. Gut. 2014;63:559–566. doi: 10.1136/gutjnl-2012-303249. PubMed DOI

Koren O., Goodrich J.K., Cullender T.C., Spor A., Laitinen K., Bäckhed H.K., Gonzalez A., Werner J.J., Angenent L.T., Knight R., et al. Host remodeling of the gut microbiome and metabolic changes during pregnancy. Cell. 2012;150:470–480. doi: 10.1016/j.cell.2012.07.008. PubMed DOI PMC

Aagaard K., Ma J., Antony K.M., Ganu R., Petrosino J., Versalovic J. The placenta harbors a unique microbiome. Sci. Transl. Med. 2014;6:237ra65. doi: 10.1126/scitranslmed.3008599. PubMed DOI PMC

Wilczyńska P., Skarżyńska E., Lisowska-Myjak B. Meconium microbiome as a new source of information about long-term health and disease: Questions and answers. J. Matern. Fetal Neonatal Med. 2019;32:681–686. doi: 10.1080/14767058.2017.1387888. PubMed DOI

Szajewska H., Chmielewska A., Pieścik-Lech M., Ivarsson A., Kolacek S., Koletzko S., Mearin M.L., Shamir R., Auricchio R., Troncone R., et al. Systematic review: Early infant feeding and the prevention of coeliac disease. Aliment. Pharmacol. Ther. 2012;36:607–618. doi: 10.1111/apt.12023. PubMed DOI

Asakuma S., Hatakeyama E., Urashima T., Yoshida E., Katayama T., Yamamoto K., Kumagai H., Ashida H., Hirose J., Kitaoka M. Physiology of consumption of human milk oligosaccharides by infant gut-associated bifidobacteria. J. Biol. Chem. 2011;286:34583–34592. doi: 10.1074/jbc.M111.248138. PubMed DOI PMC

Nguyen T.T., Kim J.W., Park J.S., Hwang K.H., Jang T.S., Kim C.H., Kim D. Identification of oligosaccharides in human milk bound onto the toxin A carbohydrate binding site of Clostridium difficile. J. Microbiol. Biotechnol. 2016;26:659–665. doi: 10.4014/jmb.1509.09034. PubMed DOI

De Sousa Moraes L.F., Grzeskowiak L.M., de Sales Teixeira T.F., Pelúzio M.D.C.G. Intestinal microbiota and probiotics in celiac disease. Clin. Microbiol. Rev. 2014;27:482–489. doi: 10.1128/CMR.00106-13. PubMed DOI PMC

De Palma G., Nadal I., Collado M.C., Sanz Y. Effects of a gluten-free diet on gut microbiota and immune function in healthy adult human subjects. Br. J. Nutr. 2009;102:1154–1160. doi: 10.1017/S0007114509371767. PubMed DOI

Marasco G., Colecchia A., Festi D. Dysbiosis in celiac disease patients with persistent symptoms on gluten-free diet: A condition similar to that present in irritable bowel syndrome patients? Am. J. Gastroenterol. 2015;110:598. doi: 10.1038/ajg.2015.54. PubMed DOI

Tjellström B., Stenhammar L., Högberg L., Fälth-Magnusson K., Magnusson K.E., Midtvedt T., Sundqvist T., Norin E. Gut microflora associated characteristics in children with celiac disease. Am. J. Gastroenterol. 2005;100:2784–2788. doi: 10.1111/j.1572-0241.2005.00313.x. PubMed DOI

Nistal E., Caminero A., Vivas S., Ruiz de Morales J.M., Sáenz de Miera L.E., Rodríguez-Aparicio L.B., Casqueiro J. Differences in faecal bacteria populations and faecal bacteria metabolism in healthy adults and celiac disease patients. Biochimie. 2012;94:1724–1729. doi: 10.1016/j.biochi.2012.03.025. PubMed DOI

Jackson F.W. Effects of a gluten-free diet on gut microbiota and immune function in healthy adult human subjects-comment by Jackson. Br. J. Nutr. 2010;104:773. doi: 10.1017/S0007114510001960. PubMed DOI

Cristofori F., Indrio F., Miniello V.L., De Angelis M., Francavilla R. Probiotics in celiac disease. Nutrients. 2018;10:1824. doi: 10.3390/nu10121824. PubMed DOI PMC

Wacklin P., Laurikka P., Lindfors K., Mättö J., Kurppa K., Kaukinen K. Response to Marasco et al. Am. J. Gastroenterol. 2015;110:598–599. doi: 10.1038/ajg.2015.59. PubMed DOI

Bach J.F. Current concepts of autoimmunity. Rev. Neurol. 2002;158:881–886. PubMed

Shoenfeld Y., Sherer Y., Kalden J.R. The expanding world of autoimmunity. Trends Immunol. 2002;23:278–279. doi: 10.1016/S1471-4906(02)02234-2. PubMed DOI

Karczewski J., Poniedziałek B., Adamski Z., Rzymski P. The effects of the microbiota on the host immune system. Autoimmunity. 2014;47:494–504. doi: 10.3109/08916934.2014.938322. PubMed DOI

Kuhn K.A., Pedraza I., Demoruelle M.K. Mucosal immune responses to microbiota in the development of autoimmune disease. Rheum. Dis. Clin. N. Am. 2014;40:711–725. doi: 10.1016/j.rdc.2014.07.013. PubMed DOI

Ruff W.E., Kriegel M.A. Autoimmune host-microbiota interactions at barrier sites and beyond. Trends Mol. Med. 2015;21:233–244. doi: 10.1016/j.molmed.2015.02.006. PubMed DOI PMC

Paun A., Danska J.S. Immuno-ecology: How the microbiome regulates tolerance and autoimmunity. Curr. Opin. Immunol. 2015;37:34–39. doi: 10.1016/j.coi.2015.09.004. PubMed DOI

Wucherpfennig K.W. Infectious triggers for inflammatory neurological diseases. Nat. Med. 2002;8:455–457. doi: 10.1038/nm0502-455. PubMed DOI

Ide A., Babu S.R., Robles D.T., Wang T., Erlich H.A., Bugawan T.L., Rewers M., Fain P.R., Eisenbarth G.S. Homozygosity for premature stop codon of the MHC class I chain-related gene A (MIC-A) is associated with early activation of islet autoimmunity of DR3/4-DQ2/8 high risk DAISY relatives. J. Clin. Immunol. 2005;25:303–308. doi: 10.1007/s10875-005-4826-3. PubMed DOI

Sundberg E.J., Deng L., Mariuzza R.A. TCR recognition of peptide/MHC class II complexes and superantigens. Semin. Immunol. 2007;19:262–271. doi: 10.1016/j.smim.2007.04.006. PubMed DOI PMC

Getts D.R., Chastain E.M.L., Terry R.L., Miller S.D. Virus infection, antiviral immunity, and autoimmunity. Immunol. Rev. 2013;255:197–209. doi: 10.1111/imr.12091. PubMed DOI PMC

Loss H., Aschenbach J.R., Ebner F., Tedin K., Lodemann U. Effects of pathogenic ETEC strain and a probiotic Enterococcus faecium strain on the inflammasome response in porcine dendritic cells. Vet. Immunol. Immunopathol. 2018;203:78–87. doi: 10.1016/j.vetimm.2018.08.004. PubMed DOI

Linehan J.L., Harrison O.J., Han S.J., Byrd A.L., Vujkovic-Cvijin I., Villarino A.V., Sen S.K., Shaik J., Smelkinson M., Tamoutounour S., et al. Non-classical immunity controls microbiota impact on skin immunity and tissue repair. Cell. 2018;172:784–796.e18. doi: 10.1016/j.cell.2017.12.033. PubMed DOI PMC

Bolhassani A., Agi E. Heat shock proteins in infection. Clin. Chim. Acta. 2019;498:90–100. doi: 10.1016/j.cca.2019.08.015. PubMed DOI

Kotzin B.L., Leung D.Y., Kappler J., Marrack P. Superantigens and their potential role in human disease. Adv. Immunol. 1993;54:99–166. PubMed

Bachert C., Gevaert P., van Cauwenberge P. Staphylococcus aureus superantigens and airway disease. Curr. Allergy Asthma Rep. 2002;2:252–258. doi: 10.1007/s11882-002-0027-9. PubMed DOI

Fujinami R.S., von Herrath M.G., Christen U., Whitton J.L. Molecular mimicry, bystander activation, or viral persistence: Infections and autoimmune disease. Clin. Microbiol. Rev. 2006;19:80–94. doi: 10.1128/CMR.19.1.80-94.2006. PubMed DOI PMC

Vojdani A. Molecular mimicry as a mechanism for food immune reactivities and autoimmunity. Altern. Ther. Health Med. 2015;21(Suppl. 1):34–45. PubMed

Pacheco Y., Acosta-Ampudia Y., Monsalve D.M., Chang C., Gershwin M.E., Anaya J.M. Bystander activation and autoimmunity. J. Autoimmun. 2019;103:102301. doi: 10.1016/j.jaut.2019.06.012. PubMed DOI

Rojas M., Restrepo-Jiménez P., Monsalve D.M., Pacheco Y., Acosta-Ampudia Y., Ramírez-Santana C., Leung P.S.C., Ansari A.A., Gershwin M.E., Anaya J.M. Molecular mimicry and autoimmunity. J. Autoimmun. 2018;95:100–123. doi: 10.1016/j.jaut.2018.10.012. PubMed DOI

Smatti M.K., Cyprian F.S., Nasrallah G.K., Al Thani A.A., Almishal R.O., Yassine H.M. Viruses and autoimmunity: A review on the potential interaction and molecular mechanisms. Viruses. 2019;11:762. doi: 10.3390/v11080762. PubMed DOI PMC

Singh B., Read S., Asseman C., Malmström V., Mottet C., Stephens L.A., Stepankova R., Tlaskalova H., Powrie F. Control of intestinal inflammation by regulatory T cells. Immunol. Rev. 2001;182:190–200. doi: 10.1034/j.1600-065X.2001.1820115.x. PubMed DOI

Hudcovic T., Stepánková R., Kozáková H., Hrncír T., Tlaskalová-Hogenová H. Effects of monocolonization with Escherichia coli strains O6K13 and Nissle 1917 on the development of experimentally induced acute and chronic intestinal inflammation in germ-free immunocompetent and immunodeficient mice. Folia Microbiol. 2007;52:618–626. doi: 10.1007/BF02932191. PubMed DOI

Hrncir T., Hrncirova L., Kverka M., Tlaskalova-Hogenova H. The role of gut microbiota in intestinal and liver diseases. Lab. Anim. 2019;53:271–280. doi: 10.1177/0023677218818605. PubMed DOI

Zákostelská Z., Málková J., Klimešová K., Rossmann P., Hornová M., Novosádová I., Stehlíková Z., Kostovčík M., Hudcovic T., Štěpánková R., et al. Intestinal microbiota promotes psoriasis-like skin inflammation by enhancing Th17 response. PLoS ONE. 2016;11:e0159539. doi: 10.1371/journal.pone.0159539. PubMed DOI PMC

Heissigerova J., Seidler Stangova P., Klimova A., Svozilkova P., Hrncir T., Stepankova R., Kverka M., Tlaskalova-Hogenova H., Forrester J.V. The microbiota determines susceptibility to experimental autoimmune uveoretinitis. J. Immunol. Res. 2016;2016:5065703. doi: 10.1155/2016/5065703. PubMed DOI PMC

Schwarzer M., Srutkova D., Hermanova P., Leulier F., Kozakova H., Schabussova I. Diet matters: Endotoxin in the diet impacts the level of allergic sensitization in germ-free mice. PLoS ONE. 2017;12:e0167786. doi: 10.1371/journal.pone.0167786. PubMed DOI PMC

Stehlikova Z., Kostovcikova K., Kverka M., Rossmann P., Dvorak J., Novosadová I., Kostovcik M., Coufal S., Srutkova D., Prochazkova P., et al. Crucial role of microbiota in experimental psoriasis revealed by a gnotobiotic mouse model. Front. Microbiol. 2019;10:236. doi: 10.3389/fmicb.2019.00236. PubMed DOI PMC

Szebeni B., Veres G., Dezsofi A., Rusai K., Vannay A., Bokodi G., Vásárhelyi B., Korponay-Szabó I.R., Tulassay T., Arató A. Increased mucosal expression of Toll-like receptor (TLR)2 and TLR4 in coeliac disease. J. Pediatr. Gastroenterol. Nutr. 2007;45:187–193. doi: 10.1097/MPG.0b013e318064514a. PubMed DOI

Zhernakova A., Elbers C.C., Ferwerda B., Romanos J., Trynka G., Dubois P.C., de Kovel C.G., Franke L., Oosting M., Barisani D., et al. Evolutionary and functional analysis of celiac risk loci reveals SH2B3 as protective factor against bacterial infection. Am. J. Hum. Genet. 2010;86:970–977. doi: 10.1016/j.ajhg.2010.05.004. PubMed DOI PMC

Wittig B., Schmidt M., Scheithauer W., Schmoll H.J. MGN1703, an immunomodulator and toll-like receptor 9 (TLR-9) agonist: From bench to bedside. Crit. Rev. Oncol. Hematol. 2015;94:31–44. doi: 10.1016/j.critrevonc.2014.12.002. PubMed DOI

Cheng J., Kalliomäki M., Heilig H.G.H.J., Palva A., Lähteenoja H., de Vos W.M., Salojärvi J., Satokari R. Duodenal microbiota composition and mucosal homeostasis in pediatric celiac disease. BMC Gastroenterol. 2013;13:113. doi: 10.1186/1471-230X-13-113. PubMed DOI PMC

Kalliomäki M., Satokari R., Lähteenoja H., Vähämiko S., Grönlund J., Routi T., Salminen S. Expression of microbiota, Toll-like receptors, and their regulators in the small intestinal mucosa in celiac disease. J. Pediatr. Gastroenterol. Nutr. 2012;54:727–732. doi: 10.1097/MPG.0b013e318241cfa8. PubMed DOI

Flo T.H., Halaas O., Torp S., Ryan E., Lien E., Dybdahl B., Sundan A., Espevik T. Differential expression of Toll-like receptor 2 in human cells. J. Leukoc. Biol. 2001;69:474–481. PubMed

Preiss S., Thompson A., Chen X., Rodgers S., Markovska V., Desmond P., Visvanathan K., Li K., Locarnini S., Revill P. Characterization of the innate immune signalling pathways in hepatocyte cell lines. J. Viral. Hepat. 2008;15:888–900. doi: 10.1111/j.1365-2893.2008.01001.x. PubMed DOI

Leoni V., Gianni T., Salvioli S., Campadelli-Fiume G. Herpes simplex virus glycoproteins gH/gL and gB bind Toll-like receptor 2, and soluble gH/gL is sufficient to activate NF-kappa B. J. Virol. 2012;86:6555–6562. doi: 10.1128/JVI.00295-12. PubMed DOI PMC

Otte J.M., Cario E., Podolsky D.K. Mechanisms of cross hyporesponsiveness to Toll-like receptor bacterial ligands in intestinal epithelial cells. Gastroenterology. 2004;126:1054–1070. doi: 10.1053/j.gastro.2004.01.007. PubMed DOI

Sjöberg V., Sandström O., Hedberg M., Hammarström S., Hernell O., Hammarström M.L. Intestinal T-cell responses in celiac disease—Impact of celiac disease associated bacteria. PLoS ONE. 2013;8:e53441. doi: 10.1371/journal.pone.0053414. PubMed DOI PMC

La Scaleia R., Barba M., Di Nardo G., Bonamico M., Oliva S., Nenna R., Valitutti F., Mennini M., Barbato M., Montuori M., et al. Size and dynamics of mucosal and peripheral IL-17A+ T-cell pools in pediatric age, and their disturbance in celiac disease. Mucosal Immunol. 2012;5:513–523. doi: 10.1038/mi.2012.26. PubMed DOI

Azad M.B., Konya T., Maughan H., Guttman D.S., Field C.J., Chari R.S., Sears M.R., Becker A.B., Scott J.A., Kozyrskyj A.L. CHILD Study Investigators. Gut microbiota of healthy Canadian infants: Profiles by mode of delivery and infant diet at 4 months. CMAJ. 2013;185:385–394. doi: 10.1503/cmaj.121189. PubMed DOI PMC

Hills R.D., Jr., Pontefract B.A., Mishcon H.R., Black C.A., Sutton S.C., Theberge C.R. Gut Microbiome: Profound implications for Diet and Disease. Nutrients. 2019;11:1613. doi: 10.3390/nu11071613. PubMed DOI PMC

Le Barz M., Daniel N., Varin T.V., Naimi S., Demers-Mathieu V., Pilon G., Audy J., Laurin É., Roy D., Urdaci M.C., et al. In vivo screening of multiple bacterial strains identifies Lactobacillus rhamnosus Lb102 and Bifidobacterium animalis ssp. lactis Bf141 as probiotics that improve metabolic disorders in a mouse model of obesity. FASEB J. 2019;33:4921–4935. PubMed

Marasco G., Cirota G.G., Rossini B., Lungaro L., Di Biase A.R., Colecchia A., Volta U., De Giorgio R., Festi D., Caio G. Probiotics, prebiotics and other dietary supplements for gut microbiota modulation in celiac disease patients. Nutrients. 2020;12:2674. doi: 10.3390/nu12092674. PubMed DOI PMC

Zyrek A.A., Cichon C., Helms S., Enders C., Sonnenborn U., Schmidt M.A. Molecular mechanisms underlying the probiotic effects of Escherichia coli Nissle 1917 involve ZO-2 and PKCzeta redistribution resulting in tight junction and epithelial barrier repair. Cell Microbiol. 2007;9:804–816. doi: 10.1111/j.1462-5822.2006.00836.x. PubMed DOI

Lindfors K., Blomqvist T., Juuti-Uusitalo K., Stenman S., Venäläinen J., Mäki M., Kaukinen K. Live probiotics Bifidobacterium lactis bacteria inhibit the toxic effects induced by wheat gliadin in epithelial cell culture. Clin. Exp. Immunol. 2008;152:552–558. doi: 10.1111/j.1365-2249.2008.03635.x. PubMed DOI PMC

Fang S.B., Lee H.C., Hu J.J., Hou S.Y., Liu H.L., Fang H.W. Dose-dependent effect of Lactobacillus rhamnosus on quantitative reduction of faecal rotavirus shedding in children. J. Trop. Pediatr. 2009;55:297–301. doi: 10.1093/tropej/fmp001. PubMed DOI

Vandenplas Y., Salvatore S., Vieira M., Devreker T., Hauser B. Probiotics in infectious diarrhoea in children: Are they indicated? Eur. J. Pediatr. 2007;166:1211–1218. doi: 10.1007/s00431-007-0497-9. PubMed DOI

Sander D.S., Nybo Andersen A.M., Murray J.A., Karlstad Ø., Husby S., Størdal K. Association between antibiotics in the first year of life and celiac disease. Gastroenterology. 2019;156:2217–2229. doi: 10.1053/j.gastro.2019.02.039. PubMed DOI

Mårild K., Ye W., Lebwohl B., Green P.H.R., Blaser M.J., Card T., Ludvigsson J.F. Antibiotic exposure and the development of coeliac disease: A nationwide case-control study. BMC Gastroenterol. 2013;13:109. doi: 10.1186/1471-230X-13-109. PubMed DOI PMC

Smecuol E., Hwang H.J., Sugai E., Corso L., Cherñavsky A.C., Bellavite F.P., González A., Vodánovich F., Moreno M.L., Vázquez H., et al. Exploratory, randomized, double-blind, placebo-controlled study on the effects of Bifidobacterium infantis natren life start strain in active celiac disease. J. Clin. Gastroenterol. 2013;47:139–147. doi: 10.1097/MCG.0b013e31827759ac. PubMed DOI

Pinto-Sánchez M.I., Smecuol E.C., Temprano M.P., Sugai E., González A., Moreno M.L., Huang X., Bercik P., Cabanne A., Vázquez H. Bifidobacterium infantis NLS super strain reduces the expression of α-defensin-5, a marker of innate immunity, in the mucosa of active celiac disease patients. J. Clin. Gastroenterol. 2017;51:814–817. doi: 10.1097/MCG.0000000000000687. PubMed DOI

Gassler N. Paneth cells in intestinal physiology and pathophysiology. World J. Gastrointest. Pathophysiol. 2017;8:150–160. doi: 10.4291/wjgp.v8.i4.150. PubMed DOI PMC

Valitutti F., Trovato C.M., Montuori M., Cucchiara S. Pediatric celiac disease: Follow-up in spotlight. Adv. Nutr. 2017;8:356–361. doi: 10.3945/an.116.013292. PubMed DOI PMC

Norsa L., Tomba C., Agostoni C., Branchi F., Bardella M.T., Roncoroni L., Conte D., Elli L. Gluten-free diet or alternative therapy: A survey on what parents of celiac children want. Int. J. Food Sci. Nutr. 2015;66:590–594. doi: 10.3109/09637486.2015.1064872. PubMed DOI

Laparra J.M., Sanz Y. Bifidobacteria inhibit the inflammatory response induced by gliadins in intestinal epithelial cells via modifications of toxic peptide generation during digestion. J. Cell. Biochem. 2010;109:801–807. doi: 10.1002/jcb.22459. PubMed DOI

Fernandez-Feo M., Wei G., Blumenkranz G., Dewhirst F.E., Schuppan D., Oppenheim F.G., Helmerhorst E.J. The cultivable human oral gluten-degrading microbiome and its potential implications in coeliac disease and gluten sensitivity. Clin. Microbiol. Infect. 2013;19:E386–E394. doi: 10.1111/1469-0691.12249. PubMed DOI PMC

Zamakhchari M., Wei G., Dewhirst F., Lee J., Schuppan D., Oppenheim F.G., Helmerhorst E.J. Identification of Rothia bacteria as gluten-degrading natural colonizers of the upper gastrointestinal tract. PLoS ONE. 2011;6:e24455. doi: 10.1371/journal.pone.0024455. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...