Changes of Meranti, Padauk, and Merbau Wood Lignin during the ThermoWood Process
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
APVV-17-0005
Agentúra na Podporu Výskumu a Vývoja
APVV-16-0326
Agentúra na Podporu Výskumu a Vývoja
VEGA-1/0387/18
Vedecká Grantová Agentúra MŠVVaŠ SR a SAV
PubMed
33804876
PubMed Central
PMC8037302
DOI
10.3390/polym13070993
PII: polym13070993
Knihovny.cz E-resources
- Keywords
- meranti, merbau, padauk, thermal treatment, wood lignin,
- Publication type
- Journal Article MeSH
Thermal modification is an environmentally friendly process in which technological properties of wood are modified using thermal energy without adding chemicals, the result of which is a value-added product. Wood samples of three tropical wood species (meranti, padauk, and merbau) were thermally treated according to the ThermoWood process at various temperatures (160, 180, 210 °C) and changes in isolated lignin were evaluated by nitrobenzene oxidation (NBO), Fourier-transform infrared spectroscopy (FTIR), and size exclusion chromatography (SEC). New data on the lignins of the investigated wood species were obtained, e.g., syringyl to guaiacyl ratio values (S/G) were 1.21, 1.70, and 3.09, and molecular weights were approx. 8600, 4300, and 8300 g·mol-1 for meranti, padauk, and merbau, respectively. Higher temperatures cause a decrease of methoxyls and an increase in C=O groups. Simultaneous degradation and condensation reactions in lignin occur during thermal treatment, the latter prevailing at higher temperatures.
See more in PubMed
Lee S.H., Ashaari Z., Lum W.C., Halip J.A., Ang A.F., Tan L.P., Chin K.L., Tahir P.M. Thermal treatment of wood using vegetable oils: A review. Constr. Build. Mater. 2018;181:408–419. doi: 10.1016/j.conbuildmat.2018.06.058. DOI
Sandak A., Sandak J., Petrillo M., Grossi P., Brzezicki M. Performance of modified wood. In: Jones D., Sandberg D., Goli G., Todaro L., editors. Wood Modification in Europe: A State–of–Art about Processes, Products and Applications. Firenze University Press; Florence, Italy: 2019. pp. 27–33.
Antov P., Savov V., Krišťák Ľ., Réh R., Mantanis G.I. Eco-Friendly, High-Density Fiberboards Bonded with Urea-Formaldehyde and Ammonium Lignosulfonate. Polymers. 2021;13:220. doi: 10.3390/polym13020220. PubMed DOI PMC
Zhang P., Wie Y., Liu Y., Gao J., Chen Y., Fan Y. Heat-Induced Discoloration of Chromophore Structures in Eucalyptus Lignin. Materials. 2018;11:1686. doi: 10.3390/ma11091686. PubMed DOI PMC
Dos Santos D.V.B., De Moura L.F., Brito J.O. Effect of heat treatment on color, weight loss, specific gravity and equilibrium moisture content of two low market valued tropical woods. Wood Res. 2014;59:253–264.
Rodriguez-Jimenez S., Duarte-Aranda S., Canche-Escamilla G. Chemical composition and thermal properties of tropical wood from the Yucatán dry forests. BioResources. 2019;14:2651–2666.
Xu J., Zhang Y., Shen Y., Li C., Wang Y., Ma Z., Sun W. New perspective on wood thermal modification: Relevance between the evolution of chemical structure and physical-mechanical properties, and online analysis of release of VOCs. Polymers. 2019;11:1145. doi: 10.3390/polym11071145. PubMed DOI PMC
Shi J.L., Kocaefe D., Amburgey T., Zhang J. A comparative study on brown rot fungus decay and subterranean termite resistance of thermally-modified and ACQ-C-treated wood. Eur. J. Wood Wood Prod. 2007;65:353–358. doi: 10.1007/s00107-007-0178-4. DOI
Korkut S. Performance of three thermally treated tropical wood species commonly used in Turkey. Ind. Crops Prod. 2012;36:355–362. doi: 10.1016/j.indcrop.2011.10.004. DOI
Ghadge K., Pandey K.K. Effect of Thermal Modification on Physical Properties of Bambusa nutans. In: Pandey K.K., Ramakantha V., Shakti Chauhan S.S., Arun Kumar A.N., editors. Wood Is Good. Springer; Singapore: 2017. pp. 287–295. DOI
Sikora A., Kačík F., Gaff M., Vondrová V., Bubeníková T., Kubovský I. Impact of thermal modification on color and chemical changes of spruce and oak wood. J. Wood Sci. 2018;64:406–416. doi: 10.1007/s10086-018-1721-0. DOI
Hill C.A.S. Wood modification: Chemical, Thermal and Other Processes. In: Stevens C.V., editor. Wiley Series in Renewable Resources. John Wiley & Sons; Chichester, UK: 2006. 260p
Carrier M., Loppinet-Serani A., Denux D., Lasnier J.M., Ham-Pichavant F., Cansell F., Aymonier C. Thermogravimetric analysis as a new method to determine the lignocellulosic composition of biomass. Biomass Bioenergy. 2011;35:298–307. doi: 10.1016/j.biombioe.2010.08.067. DOI
Zinovyev G., Sulaeva I., Podzimek S., Rössner D., Kilpelainen I., Sumerskii I., Rosenau T., Potthast A. Getting Closer to Absolute Molar Masses of Technical Lignins. ChemSusChem. 2018;11:3259–3268. doi: 10.1002/cssc.201801177. PubMed DOI PMC
Doherty W.O.S., Mousavioun P., Fellows C.M. Value-adding to cellulosic ethanol: Lignin polymers. Ind. Crops Prod. 2011;33:259–276. doi: 10.1016/j.indcrop.2010.10.022. DOI
Papadopoulos A.N. Advances in Wood Composites. Polymers. 2020;12:48. doi: 10.3390/polym12010048. PubMed DOI PMC
Pelaez-Samaniego M.R., Yadama V., Lowell E., Espinoza-Herrera R. A review of wood thermal pretreatments to improve wood composite properties. Wood Sci. Technol. 2013;47:1285–1319. doi: 10.1007/s00226-013-0574-3. DOI
Hortobágyi Á., Pivarčiová E., Koleda P. Holographic Interferometry for Measuring the Effect of Thermal Modification on Wood Thermal Properties. Appl. Sci. 2021;11:2516. doi: 10.3390/app11062516. DOI
Ditommaso G., Gaff M., Kačík F., Sikora A., Sethy A., Corleto R., Razaei F., Kaplan L., Kubš J., Das S., et al. Interaction of technical and technological factors on qualitative and energy/ecological/economic indicators in the production and processing of thermally modified merbau wood. J. Clean. Prod. 2020;252:119793. doi: 10.1016/j.jclepro.2019.119793. DOI
Noh N.I.F., Ahmad Z. Heat treatment on keruing and light red meranti: The effect of heat exposure at different levels of temperature on bending strength properties. IOP Conf. Ser. Mater. Sci. Eng. 2017;271:012060. doi: 10.1088/1757-899X/271/1/012060. DOI
Gašparík M., Gaff M., Kačík F., Sikora A. Color and chemical changes in teak (Tectona grandis L. f.) and meranti (Shorea spp.) wood after thermal treatment. BioResources. 2019;14:2667–2683. doi: 10.15376/biores.14.2.2667-2683. DOI
Devashankar S. FTIR, Powder X-RD and DSC Analysis of African Padauk Wood to Elucidate Possible Applications. In: Awasthi K., Babu S.B., editors. Macromolecular Symposia. Wiley-VCH; Weinheim, Germany: 2017. pp. 1–7. DOI
Wang C., Qin Y., Wang F., Wang Z., Huan A. Effect of Iron Oxide on the Protective Photochromism of African Padauk. Adv. Polym. Technol. 2019:1–8. doi: 10.1155/2019/8698746. DOI
Kroupa M., Gaff M., Karlsson O., Myronycheva O., Sandberg D. Effects of thermal modification on bending properties and chemical structure of Iroko and Padauk. In: Jos C., Thomas H., Bôke T., Holger M., Brigitte J., Jos G., editors. Proceedings of the 9th European Conference on Wood Modification, Burgers’ Zoo; Arnhem, The Netherlands. 17–18 September 2018; Wageningen, The Netherlands: SHR Wageningen; 2018. pp. 155–161.
Hu C., Jiang G., Xiao M., Zhou J., Yi Z. Effects of heat treatment on water-soluble extractives and color changes of merbau heartwood. J. Wood Sci. 2012;58:465–469. doi: 10.1007/s10086-012-1265-7. DOI
Liao Y., Wang J., Lu Z., Gu J., Hu C. Effects of heat treatment on durability of merbau heartwood. BioResources. 2016;11:426–438. doi: 10.15376/biores.11.1.426-438. DOI
Malik J., Ozarska B. Mechanical characteristics of impregnated white Jabon wood (Anthocephalus cadamba) using merbau extractives and selected polymerised merbau extractives. Maderas-Cienc. Tecnol. 2019;21:573–586. doi: 10.4067/S0718-221X2019005000413. DOI
Malik J., Santoso A., Ozarska B. Polymerised merbau extractives as impregnating material for wood properties enhancement. IOP Conf. Series: Mater. Sci. Eng. 2020;935 doi: 10.1088/1757-899X/935/1/012021. DOI
Makovická-Osvaldová L., Gašparík M., Castellanos J.R.S., Markert F., Kadlicová P., Čekovská H. Effect of thermal treatment on selected fire safety features of tropical wood. Commun.-Sci. Lett. Univ. Žilina. 2018;20:3–7.
Kamboj G., Gašparík M., Gaff M., Kačík F., Sethy A.K., Corleto R., Razaei F., Ditommaso G., Sikora A., Kaplan L., et al. Surface quality and cutting power requirement after edge milling of thermally modified meranti (Shorea spp.) wood. J. Build. Eng. 2020;29:101213. doi: 10.1016/j.jobe.2020.101213. DOI
ASTM . Standard Test Method for Ethanol-Toluene Solubility of Wood. ASTM International; West Conshohocken, PA, USA: 2013. ASTM D1107-96(2013) DOI
Sluiter A., Hames B., Ruiz R., Scarlata C., Sluiter J., Templeton D., Crocker D. Determination of Structural Carbohydrates and Lignin in Biomass. Laboratory Analytical Procedure (LAP), National Renewable Energy Laboratory; Golden, CO, USA: 2012. [(accessed on 20 February 2021)]. NREL/TP-510-42618. Available online: http://www.nrel.gov/biomass/analytical_procedures.html.
Kačíková D., Kubovský I., Ulbriková N., Kačík F. The Impact of Thermal Treatment on Structural Changes of Teak and Iroko Wood Lignins. Appl. Sci. 2020;10:5021. doi: 10.3390/app10145021. DOI
Rousset P., Lapierre C., Pollet B., Quirino W., Perre P. Effect of severe thermal treatment on spruce and beech wood lignins. Ann. For. Sci. 2009;66:110. doi: 10.1051/forest/2008078. DOI
Shinde S.D., Meng X., Kumar R., Ragauskas A.J. Recent advances in understanding the pseudo-lignin formation in a lignocellulosic biorefinery. Green Chem. 2018;20:2192–2205. doi: 10.1039/C8GC00353J. DOI
Dahali R., Lee S.H., Ashaari Z., Bakar E.S., Ariffin H., Khoo P.S., Bawon P., Salleh Q.N. Durability of Superheated Steam-Treated Light Red Meranti (Shorea spp.) and Kedondong (Canarium spp.) Wood against White Rot Fungus and Subterranean Termite. Sustainability. 2020;12:4431. doi: 10.3390/su12114431. DOI
Windeisen E., Wegener G. Behaviour of lignin during thermal treatments of wood. Ind. Crops Prod. 2008;27:157–162. doi: 10.1016/j.indcrop.2007.07.015. DOI
Syafii W. The effect of lignin composition on delignification rate of some tropical hardwoods. Indones. J. Trop. Agric. 2001;10:9–13. doi: 10.18343/ijta.vol10.iss1.pp1-3. DOI
Evtuguin D.V., Neto C.P., Silva A.M.S., Domingues P.M., Amado F.M.L., Robert D., Faix O. Comprehensive study on the chemical structure of dioxane lignin from plantation Eucalyptus globulus wood. J. Agric. Food. Chem. 2001;49:4252–4261. doi: 10.1021/jf010315d. PubMed DOI
Aguayo M.G., Ruiz J., Norambuena M., Mendonça R.T. Structural features of dioxane lignin from Eucalyptus globulus and their relationship with the pulp yield of contrasting genotypes. Maderas-Cienc. Tecnol. 2015;17:625–636. doi: 10.4067/S0718-221X2015005000055. DOI
Rana R., Langenfeld-Heyser R., Finkeldey R., Polle A. FTIR spectroscopy, chemical and histochemical characterisation of wood and lignin of five tropical timber wood species of the family of Dipterocarpaceae. Wood Sci. Technol. 2010;44:225–242. doi: 10.1007/s00226-009-0281-2. DOI
Kim J.Y., Hwang H., Oh S., Kim Y.S., Kim U.J., Choi J.W. Investigation of structural modification and thermal characteristics of lignin after heat treatment. Int. J. Biol. Macromol. 2014;66:57–65. doi: 10.1016/j.ijbiomac.2014.02.013. PubMed DOI
Lourenço A., Neiva D.M., Gominho J., Curt M.D., Fernández J., Marques A.V., Pereira H. Biomass production of four Cynara cardunculus clones and lignin composition analysis. Biomass Bioenergy. 2015;76:86–95. doi: 10.1016/j.biombioe.2015.03.009. DOI
Cui C., Sadeghifar H., Sen S., Argyropoulos D.S. Towards thermoplastic lignin polymers; Part II: Thermal & polymer characteristics of kraft lignin & derivatives. BioResources. 2012;8:864–886. doi: 10.15376/biores.8.1.864-886. DOI
Patil S.V., Argyropoulos D.S. Stable Organic Radicals in Lignin: A Review. ChemSusChem. 2017;10:3284–3303. doi: 10.1002/cssc.201700869. PubMed DOI
Bubeníková T., Luptáková J., Kačíková D., Kačík F. Characterization of macromolecular traits of lignin from heat treated spruce wood by size exclusion chromatography. Acta Fac. Xylologiae. 2018;60:33–42.
Dörrstein J., Scholz R., Schwarz D., Schieder D., Sieber V., Walther F., Zollfrank C. Effects of high-lignin-loading on thermal, mechanical, and morphological properties of bioplastic composites. Compos. Struct. 2018;189:349–356. doi: 10.1016/j.compstruct.2017.12.003. DOI
Taghiyari H.R., Hosseini G., Tarmian A., Papadopoulos A.N. Fluid Flow in Nanosilver-Impregnated Heat-Treated Beech Wood in Different Mediums. Appl. Sci. 2020;10:1919. doi: 10.3390/app10061919. DOI
Poletto M., Zeni M., Zattera A.J. Effects of wood flour addition and coupling agent content on mechanical properties of recycled polystyrene/wood flour composites. J. Thermoplast. Compos. Mater. 2012;25:821–833. doi: 10.1177/0892705711413627. DOI
Mattos B.D., Lourençon T.V., Serrano L., Labidi J., Gatto D.A. Chemical modification of fast-growing eucalyptus wood. Wood Sci. Technol. 2015;2:273–288. doi: 10.1007/s00226-014-0690-8. DOI
Kačík F., Kačíková D., Bubeníková T. Spruce wood lignin alteration after infrared heating at different wood moistures. Cell. Chem. Technol. 2006;40:643–648.
Esteves B., Marques A.V., Domingos I., Pereira H. Chemical changes of heat-treated pine and eucalypt wood monitored by FTIR. Maderas-Cienc. Tecnol. 2013;15:245–258. doi: 10.4067/S0718-221X2013005000020. DOI
Košíková B., Sláviková E., Sasinková V., Kačík F. The use of various yeast strains for removal of pine wood extractive constituents. Wood Res. 2006;51:47–53.
Kubovský I., Kačíková D., Kačík F. Structural Changes of Oak Wood Main Components Caused by Thermal Modification. Polymers. 2020;12:485. doi: 10.3390/polym12020485. PubMed DOI PMC
Leclerc D.F. Fourier Transform Infrared Spectroscopy in the Pulp and Paper Industry. In: Meyers R.A., editor. Encyclopedia of Analytical Chemistry. John Wiley & Sons Ltd.; Chichester, UK: 2000. pp. 8361–8388.
Mvondo R.R.N., Meukam P., Jeong J., Meneses D.D.S., Nkeng E.G. Influence of water content on the mechanical and chemical properties of tropical wood species. Results Phys. 2017;7:2096–2103. doi: 10.1016/j.rinp.2017.06.025. DOI
Li M.Y., Cheng S.C., Li D., Wang S.N., Huang A.M., Sun S.Q. Structural characterization of steam-heat treated Tectona grandis wood analyzed by FT-IR and 2D-IR correlation spectroscopy. Chin. Chem. Lett. 2015;26:221–225. doi: 10.1016/j.cclet.2014.11.024. DOI
Čabalová I., Kačík F., Lagaňa R., Výbohová E., Bubeníková T., Čaňová I., Ďurkovič J. Effect of thermal treatment on the chemical, physical, and mechanical properties of pedunculate oak (Quercus robur L.) wood. BioResources. 2018;13:157–170. doi: 10.15376/biores.13.1.157-170. DOI
Windeisen E., Strobel C., Wegener G. Chemical changes during the production of thermo-treated beech wood. Wood Sci. Technol. 2007;41:523–536. doi: 10.1007/s00226-007-0146-5. DOI
Weiland J.J., Guyonnet R. Study of chemical modifications and fungi degradation of thermally modified wood using DRIFT spectroscopy. Holz. Roh. Werkst. 2003;61:216–220. doi: 10.1007/s00107-003-0364-y. DOI
Bourgois J., Guyonnet R. Characterization and analysis of torrefied wood. Wood Sci. Technol. 1988;22:143–155. doi: 10.1007/BF00355850. DOI
Kačík F., Luptáková J., Šmíra P., Nasswettrová A., Kačíková D., Vacek V. Chemical Alterations of Pine Wood Lignin during Heat Sterilization. BioResources. 2016;11:3442–3452. doi: 10.15376/biores.11.2.3442-3452. DOI
Faix O. Fourier transform infrared spectroscopy. In: Lin S.Y., Dence C.W., editors. Methods in Lignin Chemistry. Springer; Berlin/Heidelberg, Germany: 1992. pp. 83–109. Chapter 4.1.
Boeriu C.G., Bravo D., Gosselink R.J.A., van Dam J.E.G. Characterisation of structure-dependent functional properties of lignin with infrared spectroscopy. Ind. Crops Prod. 2004;20:205–218. doi: 10.1016/j.indcrop.2004.04.022. DOI
Kubo S., Kadla J.F. Hydrogen bonding in lignin: A Fourier transform infrared model compound study. Biomacromolecules. 2005;6:2815–2821. doi: 10.1021/bm050288q. PubMed DOI
Watkins D., Nuruddin M.D., Hosur M., Tcherbi-Narteh A., Jeelani S. Extraction and characterization of lignin from different biomass resources. J. Mater. Res. Technol. 2015;4:26–32. doi: 10.1016/j.jmrt.2014.10.009. DOI
Cheng S., Huang A., Wang S., Zhang Q. Effect of Different Heat Treatment Temperatures on the Chemical Composition and Structure of Chinese Fir Wood. BioResources. 2016;11:4006–4016. doi: 10.15376/biores.11.2.4006-4016. DOI
Jakab E., Faix O., Till F. Thermal decomposition of milled wood lignins studied by thermogravimetry/mass spectrometry. J. Anal. Appl. Pyrol. 1997;40–41:171–186. doi: 10.1016/S0165-2370(97)00046-6. DOI
Stark N.M., Yelle D.J., Agarwal U.P. Techniques for Characterizing Lignin. In: Faruk O., Sain M., editors. Lignin in Polymer Composites. William Andrew Publishing; Oxford, UK: 2016. pp. 49–66.