• This record comes from PubMed

Changes of Meranti, Padauk, and Merbau Wood Lignin during the ThermoWood Process

. 2021 Mar 24 ; 13 (7) : . [epub] 20210324

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
APVV-17-0005 Agentúra na Podporu Výskumu a Vývoja
APVV-16-0326 Agentúra na Podporu Výskumu a Vývoja
VEGA-1/0387/18 Vedecká Grantová Agentúra MŠVVaŠ SR a SAV

Thermal modification is an environmentally friendly process in which technological properties of wood are modified using thermal energy without adding chemicals, the result of which is a value-added product. Wood samples of three tropical wood species (meranti, padauk, and merbau) were thermally treated according to the ThermoWood process at various temperatures (160, 180, 210 °C) and changes in isolated lignin were evaluated by nitrobenzene oxidation (NBO), Fourier-transform infrared spectroscopy (FTIR), and size exclusion chromatography (SEC). New data on the lignins of the investigated wood species were obtained, e.g., syringyl to guaiacyl ratio values (S/G) were 1.21, 1.70, and 3.09, and molecular weights were approx. 8600, 4300, and 8300 g·mol-1 for meranti, padauk, and merbau, respectively. Higher temperatures cause a decrease of methoxyls and an increase in C=O groups. Simultaneous degradation and condensation reactions in lignin occur during thermal treatment, the latter prevailing at higher temperatures.

See more in PubMed

Lee S.H., Ashaari Z., Lum W.C., Halip J.A., Ang A.F., Tan L.P., Chin K.L., Tahir P.M. Thermal treatment of wood using vegetable oils: A review. Constr. Build. Mater. 2018;181:408–419. doi: 10.1016/j.conbuildmat.2018.06.058. DOI

Sandak A., Sandak J., Petrillo M., Grossi P., Brzezicki M. Performance of modified wood. In: Jones D., Sandberg D., Goli G., Todaro L., editors. Wood Modification in Europe: A State–of–Art about Processes, Products and Applications. Firenze University Press; Florence, Italy: 2019. pp. 27–33.

Antov P., Savov V., Krišťák Ľ., Réh R., Mantanis G.I. Eco-Friendly, High-Density Fiberboards Bonded with Urea-Formaldehyde and Ammonium Lignosulfonate. Polymers. 2021;13:220. doi: 10.3390/polym13020220. PubMed DOI PMC

Zhang P., Wie Y., Liu Y., Gao J., Chen Y., Fan Y. Heat-Induced Discoloration of Chromophore Structures in Eucalyptus Lignin. Materials. 2018;11:1686. doi: 10.3390/ma11091686. PubMed DOI PMC

Dos Santos D.V.B., De Moura L.F., Brito J.O. Effect of heat treatment on color, weight loss, specific gravity and equilibrium moisture content of two low market valued tropical woods. Wood Res. 2014;59:253–264.

Rodriguez-Jimenez S., Duarte-Aranda S., Canche-Escamilla G. Chemical composition and thermal properties of tropical wood from the Yucatán dry forests. BioResources. 2019;14:2651–2666.

Xu J., Zhang Y., Shen Y., Li C., Wang Y., Ma Z., Sun W. New perspective on wood thermal modification: Relevance between the evolution of chemical structure and physical-mechanical properties, and online analysis of release of VOCs. Polymers. 2019;11:1145. doi: 10.3390/polym11071145. PubMed DOI PMC

Shi J.L., Kocaefe D., Amburgey T., Zhang J. A comparative study on brown rot fungus decay and subterranean termite resistance of thermally-modified and ACQ-C-treated wood. Eur. J. Wood Wood Prod. 2007;65:353–358. doi: 10.1007/s00107-007-0178-4. DOI

Korkut S. Performance of three thermally treated tropical wood species commonly used in Turkey. Ind. Crops Prod. 2012;36:355–362. doi: 10.1016/j.indcrop.2011.10.004. DOI

Ghadge K., Pandey K.K. Effect of Thermal Modification on Physical Properties of Bambusa nutans. In: Pandey K.K., Ramakantha V., Shakti Chauhan S.S., Arun Kumar A.N., editors. Wood Is Good. Springer; Singapore: 2017. pp. 287–295. DOI

Sikora A., Kačík F., Gaff M., Vondrová V., Bubeníková T., Kubovský I. Impact of thermal modification on color and chemical changes of spruce and oak wood. J. Wood Sci. 2018;64:406–416. doi: 10.1007/s10086-018-1721-0. DOI

Hill C.A.S. Wood modification: Chemical, Thermal and Other Processes. In: Stevens C.V., editor. Wiley Series in Renewable Resources. John Wiley & Sons; Chichester, UK: 2006. 260p

Carrier M., Loppinet-Serani A., Denux D., Lasnier J.M., Ham-Pichavant F., Cansell F., Aymonier C. Thermogravimetric analysis as a new method to determine the lignocellulosic composition of biomass. Biomass Bioenergy. 2011;35:298–307. doi: 10.1016/j.biombioe.2010.08.067. DOI

Zinovyev G., Sulaeva I., Podzimek S., Rössner D., Kilpelainen I., Sumerskii I., Rosenau T., Potthast A. Getting Closer to Absolute Molar Masses of Technical Lignins. ChemSusChem. 2018;11:3259–3268. doi: 10.1002/cssc.201801177. PubMed DOI PMC

Doherty W.O.S., Mousavioun P., Fellows C.M. Value-adding to cellulosic ethanol: Lignin polymers. Ind. Crops Prod. 2011;33:259–276. doi: 10.1016/j.indcrop.2010.10.022. DOI

Papadopoulos A.N. Advances in Wood Composites. Polymers. 2020;12:48. doi: 10.3390/polym12010048. PubMed DOI PMC

Pelaez-Samaniego M.R., Yadama V., Lowell E., Espinoza-Herrera R. A review of wood thermal pretreatments to improve wood composite properties. Wood Sci. Technol. 2013;47:1285–1319. doi: 10.1007/s00226-013-0574-3. DOI

Hortobágyi Á., Pivarčiová E., Koleda P. Holographic Interferometry for Measuring the Effect of Thermal Modification on Wood Thermal Properties. Appl. Sci. 2021;11:2516. doi: 10.3390/app11062516. DOI

Ditommaso G., Gaff M., Kačík F., Sikora A., Sethy A., Corleto R., Razaei F., Kaplan L., Kubš J., Das S., et al. Interaction of technical and technological factors on qualitative and energy/ecological/economic indicators in the production and processing of thermally modified merbau wood. J. Clean. Prod. 2020;252:119793. doi: 10.1016/j.jclepro.2019.119793. DOI

Noh N.I.F., Ahmad Z. Heat treatment on keruing and light red meranti: The effect of heat exposure at different levels of temperature on bending strength properties. IOP Conf. Ser. Mater. Sci. Eng. 2017;271:012060. doi: 10.1088/1757-899X/271/1/012060. DOI

Gašparík M., Gaff M., Kačík F., Sikora A. Color and chemical changes in teak (Tectona grandis L. f.) and meranti (Shorea spp.) wood after thermal treatment. BioResources. 2019;14:2667–2683. doi: 10.15376/biores.14.2.2667-2683. DOI

Devashankar S. FTIR, Powder X-RD and DSC Analysis of African Padauk Wood to Elucidate Possible Applications. In: Awasthi K., Babu S.B., editors. Macromolecular Symposia. Wiley-VCH; Weinheim, Germany: 2017. pp. 1–7. DOI

Wang C., Qin Y., Wang F., Wang Z., Huan A. Effect of Iron Oxide on the Protective Photochromism of African Padauk. Adv. Polym. Technol. 2019:1–8. doi: 10.1155/2019/8698746. DOI

Kroupa M., Gaff M., Karlsson O., Myronycheva O., Sandberg D. Effects of thermal modification on bending properties and chemical structure of Iroko and Padauk. In: Jos C., Thomas H., Bôke T., Holger M., Brigitte J., Jos G., editors. Proceedings of the 9th European Conference on Wood Modification, Burgers’ Zoo; Arnhem, The Netherlands. 17–18 September 2018; Wageningen, The Netherlands: SHR Wageningen; 2018. pp. 155–161.

Hu C., Jiang G., Xiao M., Zhou J., Yi Z. Effects of heat treatment on water-soluble extractives and color changes of merbau heartwood. J. Wood Sci. 2012;58:465–469. doi: 10.1007/s10086-012-1265-7. DOI

Liao Y., Wang J., Lu Z., Gu J., Hu C. Effects of heat treatment on durability of merbau heartwood. BioResources. 2016;11:426–438. doi: 10.15376/biores.11.1.426-438. DOI

Malik J., Ozarska B. Mechanical characteristics of impregnated white Jabon wood (Anthocephalus cadamba) using merbau extractives and selected polymerised merbau extractives. Maderas-Cienc. Tecnol. 2019;21:573–586. doi: 10.4067/S0718-221X2019005000413. DOI

Malik J., Santoso A., Ozarska B. Polymerised merbau extractives as impregnating material for wood properties enhancement. IOP Conf. Series: Mater. Sci. Eng. 2020;935 doi: 10.1088/1757-899X/935/1/012021. DOI

Makovická-Osvaldová L., Gašparík M., Castellanos J.R.S., Markert F., Kadlicová P., Čekovská H. Effect of thermal treatment on selected fire safety features of tropical wood. Commun.-Sci. Lett. Univ. Žilina. 2018;20:3–7.

Kamboj G., Gašparík M., Gaff M., Kačík F., Sethy A.K., Corleto R., Razaei F., Ditommaso G., Sikora A., Kaplan L., et al. Surface quality and cutting power requirement after edge milling of thermally modified meranti (Shorea spp.) wood. J. Build. Eng. 2020;29:101213. doi: 10.1016/j.jobe.2020.101213. DOI

ASTM . Standard Test Method for Ethanol-Toluene Solubility of Wood. ASTM International; West Conshohocken, PA, USA: 2013. ASTM D1107-96(2013) DOI

Sluiter A., Hames B., Ruiz R., Scarlata C., Sluiter J., Templeton D., Crocker D. Determination of Structural Carbohydrates and Lignin in Biomass. Laboratory Analytical Procedure (LAP), National Renewable Energy Laboratory; Golden, CO, USA: 2012. [(accessed on 20 February 2021)]. NREL/TP-510-42618. Available online: http://www.nrel.gov/biomass/analytical_procedures.html.

Kačíková D., Kubovský I., Ulbriková N., Kačík F. The Impact of Thermal Treatment on Structural Changes of Teak and Iroko Wood Lignins. Appl. Sci. 2020;10:5021. doi: 10.3390/app10145021. DOI

Rousset P., Lapierre C., Pollet B., Quirino W., Perre P. Effect of severe thermal treatment on spruce and beech wood lignins. Ann. For. Sci. 2009;66:110. doi: 10.1051/forest/2008078. DOI

Shinde S.D., Meng X., Kumar R., Ragauskas A.J. Recent advances in understanding the pseudo-lignin formation in a lignocellulosic biorefinery. Green Chem. 2018;20:2192–2205. doi: 10.1039/C8GC00353J. DOI

Dahali R., Lee S.H., Ashaari Z., Bakar E.S., Ariffin H., Khoo P.S., Bawon P., Salleh Q.N. Durability of Superheated Steam-Treated Light Red Meranti (Shorea spp.) and Kedondong (Canarium spp.) Wood against White Rot Fungus and Subterranean Termite. Sustainability. 2020;12:4431. doi: 10.3390/su12114431. DOI

Windeisen E., Wegener G. Behaviour of lignin during thermal treatments of wood. Ind. Crops Prod. 2008;27:157–162. doi: 10.1016/j.indcrop.2007.07.015. DOI

Syafii W. The effect of lignin composition on delignification rate of some tropical hardwoods. Indones. J. Trop. Agric. 2001;10:9–13. doi: 10.18343/ijta.vol10.iss1.pp1-3. DOI

Evtuguin D.V., Neto C.P., Silva A.M.S., Domingues P.M., Amado F.M.L., Robert D., Faix O. Comprehensive study on the chemical structure of dioxane lignin from plantation Eucalyptus globulus wood. J. Agric. Food. Chem. 2001;49:4252–4261. doi: 10.1021/jf010315d. PubMed DOI

Aguayo M.G., Ruiz J., Norambuena M., Mendonça R.T. Structural features of dioxane lignin from Eucalyptus globulus and their relationship with the pulp yield of contrasting genotypes. Maderas-Cienc. Tecnol. 2015;17:625–636. doi: 10.4067/S0718-221X2015005000055. DOI

Rana R., Langenfeld-Heyser R., Finkeldey R., Polle A. FTIR spectroscopy, chemical and histochemical characterisation of wood and lignin of five tropical timber wood species of the family of Dipterocarpaceae. Wood Sci. Technol. 2010;44:225–242. doi: 10.1007/s00226-009-0281-2. DOI

Kim J.Y., Hwang H., Oh S., Kim Y.S., Kim U.J., Choi J.W. Investigation of structural modification and thermal characteristics of lignin after heat treatment. Int. J. Biol. Macromol. 2014;66:57–65. doi: 10.1016/j.ijbiomac.2014.02.013. PubMed DOI

Lourenço A., Neiva D.M., Gominho J., Curt M.D., Fernández J., Marques A.V., Pereira H. Biomass production of four Cynara cardunculus clones and lignin composition analysis. Biomass Bioenergy. 2015;76:86–95. doi: 10.1016/j.biombioe.2015.03.009. DOI

Cui C., Sadeghifar H., Sen S., Argyropoulos D.S. Towards thermoplastic lignin polymers; Part II: Thermal & polymer characteristics of kraft lignin & derivatives. BioResources. 2012;8:864–886. doi: 10.15376/biores.8.1.864-886. DOI

Patil S.V., Argyropoulos D.S. Stable Organic Radicals in Lignin: A Review. ChemSusChem. 2017;10:3284–3303. doi: 10.1002/cssc.201700869. PubMed DOI

Bubeníková T., Luptáková J., Kačíková D., Kačík F. Characterization of macromolecular traits of lignin from heat treated spruce wood by size exclusion chromatography. Acta Fac. Xylologiae. 2018;60:33–42.

Dörrstein J., Scholz R., Schwarz D., Schieder D., Sieber V., Walther F., Zollfrank C. Effects of high-lignin-loading on thermal, mechanical, and morphological properties of bioplastic composites. Compos. Struct. 2018;189:349–356. doi: 10.1016/j.compstruct.2017.12.003. DOI

Taghiyari H.R., Hosseini G., Tarmian A., Papadopoulos A.N. Fluid Flow in Nanosilver-Impregnated Heat-Treated Beech Wood in Different Mediums. Appl. Sci. 2020;10:1919. doi: 10.3390/app10061919. DOI

Poletto M., Zeni M., Zattera A.J. Effects of wood flour addition and coupling agent content on mechanical properties of recycled polystyrene/wood flour composites. J. Thermoplast. Compos. Mater. 2012;25:821–833. doi: 10.1177/0892705711413627. DOI

Mattos B.D., Lourençon T.V., Serrano L., Labidi J., Gatto D.A. Chemical modification of fast-growing eucalyptus wood. Wood Sci. Technol. 2015;2:273–288. doi: 10.1007/s00226-014-0690-8. DOI

Kačík F., Kačíková D., Bubeníková T. Spruce wood lignin alteration after infrared heating at different wood moistures. Cell. Chem. Technol. 2006;40:643–648.

Esteves B., Marques A.V., Domingos I., Pereira H. Chemical changes of heat-treated pine and eucalypt wood monitored by FTIR. Maderas-Cienc. Tecnol. 2013;15:245–258. doi: 10.4067/S0718-221X2013005000020. DOI

Košíková B., Sláviková E., Sasinková V., Kačík F. The use of various yeast strains for removal of pine wood extractive constituents. Wood Res. 2006;51:47–53.

Kubovský I., Kačíková D., Kačík F. Structural Changes of Oak Wood Main Components Caused by Thermal Modification. Polymers. 2020;12:485. doi: 10.3390/polym12020485. PubMed DOI PMC

Leclerc D.F. Fourier Transform Infrared Spectroscopy in the Pulp and Paper Industry. In: Meyers R.A., editor. Encyclopedia of Analytical Chemistry. John Wiley & Sons Ltd.; Chichester, UK: 2000. pp. 8361–8388.

Mvondo R.R.N., Meukam P., Jeong J., Meneses D.D.S., Nkeng E.G. Influence of water content on the mechanical and chemical properties of tropical wood species. Results Phys. 2017;7:2096–2103. doi: 10.1016/j.rinp.2017.06.025. DOI

Li M.Y., Cheng S.C., Li D., Wang S.N., Huang A.M., Sun S.Q. Structural characterization of steam-heat treated Tectona grandis wood analyzed by FT-IR and 2D-IR correlation spectroscopy. Chin. Chem. Lett. 2015;26:221–225. doi: 10.1016/j.cclet.2014.11.024. DOI

Čabalová I., Kačík F., Lagaňa R., Výbohová E., Bubeníková T., Čaňová I., Ďurkovič J. Effect of thermal treatment on the chemical, physical, and mechanical properties of pedunculate oak (Quercus robur L.) wood. BioResources. 2018;13:157–170. doi: 10.15376/biores.13.1.157-170. DOI

Windeisen E., Strobel C., Wegener G. Chemical changes during the production of thermo-treated beech wood. Wood Sci. Technol. 2007;41:523–536. doi: 10.1007/s00226-007-0146-5. DOI

Weiland J.J., Guyonnet R. Study of chemical modifications and fungi degradation of thermally modified wood using DRIFT spectroscopy. Holz. Roh. Werkst. 2003;61:216–220. doi: 10.1007/s00107-003-0364-y. DOI

Bourgois J., Guyonnet R. Characterization and analysis of torrefied wood. Wood Sci. Technol. 1988;22:143–155. doi: 10.1007/BF00355850. DOI

Kačík F., Luptáková J., Šmíra P., Nasswettrová A., Kačíková D., Vacek V. Chemical Alterations of Pine Wood Lignin during Heat Sterilization. BioResources. 2016;11:3442–3452. doi: 10.15376/biores.11.2.3442-3452. DOI

Faix O. Fourier transform infrared spectroscopy. In: Lin S.Y., Dence C.W., editors. Methods in Lignin Chemistry. Springer; Berlin/Heidelberg, Germany: 1992. pp. 83–109. Chapter 4.1.

Boeriu C.G., Bravo D., Gosselink R.J.A., van Dam J.E.G. Characterisation of structure-dependent functional properties of lignin with infrared spectroscopy. Ind. Crops Prod. 2004;20:205–218. doi: 10.1016/j.indcrop.2004.04.022. DOI

Kubo S., Kadla J.F. Hydrogen bonding in lignin: A Fourier transform infrared model compound study. Biomacromolecules. 2005;6:2815–2821. doi: 10.1021/bm050288q. PubMed DOI

Watkins D., Nuruddin M.D., Hosur M., Tcherbi-Narteh A., Jeelani S. Extraction and characterization of lignin from different biomass resources. J. Mater. Res. Technol. 2015;4:26–32. doi: 10.1016/j.jmrt.2014.10.009. DOI

Cheng S., Huang A., Wang S., Zhang Q. Effect of Different Heat Treatment Temperatures on the Chemical Composition and Structure of Chinese Fir Wood. BioResources. 2016;11:4006–4016. doi: 10.15376/biores.11.2.4006-4016. DOI

Jakab E., Faix O., Till F. Thermal decomposition of milled wood lignins studied by thermogravimetry/mass spectrometry. J. Anal. Appl. Pyrol. 1997;40–41:171–186. doi: 10.1016/S0165-2370(97)00046-6. DOI

Stark N.M., Yelle D.J., Agarwal U.P. Techniques for Characterizing Lignin. In: Faruk O., Sain M., editors. Lignin in Polymer Composites. William Andrew Publishing; Oxford, UK: 2016. pp. 49–66.

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...