MIAT Is an Upstream Regulator of NMYC and the Disruption of the MIAT/NMYC Axis Induces Cell Death in NMYC Amplified Neuroblastoma Cell Lines
Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
716218
Grant Agency of Charles University, Prague, Czech Republic
PubMed
33806217
PubMed Central
PMC8038079
DOI
10.3390/ijms22073393
PII: ijms22073393
Knihovny.cz E-resources
- Keywords
- NMYC amplification, cell metabolism, lncRNA MIAT, neuroblastoma,
- MeSH
- Apoptosis MeSH
- Cell Cycle MeSH
- Glycolysis MeSH
- Humans MeSH
- Cell Line, Tumor MeSH
- Brain Neoplasms metabolism MeSH
- Neuroblastoma metabolism MeSH
- Cell Movement MeSH
- Cell Proliferation MeSH
- N-Myc Proto-Oncogene Protein metabolism MeSH
- Gene Expression Regulation, Neoplastic * MeSH
- RNA, Long Noncoding genetics metabolism MeSH
- Gene Expression Profiling MeSH
- Gene Silencing MeSH
- Cell Survival MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Miat long non-coding RNA MeSH Browser
- MYCN protein, human MeSH Browser
- N-Myc Proto-Oncogene Protein MeSH
- RNA, Long Noncoding MeSH
Neuroblastoma (NBL) is the most common extracranial childhood malignant tumor and represents a major cause of cancer-related deaths in infants. NMYC amplification or overexpression is associated with the malignant behavior of NBL tumors. In the present study, we revealed an association between long non-coding RNA (lncRNA) myocardial infarction associated transcript (MIAT) and NMYC amplification in NBL cell lines and MIAT expression in NBL tissue samples. MIAT silencing induces cell death only in cells with NMYC amplification, but in NBL cells without NMYC amplification it decreases only the proliferation. MIAT downregulation markedly reduces the NMYC expression in NMYC-amplified NBL cell lines and c-Myc expression in NMYC non-amplified NBL cell lines, but the ectopic overexpression or downregulation of NMYC did not affect the expression of MIAT. Moreover, MIAT downregulation results in decreased ornithine decarboxylase 1 (ODC1), a known transcriptional target of MYC oncogenes, and decreases the glycolytic metabolism and respiratory function. These results indicate that MIAT is an upstream regulator of NMYC and that MIAT/NMYC axis disruption induces cell death in NMYC-amplified NBL cell lines. These findings reveal a novel mechanism for the regulation of NMYC in NBL, suggesting that MIAT might be a potential therapeutic target, especially for those with NMYC amplification.
See more in PubMed
Luksch R., Castellani M.R., Collini P., De Bernardi B., Conte M., Gambini C., Gandola L., Garaventa A., Biasoni D., Podda M., et al. Neuroblastoma (Peripheral neuroblastic tumours) Crit. Rev. Oncol. Hematol. 2016;107:163–181. doi: 10.1016/j.critrevonc.2016.10.001. PubMed DOI
Huang M., Weiss W.A. Neuroblastoma and MYCN. Cold Spring Harb. Perspect. Med. 2013;3:a014415. doi: 10.1101/cshperspect.a014415. PubMed DOI PMC
Brodeur G.M. Neuroblastoma: Biological insights into a clinical enigma. Nat. Rev. Cancer. 2003;3:203–216. doi: 10.1038/nrc1014. PubMed DOI
Maris J.M. Recent advances in neuroblastoma. N. Engl. J. Med. 2010;362:2202–2211. doi: 10.1056/NEJMra0804577. PubMed DOI PMC
Li J., Liu C. Coding or noncoding, the converging concepts of RNAs. Front. Genet. 2019;10 doi: 10.3389/fgene.2019.00496. PubMed DOI PMC
Peinado P., Herrera A., Baliñas C., Martín-Padrón J., Boyero L., Cuadros M., Coira I.F., Rodriguez M.I., Reyes-Zurita F.J., Rufino-Palomares E.E., et al. Cancer and Noncoding RNAs. Elsevier; Amsterdam, The Netherlands: 2018. Long Noncoding RNAs as Cancer Biomarkers; pp. 95–114.
Sahu D., Ho S.Y., Juan H.F., Huang H.C. High-risk, expression-based prognostic long noncoding RNA signature in neuroblastoma. JNCI Cancer Spectr. 2018;2:pky015. doi: 10.1093/jncics/pky015. PubMed DOI PMC
Swier L.J.Y.M., Dzikiewicz-Krawczyk A., Winkle M., van den Berg A., Kluiver J. Intricate crosstalk between MYC and non-coding RNAs regulates hallmarks of cancer. Mol. Oncol. 2019;13:26–45. doi: 10.1002/1878-0261.12409. PubMed DOI PMC
Rombaut D., Chiu H.S., Decaesteker B., Everaert C., Yigit N., Peltier A., Janoueix I., Bartenhagen C., Fischer M., Roberts S., et al. Integrative analysis identifies lincRNAs up- and downstream of neuroblastoma driver genes. Sci. Rep. 2019;9:1–13. doi: 10.1038/s41598-019-42107-y. PubMed DOI PMC
Song F., Yang Y., Liu J. Long non-coding RNA MIAT promotes the proliferation and invasion of laryngeal squamous cell carcinoma cells by sponging microRNA-613. Exp. Ther. Med. 2021;21:1. doi: 10.3892/etm.2021.9663. PubMed DOI PMC
Xu H., Zhou J., Tang J., Min X., Yi T., Zhao J., Ren Y. Identification of serum exosomal lncRNA MIAT as a novel diagnostic and prognostic biomarker for gastric cancer. J. Clin. Lab. Anal. 2020;34:e23323. doi: 10.1002/jcla.23323. PubMed DOI PMC
Qu Y., Xiao H., Xiao W., Xiong Z., Hu W., Gao Y., Ru Z., Wang C., Bao L., Wang K., et al. Upregulation of MIAT Regulates LOXL2 Expression by Competitively Binding miR-29c in Clear Cell Renal Cell Carcinoma. Cell. Physiol. Biochem. 2018;48:1075–1087. doi: 10.1159/000491974. PubMed DOI
Jin H., Jin X., Chai W., Yin Z., Li Y., Dong F., Wang W. Long non-coding RNA MIAT competitively binds miR-150-5p to regulate ZEB1 expression in osteosarcoma. Oncol. Lett. 2019;17:1229–1236. doi: 10.3892/ol.2018.9671. PubMed DOI PMC
Zhao H.L., Xu S.Q., Li Q., Zhao Y.B., Li X., Yang M.P. Long noncoding RNA MIAT promotes the growth and metastasis of non-small cell lung cancer by upregulating TDP43. Eur. Rev. Med. Pharmacol. Sci. 2019;23:3383–3389. PubMed
Li T.F., Liu J., Fu S.J. The interaction of long non-coding RNA MIAT and miR-133 play a role in the proliferation and metastasis of pancreatic carcinoma. Biomed. Pharmacother. 2018;104:145–150. doi: 10.1016/j.biopha.2018.05.043. PubMed DOI
Fu Y., Li C., Luo Y., Li L., Liu J., Gui R. Silencing of long non-coding RNA MIAT sensitizes lung cancer cells to gefitinib by epigenetically regulating miR-34a. Front. Pharmacol. 2018;9 doi: 10.3389/fphar.2018.00082. PubMed DOI PMC
Huang X., Gao Y., Qin J., Lu S. lncRNA MIAT promotes proliferation and invasion of HCC cells via sponging miR-214. Am. J. Physiol. Gastrointest. Liver Physiol. 2018;314:G559–G565. doi: 10.1152/ajpgi.00242.2017. PubMed DOI
Xiang Y., Huang Y., Sun H., Pan Y., Wu M., Zhang J. Deregulation of miR-520d-3p promotes hepatocellular carcinoma development via lncRNA MIAT regulation and EPHA2 signaling activation. Biomed. Pharmacother. 2019;109:1630–1639. doi: 10.1016/j.biopha.2018.11.014. PubMed DOI
Li D., Hu X., Yu S., Deng S., Yan M., Sun F., Song J., Tang L. Silence of lncRNA MIAT-mediated inhibition of DLG3 promoter methylation suppresses breast cancer progression via the Hippo signaling pathway. Cell. Signal. 2020;73:109697. doi: 10.1016/j.cellsig.2020.109697. PubMed DOI
Li Y., Wang K., Wei Y., Yao Q., Zhang Q., Qu H., Zhu G. lncRNA-MIAT regulates cell biological behaviors in gastric cancer through a mechanism involving the miR-29a-3p/HDAC4 axis. Oncol. Rep. 2017;38:3465–3472. doi: 10.3892/or.2017.6020. PubMed DOI
Aprea J., Prenninger S., Dori M., Ghosh T., Monasor L.S., Wessendorf E., Zocher S., Massalini S., Alexopoulou D., Lesche M., et al. Transcriptome sequencing during mouse brain development identifies long non-coding RNAs functionally involved in neurogenic commitment. EMBO J. 2013;32:3145–3160. doi: 10.1038/emboj.2013.245. PubMed DOI PMC
Bountali A., Tonge D.P., Mourtada-Maarabouni M. RNA sequencing reveals a key role for the long non-coding RNA MIAT in regulating neuroblastoma and glioblastoma cell fate. Int. J. Biol. Macromol. 2019;130:878–891. doi: 10.1016/j.ijbiomac.2019.03.005. PubMed DOI
Prochazka P., Hrabeta J., Vicha A., Cipro S., Stejskalova E., Musil Z., Vodicka P., Eckschlager T. Changes in MYCN expression in human neuroblastoma cell lines following cisplatin treatment may not be related to MYCN copy numbers. Oncol. Rep. 2013;29:2415–2421. doi: 10.3892/or.2013.2383. PubMed DOI
Aygun N., Altungoz O. MYCN is amplified during S phase, and c-myb is involved in controlling MYCN expression and amplification in MYCN-amplified neuroblastoma cell lines. Mol. Med. Rep. 2019;19:345–361. doi: 10.3892/mmr.2018.9686. PubMed DOI PMC
Wang H., Mannava S., Grachtchouk V., Zhuang D., Soengas M.S., Gudkov A.V., Prochownik E.V., Nikiforov M.A. c-Myc depletion inhibits proliferation of human tumor cells at various stages of the cell cycle. Oncogene. 2008;27:1905–1915. doi: 10.1038/sj.onc.1210823. PubMed DOI PMC
Li X., Zhao H., Liu J., Tong J. Long Non-coding RNA MIAT Knockdown Prevents the Formation of Intracranial Aneurysm by Downregulating ENC1 via MYC. Front. Physiol. 2021;11 doi: 10.3389/fphys.2020.572605. PubMed DOI PMC
Raul F. Revival of 2-(difluoromethyl)ornithine (DFMO), an inhibitor of polyamine biosynthesis, as a cancer chemopreventive agent. Biochem. Soc. Trans. 2007;35:353–355. doi: 10.1042/BST0350353. PubMed DOI
Hogarty M.D., Norris M.D., Davis K., Liu X., Evageliou N.F., Hayes C.S., Pawel B., Guo R., Zhao H., Sekyere E., et al. ODC1 is a critical determinant of MYCN oncogenesis and a therapeutic target in neuroblastoma. Cancer Res. 2008;68:9735–9745. doi: 10.1158/0008-5472.CAN-07-6866. PubMed DOI PMC
Bell E., Chen L., Liu T., Marshall G.M., Lunec J., Tweddle D.A. MYCN oncoprotein targets and their therapeutic potential. Cancer Lett. 2010;293:144–157. doi: 10.1016/j.canlet.2010.01.015. PubMed DOI
Yildirim O., Izgu E.C., Damle M., Chalei V., Ji F., Sadreyev R.I., Szostak J.W., Kingston R.E. S-phase Enriched Non-coding RNAs Regulate Gene Expression and Cell Cycle Progression. Cell Rep. 2020;31:107629. doi: 10.1016/j.celrep.2020.107629. PubMed DOI PMC
Ren P., Yue M., Xiao D., Xiu R., Gan L., Liu H., Qing G. ATF4 and N-Myc coordinate glutamine metabolism in MYCN-amplified neuroblastoma cells through ASCT2 activation. J. Pathol. 2015;235:90–100. doi: 10.1002/path.4429. PubMed DOI
Zirath H., Frenzel A., Oliynyk G., Segerström L., Westermark U.K., Larsson K., Persson M.M., Hultenby K., Lehtiö J., Einvik C., et al. MYC inhibition induces metabolic changes leading to accumulation of lipid droplets in tumor cells. Proc. Natl. Acad. Sci. USA. 2013;110:10258–10263. doi: 10.1073/pnas.1222404110. PubMed DOI PMC
Qing G., Skuli N., Mayes P.A., Pawel B., Martinez D., Maris J.M., Simon M.C. Combinatorial regulation of neuroblastoma tumor progression by N-Myc and hypoxia inducible factor HIF-1α. Cancer Res. 2010;70:10351–10361. doi: 10.1158/0008-5472.CAN-10-0740. PubMed DOI PMC
Livak K.J., Schmittgen T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods. 2001;25:402–408. doi: 10.1006/meth.2001.1262. PubMed DOI
Pfaffl M.W. Relative expression software tool (REST(C)) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res. 2002;30:e36. doi: 10.1093/nar/30.9.e36. PubMed DOI PMC
KDM5B expression in cisplatin resistant neuroblastoma cell lines