A New Method to Perform Direct Efficiency Measurement and Power Flow Analysis in Vibration Energy Harvesters
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
33808222
PubMed Central
PMC8036391
DOI
10.3390/s21072388
PII: s21072388
Knihovny.cz E-zdroje
- Klíčová slova
- efficiency, efficiency measurement, energy harvesting, lead zirconate titanate (PZT), piezoelectric, piezoelectric ceramic, polyvinylidene fluoride (PVDF), power conversion, power flow,
- Publikační typ
- časopisecké články MeSH
Measuring the efficiency of piezo energy harvesters (PEHs) according to the definition constitutes a challenging task. The power consumption is often established in a simplified manner, by ignoring the mechanical losses and focusing exclusively on the mechanical power of the PEH. Generally, the input power is calculated from the PEH's parameters. To improve the procedure, we have designed a method exploiting a measurement system that can directly establish the definition-based efficiency for different vibration amplitudes, frequencies, and resistance loads. Importantly, the parameters of the PEH need not be known. The input power is determined from the vibration source; therefore, the method is suitable for comparing different types of PEHs. The novel system exhibits a combined absolute uncertainty of less than 0.5% and allows quantifying the losses. The approach was tested with two commercially available PEHs, namely, a lead zirconate titanate (PZT) MIDE PPA-1011 and a polyvinylidene fluoride (PVDF) TE LDTM-028K. To facilitate comparison with the proposed efficiency, we calculated and measured the quantity also by using one of the standard options (simplified efficiency). The standard concept yields higher values, especially in PVDFs. The difference arises from the device's low stiffness, which produces high displacement that is proportional to the losses. Simultaneously, the insufficient stiffness markedly reduces the PEH's mechanical power. This effect cannot be detected via the standard techniques. We identified the main sources of loss in the damping of the movement by the surrounding air and thermal losses. The latter source is caused by internal and interlayer friction.
Zobrazit více v PubMed
Beeby S.P., White N.M. Energy Harvesting for Autonomous Systems. Artech House; Norwood, MA, USA: 2010.
Teso-Fz-Betoño D., Aramendia I., Martinez-Rico J., Fernandez-Gamiz U., Zulueta E. Piezoelectric Energy Harvesting Controlled with an IGBT H-Bridge and Bidirectional Buck–Boost for Low-Cost 4G Devices. Sensors. 2020;20:7039. doi: 10.3390/s20247039. PubMed DOI PMC
Fitzgerald P.C., Malekjafarian A., Bhowmik B., Prendergast L.J., Cahill P., Kim C.W., Hazra B., Pakrashi V., OBrien E.J. Scour Damage Detection and Structural Health Monitoring of a Laboratory-Scaled Bridge Using a Vibration Energy Harvesting Device. Sensors. 2019;19:2572. doi: 10.3390/s19112572. PubMed DOI PMC
Beeby S.P., Torah R., Tudor M., Glynne-Jones P., O’donnell T., Saha C., Roy S. A micro electromagnetic generator for vibration energy harvesting. J. Micromechanics Microengineering. 2007;17:1257. doi: 10.1088/0960-1317/17/7/007. DOI
Hadas Z., Smilek J., Kanoun O., editors. Energy Harvesting for Wireless Sensor Networks: Technology, Components and System Design. Walter de Gruyter GmbH & Co KG; Berlin, Germany: 2018. pp. 45–63.
Yang Z., Erturk A., Zu J. On the efficiency of piezoelectric energy harvesters. Extrem. Mech. Lett. 2017;15:26–37. doi: 10.1016/j.eml.2017.05.002. DOI
Richards C.D., Anderson M.J., Bahr D.F., Richards R.F. Efficiency of energy conversion for devices containing a piezoelectric component. J. Micromech. Microeng. 2004;14:717. doi: 10.1088/0960-1317/14/5/009. DOI
Kim M., Dugundji J., Wardle B.L. Efficiency of piezoelectric mechanical vibration energy harvesting. Smart Mater. Struct. 2015;24:055006. doi: 10.1088/0964-1726/24/5/055006. DOI
Shu Y., Lien I. Analysis of power output for piezoelectric energy harvesting systems. Smart Mater. Struct. 2006;15:1499. doi: 10.1088/0964-1726/15/6/001. DOI
Akaydin H.D., Elvin N., Andreopoulos Y. The performance of a self-excited fluidic energy harvester. Smart Mater. Struct. 2012;21:025007. doi: 10.1088/0964-1726/21/2/025007. DOI
Janphuang P., Lockhart R., Henein S., Briand D., de Rooij N.F. On the experimental determination of the efficiency of piezoelectric impact-type energy harvesters using a rotational flywheel. J. Phys. Conf. Ser. 2013;476:012137. doi: 10.1088/1742-6596/476/1/012137. DOI
Cho J., Richards R., Bahr D., Richards C., Anderson M. Efficiency of energy conversion by piezoelectrics. Appl. Phys. Lett. 2006;89:104107. doi: 10.1063/1.2344868. DOI
EN:50324-2 . Piezoelectric Properties of Ceramic Materials and Components Methods of Measurement—Low Power. 3rd ed. CENELEC; Brussels, Belgium: 2002.
IEC Standard . Guide to Dynamic Measurements of Piezoelectric Ceramics with High Electromechanical Coupling. IEC; Geneva, Switzerland: 1976.
Renno J.M., Daqaq M.F., Inman D.J. On the optimal energy harvesting from a vibration source. J. Sound Vib. 2009;320:386–405. doi: 10.1016/j.jsv.2008.07.029. DOI
Erturk A., Inman D.J. Piezoelectric Energy Harvesting. John Wiley & Sons; Hoboken, NJ, USA: 2011.
Ruan J.J., Lockhart R.A., Janphuang P., Quintero A.V., Briand D., de Rooij N. An automatic test bench for complete characterization of vibration-energy harvesters. IEEE Trans. Instrum. Meas. 2013;62:2966–2973. doi: 10.1109/TIM.2013.2265452. DOI
Wang X. A study of harvested power and energy harvesting efficiency using frequency response analyses of power variables. Mech. Syst. Signal Process. 2019;133:106277. doi: 10.1016/j.ymssp.2019.106277. DOI
Shafer M.W., Garcia E. The Power and Efficiency Limits of Piezoelectric Energy Harvesting. J. Vib. Acoust. 2014;136 doi: 10.1115/1.4025996. DOI
Liao Y., Sodano H.A. Structural Effects and Energy Conversion Efficiency of Power Harvesting. J. Intell. Mater. Syst. Struct. 2009;20:505–514. doi: 10.1177/1045389X08099468. DOI
Hadas Z., Vetiska V., Vetiska J., Krejsa J. Analysis and efficiency measurement of electromagnetic vibration energy harvesting system. Microsyst. Technol. 2016;22:1767–1779. doi: 10.1007/s00542-016-2832-4. DOI
Beranek L. Acoustics. Electrical and Electronic Engineering, American Institute of Physics; College Park, MD, USA: 1986.
Kunz J., Fialka J., Benes P., Havranek Z. An Automated measurement system for measuring an overall power efficiency and a characterisation of piezo harvesters. J. Phys. Conf. Ser. 2018;1065:202008. doi: 10.1088/1742-6596/1065/20/202008. DOI
Gade S., Herlufsen H. Use of Weighting Functions in DFT/FFT Analysis (Part I) Brüel & Kjær; Nærum, Denmark: 1987. pp. 1–28. Brüel & Kjær Technical Review.
Quattrocchi A., Freni F., Montanini R. Power Conversion Efficiency of Cantilever-Type Vibration Energy Harvesters Based on Piezoceramic Films. IEEE Trans. Instrum. Meas. 2021;70:1–9. doi: 10.1109/TIM.2020.3026462. PubMed DOI
Roundy S., Leland E.S., Baker J., Carleton E., Reilly E., Lai E., Otis B., Rabaey J.M., Wright P.K., Sundararajan V. Improving power output for vibration-based energy scavengers. IEEE Pervasive Comput. 2005;4:28–36. doi: 10.1109/MPRV.2005.14. DOI
Alameh A., Gratuze M., Elsayed M., Nabki F. Effects of Proof Mass Geometry on Piezoelectric Vibration Energy Harvesters. Sensors. 2018;18:1584. doi: 10.3390/s18051584. PubMed DOI PMC
Peralta P., Ruiz R., Natarajan S., Atroshchenko E. Parametric study and shape optimization of Piezoelectric Energy Harvesters by isogeometric analysis and kriging metamodeling. J. Sound Vib. 2020;484:115521. doi: 10.1016/j.jsv.2020.115521. DOI
Sensors Special Issue: "Vibration Energy Harvesting for Wireless Sensors"