A New Method to Perform Direct Efficiency Measurement and Power Flow Analysis in Vibration Energy Harvesters

. 2021 Mar 30 ; 21 (7) : . [epub] 20210330

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33808222

Measuring the efficiency of piezo energy harvesters (PEHs) according to the definition constitutes a challenging task. The power consumption is often established in a simplified manner, by ignoring the mechanical losses and focusing exclusively on the mechanical power of the PEH. Generally, the input power is calculated from the PEH's parameters. To improve the procedure, we have designed a method exploiting a measurement system that can directly establish the definition-based efficiency for different vibration amplitudes, frequencies, and resistance loads. Importantly, the parameters of the PEH need not be known. The input power is determined from the vibration source; therefore, the method is suitable for comparing different types of PEHs. The novel system exhibits a combined absolute uncertainty of less than 0.5% and allows quantifying the losses. The approach was tested with two commercially available PEHs, namely, a lead zirconate titanate (PZT) MIDE PPA-1011 and a polyvinylidene fluoride (PVDF) TE LDTM-028K. To facilitate comparison with the proposed efficiency, we calculated and measured the quantity also by using one of the standard options (simplified efficiency). The standard concept yields higher values, especially in PVDFs. The difference arises from the device's low stiffness, which produces high displacement that is proportional to the losses. Simultaneously, the insufficient stiffness markedly reduces the PEH's mechanical power. This effect cannot be detected via the standard techniques. We identified the main sources of loss in the damping of the movement by the surrounding air and thermal losses. The latter source is caused by internal and interlayer friction.

Zobrazit více v PubMed

Beeby S.P., White N.M. Energy Harvesting for Autonomous Systems. Artech House; Norwood, MA, USA: 2010.

Teso-Fz-Betoño D., Aramendia I., Martinez-Rico J., Fernandez-Gamiz U., Zulueta E. Piezoelectric Energy Harvesting Controlled with an IGBT H-Bridge and Bidirectional Buck–Boost for Low-Cost 4G Devices. Sensors. 2020;20:7039. doi: 10.3390/s20247039. PubMed DOI PMC

Fitzgerald P.C., Malekjafarian A., Bhowmik B., Prendergast L.J., Cahill P., Kim C.W., Hazra B., Pakrashi V., OBrien E.J. Scour Damage Detection and Structural Health Monitoring of a Laboratory-Scaled Bridge Using a Vibration Energy Harvesting Device. Sensors. 2019;19:2572. doi: 10.3390/s19112572. PubMed DOI PMC

Beeby S.P., Torah R., Tudor M., Glynne-Jones P., O’donnell T., Saha C., Roy S. A micro electromagnetic generator for vibration energy harvesting. J. Micromechanics Microengineering. 2007;17:1257. doi: 10.1088/0960-1317/17/7/007. DOI

Hadas Z., Smilek J., Kanoun O., editors. Energy Harvesting for Wireless Sensor Networks: Technology, Components and System Design. Walter de Gruyter GmbH & Co KG; Berlin, Germany: 2018. pp. 45–63.

Yang Z., Erturk A., Zu J. On the efficiency of piezoelectric energy harvesters. Extrem. Mech. Lett. 2017;15:26–37. doi: 10.1016/j.eml.2017.05.002. DOI

Richards C.D., Anderson M.J., Bahr D.F., Richards R.F. Efficiency of energy conversion for devices containing a piezoelectric component. J. Micromech. Microeng. 2004;14:717. doi: 10.1088/0960-1317/14/5/009. DOI

Kim M., Dugundji J., Wardle B.L. Efficiency of piezoelectric mechanical vibration energy harvesting. Smart Mater. Struct. 2015;24:055006. doi: 10.1088/0964-1726/24/5/055006. DOI

Shu Y., Lien I. Analysis of power output for piezoelectric energy harvesting systems. Smart Mater. Struct. 2006;15:1499. doi: 10.1088/0964-1726/15/6/001. DOI

Akaydin H.D., Elvin N., Andreopoulos Y. The performance of a self-excited fluidic energy harvester. Smart Mater. Struct. 2012;21:025007. doi: 10.1088/0964-1726/21/2/025007. DOI

Janphuang P., Lockhart R., Henein S., Briand D., de Rooij N.F. On the experimental determination of the efficiency of piezoelectric impact-type energy harvesters using a rotational flywheel. J. Phys. Conf. Ser. 2013;476:012137. doi: 10.1088/1742-6596/476/1/012137. DOI

Cho J., Richards R., Bahr D., Richards C., Anderson M. Efficiency of energy conversion by piezoelectrics. Appl. Phys. Lett. 2006;89:104107. doi: 10.1063/1.2344868. DOI

EN:50324-2 . Piezoelectric Properties of Ceramic Materials and Components Methods of Measurement—Low Power. 3rd ed. CENELEC; Brussels, Belgium: 2002.

IEC Standard . Guide to Dynamic Measurements of Piezoelectric Ceramics with High Electromechanical Coupling. IEC; Geneva, Switzerland: 1976.

Renno J.M., Daqaq M.F., Inman D.J. On the optimal energy harvesting from a vibration source. J. Sound Vib. 2009;320:386–405. doi: 10.1016/j.jsv.2008.07.029. DOI

Erturk A., Inman D.J. Piezoelectric Energy Harvesting. John Wiley & Sons; Hoboken, NJ, USA: 2011.

Ruan J.J., Lockhart R.A., Janphuang P., Quintero A.V., Briand D., de Rooij N. An automatic test bench for complete characterization of vibration-energy harvesters. IEEE Trans. Instrum. Meas. 2013;62:2966–2973. doi: 10.1109/TIM.2013.2265452. DOI

Wang X. A study of harvested power and energy harvesting efficiency using frequency response analyses of power variables. Mech. Syst. Signal Process. 2019;133:106277. doi: 10.1016/j.ymssp.2019.106277. DOI

Shafer M.W., Garcia E. The Power and Efficiency Limits of Piezoelectric Energy Harvesting. J. Vib. Acoust. 2014;136 doi: 10.1115/1.4025996. DOI

Liao Y., Sodano H.A. Structural Effects and Energy Conversion Efficiency of Power Harvesting. J. Intell. Mater. Syst. Struct. 2009;20:505–514. doi: 10.1177/1045389X08099468. DOI

Hadas Z., Vetiska V., Vetiska J., Krejsa J. Analysis and efficiency measurement of electromagnetic vibration energy harvesting system. Microsyst. Technol. 2016;22:1767–1779. doi: 10.1007/s00542-016-2832-4. DOI

Beranek L. Acoustics. Electrical and Electronic Engineering, American Institute of Physics; College Park, MD, USA: 1986.

Kunz J., Fialka J., Benes P., Havranek Z. An Automated measurement system for measuring an overall power efficiency and a characterisation of piezo harvesters. J. Phys. Conf. Ser. 2018;1065:202008. doi: 10.1088/1742-6596/1065/20/202008. DOI

Gade S., Herlufsen H. Use of Weighting Functions in DFT/FFT Analysis (Part I) Brüel & Kjær; Nærum, Denmark: 1987. pp. 1–28. Brüel & Kjær Technical Review.

Quattrocchi A., Freni F., Montanini R. Power Conversion Efficiency of Cantilever-Type Vibration Energy Harvesters Based on Piezoceramic Films. IEEE Trans. Instrum. Meas. 2021;70:1–9. doi: 10.1109/TIM.2020.3026462. PubMed DOI

Roundy S., Leland E.S., Baker J., Carleton E., Reilly E., Lai E., Otis B., Rabaey J.M., Wright P.K., Sundararajan V. Improving power output for vibration-based energy scavengers. IEEE Pervasive Comput. 2005;4:28–36. doi: 10.1109/MPRV.2005.14. DOI

Alameh A., Gratuze M., Elsayed M., Nabki F. Effects of Proof Mass Geometry on Piezoelectric Vibration Energy Harvesters. Sensors. 2018;18:1584. doi: 10.3390/s18051584. PubMed DOI PMC

Peralta P., Ruiz R., Natarajan S., Atroshchenko E. Parametric study and shape optimization of Piezoelectric Energy Harvesters by isogeometric analysis and kriging metamodeling. J. Sound Vib. 2020;484:115521. doi: 10.1016/j.jsv.2020.115521. DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Sensors Special Issue: "Vibration Energy Harvesting for Wireless Sensors"

. 2022 Jun 17 ; 22 (12) : . [epub] 20220617

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...