MLPA analysis of 32 foetuses with a congenital heart defect and 1 foetus with renal defects - pilot study. The significant frequency rate of presented pathological CNV
Jazyk angličtina Země Česko Médium print-electronic
Typ dokumentu časopisecké články
PubMed
33824538
DOI
10.5507/bp.2021.019
Knihovny.cz E-zdroje
- Klíčová slova
- bilateral renal agenesis, clinical variability, congenital heart defect, copy number variants,
- MeSH
- lidé MeSH
- pilotní projekty MeSH
- plod MeSH
- retrospektivní studie MeSH
- těhotenství MeSH
- transkripční faktory genetika MeSH
- variabilita počtu kopií segmentů DNA * genetika MeSH
- vrozené srdeční vady * diagnóza genetika MeSH
- Check Tag
- lidé MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- LZTR1 protein, human MeSH Prohlížeč
- transkripční faktory MeSH
AIMS: The aim of this retrospective study was to determine the detection rate of the pathogenic copy number variants (CNVs) in a cohort of 33 foetuses - 32 with CHD (congenital heart defects) and 1 with kidney defect, after exclusion of common aneuploidies (trisomy 13, 18, 21, and monosomy X) by karyotyping, Multiplex ligation - dependent probe amplification (MLPA) and chromosomal microarray analysis (CMA). We also assess the effectivity of MLPA as a method of the first tier for quick and inexpensive detection of mutations, causing congenital malformations in foetuses. METHODS: MLPA with probe mixes P070, P036 - Telomere 3 and 5, P245 - microdeletions, P250 - DiGeorge syndrome, and P311 - CHD (Congenital heart defects) was performed in 33 samples of amniotic fluid and chorionic villi. CMA was performed in 10 relevant cases. RESULTS: Pathogenic CNVs were found in 5 samples: microdeletions in region 22q11.2 (≈2 Mb) in two foetuses, one distal microdeletion of the 22q11.2 region containing genes LZTR1, CRKL, AIFM3 and SNAP29 (≈416 kb) in the foetus with bilateral renal agenesis, 8p23.1 (3.8 Mb) microdeletion syndrome and microdeletion in area 9q34.3 (1.7 Mb, Kleefstra syndrome). MLPA as an initial screening method revealed unambiguously pathogenic CNVs in 15.2 % of samples. CONCLUSION: Our study suggests that MLPA and CMA are a reliable and high-resolution technology and should be used as the first-tier test for prenatal diagnosis of congenital heart disease. Determination of the cause of the abnormality is crucial for genetic counselling and further management of the pregnancy.
Department of Medical Genetics University Hospital Olomouc Czech Republic
Department of Pediatrics University Hospital Olomouc Czech Republic
Faculty of Medicine and Dentistry Palacky University Olomouc Olomouc Czech Republic
Zobrazit více v PubMed
Hoffman JI, Kaplan S. The incidence of congenital heart disease. J Am Coll Cardiol 2002;39(12):1890-900. DOI
Wang E, Sun S, Qiao B, Duan W, Huang G, An Y, Xu S, Zheng Y, Su Z, Gu X, Jin L, Wang H. Identification of functional mutations in GATA4 in patients with congenital heart disease. PLoS One 2013;8(4):e62138. PubMed DOI
Silva M, Leeuw N, Mann K, Schuring-Blom H, Morgan S, Giardino D, Rack K, Hastings R. European guidelines for constitutional cytogenomic analysis. Eur J Hum Genet 2019;27(1):1-16. DOI
Pavlicek J, Piegzová A, Klásková E, Kaprálová S, Palatová A, Spacek R, Gruzska T. Development, effectiveness, and current possibilities in prenatal detection of congenital heart defects. Cor Vasa 2020;62:21-28. DOI
Marek J, Tomek V, Skovránek J, Povysilová V, Samánek M. Prenatal ultrasound screening of congenital heart disease in an unselected national population: a 21-year experience. Heart 2011;97(2):124-30. PubMed DOI
Grech V, Gatt M. Syndromes and malformations associated with congenital heart disease in a population-based study. Int J Cardiol 1999;68(2):151-6. DOI
Marino B, Digilio MC. Congenital heart disease and genetic syndromes: specific correlation between cardiac phenotype and genotype. Cardiovasc Pathol 2000;9(6):303-15. DOI
Gonzalez JH, Shirali GS, Atz AM, Taylor SN, Forbus GA, Zyblewski SC Hlavacek AM. Universal screening for extracardiac abnormalities in neonates with congenital heart disease. Pediatr Cardiol 2009;30(3):269-73. DOI
Tennstedt C, Chaoui R, Körner H, Dietel M. Spectrum of congenital heart defects and extracardiac malformations associated with chromosomal abnormalities: result of a seven year necropsy study. Heart 1999;82(1):34-39. PubMed DOI
Sanna-Cherchi S, Ravani P, Corbani V, Parodi S, Haupt R, Piaggio G, Innocenti ML, Somenzi D, Trivelli A, Caridi G, Izzi C, Scolari F, Mattioli G, Allegri L, Ghiggeri GM. Renal outcome in patients with congenital anomalies of the kidney and urinary tract. Kidney Int 2009;76(5):528-33. PubMed DOI
Blue GM, Kirk EP, Sholler GF, Harvey RP, Winlaw DS. Congenital heart disease: current knowledge about causes and inheritance. Med J of Australia 2012;197(3):155-9. DOI
Pierpont ME, Basson CT, Benson DW Jr, Gelb BD, Giglia TM, Goldmuntz E, McGee G, Sable CA, Srivastava D, Webb CL. Genetic basis for congenital heart defects: current knowledge: a scientific statement from the American Heart Association Congenital Cardiac Defects Committee, Council on Cardiovascular Disease in the Young: endorsed by the American Academy of Pediatrics. Circul 2007;115(23):3015-38. DOI
Mademont-Soler I, Morales C, Soler A, Clusellas N, Margarit E, Estefanía Martínez-Barrios E, Martínez JM, Sánchez A. MLPA: A prenatal diagnostic tool for the study of congenital heart defects? Gene 2012;500(1):151-54. PubMed DOI
Lander J, Ware SM. Copy number variation in congenital heart defects. Curr Genet Med Rep 2014;2:168-78. DOI
Edelmann L, Pandita RK, Morrow BE. Low-copy repeats mediate the common 3-Mb deletion in patients with velo-cardio-facial syndrome. Am J Hum Genet 1999;64(4):1076-86. DOI
Bittel DC, Yu S, Newkirk H, Kibiryeva N, Holt A, Butler MG, et al. Refining the 22q11.2 deletion breakpoints in DiGeorge syndrome by aCGH. Cytog Gen Res 2009;124(2):113-20. DOI
Ware SM, Jefferies JL. New genetic insights into congenital heart disease. J Clin Exp Cardiolog 2012;15(S8):pii:003. DOI
Mademont-Soler I, Morales C, Soler A, Martinez-Crespo JM, Shen Y, Margarit E, Clusellas N, Obon M, Wu BL, Sanchez A. Prenatal diagnosis of chromosomal abnormalities in fetuses with abnormal cardiac ultrasound findings: evaluation of chromosomal microarray-based analysis. Ultrasound Obstet Gynecol 2013;41(4):375-82. DOI
Monteiro RAC, de Freitas ML, Vianna GS, de Oliveira VT, Pietra RX, Ferreira LCA, Rocha PPO, da S. Gonçalves M, da C. César G, de S. Lima J, Medeiros PFV, Mazzeu JF, Jehee FS. Major Contribution of Genomic Copy Number Variation in Syndromic Congenital Heart Disease: The Use of MLPA as the First Genetic Test. Mol Syndromol 2017;8(5):227-35. PubMed DOI
Song MS, Hu A, Dyhamenhali U, Chitayat D, Winsor EJT, Ryan G, Smallhorn J, Barrett J, S. Yoo J, Hornberger LK. Extracardiac lesions and chromosomal abnormalities associated with major fetal heart defects: comparison of intrauterine, postnatal and postmortem diagnoses. Ultras Obst Gyn 2009;33(5):552-59. DOI
Noël AC, Pelluard F, Delezoide AL, Devisme L, Loeuillet L, Leroy B, Martin A, Bouvier R, Laquerriere A, Jeanne-Pasuier C, Bessieres-Grattagliano B, Mechler C, Alanio E, Leroy C, Gaillard D. Fetal phenotype associated with the 22q11 deletion. Am J Med Genet A 2014;164A(11):2724-31. PubMed DOI
Burnside RD. 22q11.21 Deletion syndromes: a review of proximal, central, and distal deletions and their associated features. Cyto Gen Res 2015;146(2):89-99. DOI
Unolt M, Kammoun M, Nowakowska B, Graham GE, Crowley TB, Hestand MS, Demaerel W, Geremek M, Emanuel BS, Zackai EH, Vermeesch JR, McDonald-McGinn D. Pathogenic variants in CDC45 on the remaining allele in patients with a chromosome 22q11.2 deletion result in a novel autosomal recessive condition. Genet Med 2020;22(2):326-35. PubMed DOI
Cao R, Liu S, Liu C, Chen S, Li F, Sun K, Xu R. Duplication and Deletion of 22q11 Associated with Anomalous Pulmonary Venous Connection. Ped Cardiol 2018;39(3);585-90. DOI
Lindsay EA, Vitelli F, Su H, Morishima M, Huynh T, Pramparo T, Jurecic V, Ogunrinu G, Sutherland HF, Scambler PJ, Bradley A, Baldini A. Tbx1 haploinsufficieny in the DiGeorge syndrome region causes aortic arch defects in mice. Nature 2001;410(6824):97-101. DOI
Yagi H, Furutani Y, Hamada H, Sasaki T, Asakawa S, Minoshima S, Ichida F, Joo K, Kimura M, Imamura S, Kamatani N, Momma K, Takao A, Nakazawa M, Shimizu N, Matsuoka R. Role of TBX1 in human del22q11.2 syndrome. Lancet 2003;362(9393):1366-73. DOI
Paylor R, Glaser B, Mupo A, Ataliotis P, Spencer C, Sobotka A, Sparks C, Choi CH, Oghalai J, Curran S, Murphy KC, Monks S, Williams N, O'Donovan MC, Owen MJ, Scambler PJ, Lindsay E. Tbx1 haploinsufficiency is linked to behavioral disorders in mice and humans: implications for 22q11 deletion syndrome. Proc Natl Acad Sci U S A 2006;103(20):7729-34. PubMed DOI
Wilson DI, Burn J, Scambler P, Goodship L. DiGeorge syndrome: part of CATCH 22. J Med Genet 1993;30(10):852-6. DOI
Kujat A, Schulz MD, Strenge S, Froster UG. Renal malformations in deletion 22q11.2 patients. Am J Med Genet A 2006;140(14):1601-2. DOI
Kobrynski LJ, Sullivan KE. Velocardiofacial syndrome, DiGeorge syndrome: the chromosome 22q11.2 deletion syndromes. Lancet 2007;370(9596):1443-52. DOI
Lopez-Rivera E, Liu YP, Verbitsky M, Anderson BR, Capone VP, Otto EA, Yan Z, Mitrotti A, Martino J, Steers NJ, Fasel DA, Vukojevic K, Deng R, Racedo SE, Liu Q, Werth M, Westland R, Vivante A, Makar GS, Bodria M, Sampson MG, Gillies CE, Vega-Warner V, Maiorana M, Petrey DS, Honig B, Lozanovski VJ, Salomon R, Heidet L, Carpentier W, Gaillard D, Carrea A, Gesualdo L, Cusi D, Izzi C, Scolari F, van Wijk JA, Arapovic A, Saraga-Babic M, Saraga M, Kunac N, Samii A, McDonald-McGinn DM, Crowley TB, Zackai EH, Drozdz D, Miklaszewska M, Tkaczyk M, Sikora P, Szczepanska M, Mizerska-Wasiak M, Krzemien G, Szmigielska A, Zaniew M, Darlow JM, Puri P, Barton D, Casolari E, Furth SL, Warady BA, Gucev Z, Hakonarson H, Flogelova H, Tasic V, Latos-Bielenska A, Materna-Kiryluk A, Allegri L, Wong CS, Drummond IA, D'Agati V, Imamoto A, Barasch JM, Hildebrandt F, Kiryluk K, Lifton RP, Morrow BE, Jeanpierre C, Papaioannou VE, Ghiggeri GM, Gharavi AG, Katsanis N, Sanna-Cherchi S. Genetic Drivers of Kidney Defects in the DiGeorge Syndrome. N Engl J Med 2017;376(8):742-54. DOI
Faivre L, Morichon-Delvallez N, Viot G, Narcy F, Loison S, Mandelbrot L, Aubry MC, Raclin V, Edery P, Munnich A, Vekemans M. Prenatal diagnosis of an 8p23.1 deletion in a fetus with a diaphragmatic hernia and review of the literature. Prenat Diagn 1998;18(10):1055-60. PubMed DOI
Long F, Wang X, Fang S, Xu Y, Sun K, Chen S, Xu R. A Potential Relationship among beta-defensins haplotype, SOX7 duplication and cardiac defects. PLoS ONE 2013;8(8):e72515. PubMed DOI
Rajagopal SK, Qing M, Obler D, Jie S, Manichaikul A, Tomita-Mitchell A, Boardman K, Briggs C, Garg V, Srivastava D, Goldmuntz E, Broman KW, Woodrow Benson D, Smoot LB, William PT. Spectrum of heart disease associated with murine and human GATA4 mutation. J Mol Cell Cardiol 2007;43(6):677-85. DOI
Wat MJ, Shchelochkov OA, Holder AM, Breman AM, Dagli A, Bacino C, Scaglia F, Zori RT, Cheung SW, Scott DA, Kang S-HL. Chromosome 8p23.1 deletions as a cause of complex congenital heart defects and diaphragmatic hernia. Am J Med Genet A 2009;149A(8):1661-77. PubMed DOI
Jay PY, Bielinska M, Erlich JM, Mannisto S, Pu WT, Heikinheimo M, Wilson DB. Impared mesenchymal cell function in Gata4 mutant mice Leeds to diaphragmatic hernias and primary lung defects. Dev Biol 2007;301(2):602-14. DOI
Guimiot F, Dupont C, Fuentes-Duarte A, Aboura A, Bazin A, Khung-Savatovsky S, Tillous-Borde I, Delezoide A-L, Azancot A. Maternal transmission of interstitial 8p23.1 deletion detected during prenatal diagnosis. Am J Med Genet A 2013;161A(1):208-13. PubMed DOI
López I, Bafalliu JA, Bernabé MC, García F, Costa M, Guillén-Navarro E. Prenatal diagnosis of de novo deletions of 8p23.1 or 15q26.1 in two fetuses with diaphragmatic hernia and congenital heart defects. Prenat Diagn 2006;26(6):577-80. PubMed DOI
Hoellen F,Weichert J. Sonographic diagnosis of multiple cardiovascular malformations in a fetus with an interstitial 8p23.1 deletion. J Ult Med 2012;31(10):1689-92. DOI
Kleefstra T, Smidt M, Banning MJG, Oudakker AR, Van Esch H, de Brouwer AP, Nillesen W, Sistermans EA, Hamel BC, de Bruijn D, Fryns JP, Yntema HG, Brunner HG, de Vries BBA, van Bokhoven H. Disruption of the gene euchromatin histone methyl transferase1 (Eu-HMTase1) is associated with the 9q34 subtelomeric deletion syndrome. J Med Genet 2005;42(4):299-306. DOI
Kleefstra T, van Zelst-Stams WA, Nillesen WM, Cormier-Daire V, Houge G, Foulds N, van Dooren M, Willemsen MH, Pfundt R, Turner A, Wilson M, McGaughran J, Rauch A, Zenker M, Adam MP, Innes M, Davies C, López AG, Casalone R, Weber A, Brueton LA, Navarro AD, Bralo MP, Venselaar H, Stegmann SP, Yntema HG, van Bokhoven H, Brunner HG. Further clinical and molecular delineation of the 9q subtelomeric deletion syndrome supports a major contribution of EHMT1 haploinsufficiency to the core phenotype. J Med Genet 2009;46(9):598-606. DOI
Bock I, Németh K, Pentelényi K, Balicza P, Balázs A, Molnár MJ, Román V, Nagy J, Lévay G, Kobolák J, Dinnyés A. Targeted next generation sequencing of a panel of autism-related genes identifies an EHMT1 mutation in a Kleefstra syndrome patient with autism and normal intellectual performance. Gene 2016;595(2):131-41. PubMed DOI
Willemsen MH, Vulto-van Silfhout AT, Nillesen WM, Wissink-Lindhout WM, van Bokhoven H, Philip N, Berry-Kravis EM, Kini U, van Ravenswaaij-Arts CM, Delle Chiaie B, Innes AM, Houge G, Kosonen T, Cremer K, Fannemel M, Stray- Pedersen A, Reardon W, Ignatius J, Lachlan K, Mircher C, Helderman van den Enden PT, Mastebroek M, Cohn-Hokke PE, Yntema HG, Drunat S, Kleefstra T. Update on Kleefstra Syndrome. Mol Synd 2012;2(3-5):202-12. DOI
Guterman S, Hervé B, Rivière J, Fauvert D, Clement P, Vialard F. First prenatal diagnosis of a 'pure' 9q34.3 deletion (Kleefstra syndrome): A case report and literature review. J Obst Gyn Res 2018;44(3):570-75. DOI
Chen CP, Lin CL, Chen LL, Lee CC, Wang W. Prenatal diagnosis of mosaic ring chromosome 9. Pren Diagn 2006;26(9):870-71. DOI
Chen CP, Lin CJ, Chen YY, Wang LK, Chern SR, Wu PS, Su JW, Chen LF, Town DD, Pan CW, Wang W. 3q26.31-q29 duplication and 9q34.3 microdeletion associated with omphalocele, ventricular septal defect, abnormal first-trimester maternal serum screening and increased nuchal translucency: Prenatal diagnosis and aCGH characterization. Gene 2013;532(1):80-86. PubMed DOI
Penacho V, Galán F, Martín-Bayón TA, Mayo S, Manchón I, Carrasco A, Martínez-Castellano F, Alcaraz LA. Prenatal diagnosis of a female fetus with ring chromosome 9, 46,XX,r(9)(p24q34), and a de novo interstitial 9p deletion. Cytog Gen Res 2014;144(4):275-79. DOI
Simovich MJ, Yatsenko SA, Kang SHL et al. Prenatal diagnosis of a 9q34.3 microdeletion by array-CGH in a fetus with an apparently balanced translocation. Pren Diag 2007;27(12):1112-17. DOI
Huang LY, Yang Y, He P, Li DZ. Increased first-trimester nuchal translucency associated with a dicentric chromosome and 9q34.3 microdeletion syndrome. J Obst Gyn 2017;37(3):327-29. DOI
Noruzinia M, Ahmadvand M, Bashti O, Salehi Chaleshtori AR. Kleefstra syndrome: the first case report from Iran. Acta Med Iran 2017;55(10):650-54.
Chen CP, Lin SP, Li HB, Chen YN, Wang W. Pregnancy with de novo 9q34.3 microdeletion and Kleefstra syndrome in the fetus may be associated with an abnormal maternal serum screening result. T J Obst Gyn 2015;54(4):450-1. DOI
Campbell CL, Collins RTII, Zarate YA. Severe neonatal presentation of Kleefstra syndrome in a patient with hypoplastic left heart syndrome and 9q34.3 microdeletion. Birt Def Res A Clin Mol Teratol 2014;100(12):985-90. DOI
Hadzsiev K, Komlosi K, Czako M, Duga B, Szalai R, Szabo A, Postyeni E, Szabo T, Kosztolanyi G, Melegh B. Kleefstra syndrome in Hungarian patients: additional symptoms besides the classic phenotype. Mol Cytogenet 2016;9:22. PubMed DOI
Ciaccio C, Scuvera G, Tucci A, Gentilin B, Baccarin M, Marchisio P, Avignone S, Milani D. New Insights into Kleefstra Syndrome: Report of two novel cases with previously unreported features and literature review. Cytog Gen Res 2018;156(3):127-33. DOI
Van den Veyver IB, Patel A, Shaw CA, Pursley AN, Kang SH, Simovich MJ, Ward PA, Darilek S, Johnson A, Neill SE, Bi W, White LD, Eng CM, Lupski JR, Cheung SW, Beaudet AL. Clinical use of array comparative genomic hybridization (aCGH) for prenatal diagnosis in 300 cases. Pren Diag 2009;29(1):29-39. DOI
Blue GM, Kirk EP, Giannoulatou E, Sholler GF, Dunwoodie SL, Harvey RP, Winlaw DS. Advances in the genetics of congenital heart disease: a clinician's guide. J Am Coll Cardiol 2017;69(7):859-70. DOI
Valsesia A, Macé A, Jacquemont S, Beckmann J, Kutalik Z. The growing importance of CNVs: new insights for detection and clinical interpretation. Front Genet 2013;4:92. PubMed DOI