Immunophenotyping of Peripheral Blood Mononuclear Cells in Septic Shock Patients With High-Dimensional Flow Cytometry Analysis Reveals Two Subgroups With Differential Responses to Immunostimulant Drugs

. 2021 ; 12 () : 634127. [epub] 20210322

Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid33828550

Sepsis is associated with a dysregulated inflammatory response to infection. Despite the activation of inflammation, an immune suppression is often observed, predisposing patients to secondary infections. Therapies directed at restoration of immunity may be considered but should be guided by the immune status of the patients. In this paper, we described the use of a high-dimensional flow cytometry (HDCyto) panel to assess the immunophenotype of patients with sepsis. We then isolated peripheral blood mononuclear cells (PBMCs) from patients with septic shock and mimicked a secondary infection by stimulating PBMCs for 4 h in vitro with lipopolysaccharide (LPS) with or without prior exposure to either IFN-γ, or LAG-3Ig. We evaluated the response by means of flow cytometry and high-resolution clustering cum differential analysis and compared the results to PBMCs from healthy donors. We observed a heterogeneous immune response in septic patients and identified two major subgroups: one characterized by hypo-responsiveness (Hypo) and another one by hyper-responsiveness (Hyper). Hypo and Hyper groups showed significant differences in the production of cytokines/chemokine and surface human leukocyte antigen-DR (HLA-DR) expression in response to LPS stimulation, which were observed across all cell types. When pre-treated with either interferon gamma (IFN-γ) or lymphocyte-activation gene 3 (LAG)-3 recombinant fusion protein (LAG-3Ig) prior to LPS stimulation, cells from the Hypo group were shown to be more responsive to both immunostimulants than cells from the Hyper group. Our results demonstrate the importance of patient stratification based on their immune status prior to any immune therapies. Once sufficiently scaled, this approach may be useful for prescribing the right immune therapy for the right patient at the right time, the key to the success of any therapy.

Zobrazit více v PubMed

Fleischmann C, Scherag A, Adhikari NK, Hartog CS, Tsaganos T, Schlattmann P, et al. . Assessment of global incidence and mortality of hospital-treated sepsis. Current estimates and limitations. Am J Respir Crit Care Med. (2016) 193:259–72. 10.1164/rccm.201504-0781OC PubMed DOI

Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, et al. . The third international consensus definitions for sepsis and septic shock (sepsis-3). JAMA. (2016) 315:801–10. 10.1001/jama.2016.0287 PubMed DOI PMC

Hotchkiss RS, Monneret G, Payen D. Immunosuppression in sepsis: a novel understanding of the disorder and a new therapeutic approach. Lancet Infect Dis. (2013) 13:260–8. 10.1016/S1473-3099(13)70001-X PubMed DOI PMC

Boomer JS, Green JM, Hotchkiss RS. The changing immune system in sepsis: is individualized immuno-modulatory therapy the answer? Virulence. (2014) 5:45–56. 10.4161/viru.26516 PubMed DOI PMC

Tang BM, Huang SJ, Mclean AS. Genome-wide transcription profiling of human sepsis: a systematic review. Crit Care. (2010) 14:R237. 10.1186/cc9392 PubMed DOI PMC

Kalil AC, Florescu DF. Prevalence and mortality associated with cytomegalovirus infection in nonimmunosuppressed patients in the intensive care unit. Crit Care Med. (2009) 37:2350–8. 10.1097/CCM.0b013e3181a3aa43 PubMed DOI

Monneret G, Venet F, Kullberg BJ, Netea MG. ICU-acquired immunosuppression and the risk for secondary fungal infections. Med Mycol. (2011) 49(Suppl. 1):S17–23. 10.3109/13693786.2010.509744 PubMed DOI

Hotchkiss RS, Swanson PE, Freeman BD, Tinsley KW, Cobb JP, Matuschak GM, et al. . Apoptotic cell death in patients with sepsis, shock, and multiple organ dysfunction. Crit Care Med. (1999) 27:1230–51. 10.1097/00003246-199907000-00002 PubMed DOI

Oberholzer A, Oberholzer C, Moldawer LL. Sepsis syndromes: understanding the role of innate and acquired immunity. Shock. (2001) 16:83–96. 10.1097/00024382-200116020-00001 PubMed DOI

Monneret G, Debard AL, Venet F, Bohe J, Hequet O, Bienvenu J, et al. . Marked elevation of human circulating CD4+CD25+ regulatory T cells in sepsis-induced immunoparalysis. Crit Care Med. (2003) 31:2068–71. 10.1097/01.CCM.0000069345.78884.0F PubMed DOI

Lukaszewicz AC, Grienay M, Resche-Rigon M, Pirracchio R, Faivre V, Boval B, et al. . Monocytic HLA-DR expression in intensive care patients: interest for prognosis and secondary infection prediction. Crit Care Med. (2009) 37:2746–52. 10.1097/00003246-200910000-00011 PubMed DOI

Muenzer JT, Davis CG, Chang K, Schmidt RE, Dunne WM, Coopersmith CM, et al. . Characterization and modulation of the immunosuppressive phase of sepsis. Infect Immun. (2010) 78:1582–92. 10.1128/IAI.01213-09 PubMed DOI PMC

Schrijver IT, Theroude C, Roger T. Myeloid-derived suppressor cells in sepsis. Front Immunol. (2019) 10:327. 10.3389/fimmu.2019.00327 PubMed DOI PMC

Docke WD, Randow F, Syrbe U, Krausch D, Asadullah K, Reinke P, et al. . Monocyte deactivation in septic patients: restoration by IFN-gamma treatment. Nat Med. (1997) 3:678–81. 10.1038/nm0697-678 PubMed DOI

Nalos M, Santner-Nanan B, Parnell G, Tang B, Mclean AS, Nanan R. Immune effects of interferon gamma in persistent staphylococcal sepsis. Am J Respir Crit Care Med. (2012) 185:110–2. 10.1164/ajrccm.185.1.110 PubMed DOI

Ono S, Tsujimoto H, Hiraki S, Aosasa S. Mechanisms of sepsis-induced immunosuppression and immunological modification therapies for sepsis. Ann Gastroenterol Surg. (2018) 2:351–8. 10.1002/ags3.12194 PubMed DOI PMC

Peters Van Ton AM, Kox M, Abdo WF, Pickkers P. Precision immunotherapy for sepsis. Front Immunol. (2018) 9:1926. 10.3389/fimmu.2018.01926 PubMed DOI PMC

Delsing CE, Gresnigt MS, Leentjens J, Preijers F, Frager FA, Kox M, et al. . Interferon-gamma as adjunctive immunotherapy for invasive fungal infections: a case series. BMC Infect Dis. (2014) 14:166. 10.1186/1471-2334-14-166 PubMed DOI PMC

Payen D, Faivre V, Miatello J, Leentjens J, Brumpt C, Tissieres P, et al. . Multicentric experience with interferon gamma therapy in sepsis induced immunosuppression. A case series. BMC Infect Dis. (2019) 19:931. 10.1186/s12879-019-4526-x PubMed DOI PMC

Andreae S, Piras F, Burdin N, Triebel F. Maturation and activation of dendritic cells induced by lymphocyte activation gene-3 (CD223). J Immunol. (2002) 168:3874–80. 10.4049/jimmunol.168.8.3874 PubMed DOI

Andreae S, Buisson S, Triebel F. MHC class II signal transduction in human dendritic cells induced by a natural ligand, the LAG-3 protein (CD223). Blood. (2003) 102:2130–7. 10.1182/blood-2003-01-0273 PubMed DOI

Brignone C, Grygar C, Marcu M, Schakel K, Triebel F. A soluble form of lymphocyte activation gene-3 (IMP321) induces activation of a large range of human effector cytotoxic cells. J Immunol. (2007) 179:4202–11. 10.4049/jimmunol.179.6.4202 PubMed DOI

Brignone C, Gutierrez M, Mefti F, Brain E, Jarcau R, Cvitkovic F, et al. . First-line chemoimmunotherapy in metastatic breast carcinoma: combination of paclitaxel and IMP321 (LAG-3Ig) enhances immune responses and antitumor activity. J Transl Med. (2010) 8:71. 10.1186/1479-5876-8-71 PubMed DOI PMC

Atkinson V, Khattak A, Haydon A, Eastgate M, Roy A, Prithviraj P, et al. . Eftilagimod alpha, a soluble lymphocyte activation gene-3 (LAG-3) protein plus pembrolizumab in patients with metastatic melanoma. J Immunother Cancer. (2020) 8:e001681. 10.1136/jitc-2020-001681 PubMed DOI PMC

Docke WD, Hoflich C, Davis KA, Rottgers K, Meisel C, Kiefer P, et al. . Monitoring temporary immunodepression by flow cytometric measurement of monocytic HLA-DR expression: a multicenter standardized study. Clin Chem. (2005) 51:2341–7. 10.1373/clinchem.2005.052639 PubMed DOI

Garcia-Pineres AJ, Hildesheim A, Williams M, Trivett M, Strobl S, Pinto LA. DNAse treatment following thawing of cryopreserved PBMC is a procedure suitable for lymphocyte functional studies. J Immunol Methods. (2006) 313:209–13. 10.1016/j.jim.2006.04.004 PubMed DOI

Poujol F, Monneret G, Pachot A, Textoris J, Venet F. Altered T lymphocyte proliferation upon lipopolysaccharide challenge ex vivo. PLoS ONE. (2015) 10:e0144375. 10.1371/journal.pone.0144375 PubMed DOI PMC

Crowell HL, Stéphane Chevrier VRTZ, Robinson MD, Bodenmiller B. CATALYST: Cytometry dATa anALYSis Tools. (2020). Available online at: https://github.com/HelenaLC/CATALYST

Wickham H, Averick M, Bryan J, Chang W, D'Agostino McGowan L, François R, et al. . Welcome to the Tidyverse. J Open Source Softw. (2019) 4:1686. 10.21105/joss.01686 DOI

Kolde R. pheatmap: Pretty Heatmaps. (2019). Available online at: https://CRAN.R-project.org/package=pheatmap

R Development Core Team . R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing; (2019).

Monaco G, Chen H, Poidinger M, Chen J, De Magalhães JP, Larbi A. flowAI: automatic and interactive anomaly discerning tools for flow cytometry data. Bioinformatics. (2016) 32:2473–80. 10.1093/bioinformatics/btw191 PubMed DOI

Van Gassen S, Callebaut B, Van Helden MJ, Lambrecht BN, Demeester P, Dhaene T, et al. . FlowSOM: using self-organizing maps for visualization and interpretation of cytometry data. Cytometry A. (2015) 87:636–45. 10.1002/cyto.a.22625 PubMed DOI

Weber LM, Nowicka M, Soneson C, Robinson MD. diffcyt: differential discovery in high-dimensional cytometry via high-resolution clustering. Commun Biol. (2019) 2:183. 10.1038/s42003-019-0415-5 PubMed DOI PMC

Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. . limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucl Acids Res. (2015) 43:e47. 10.1093/nar/gkv007 PubMed DOI PMC

Larsson J. eulerr: Area-Proportional Euler and Venn Diagrams With Ellipses. (2020). Available online at: https://github.com/jolars/eulerr, https://jolars.github.io/eulerr/

Pepys MB, Hirschfield GM. C-reactive protein: a critical update. J Clin Invest. (2003) 111:1805–12. 10.1172/JCI200318921 PubMed DOI PMC

Castelli GP, Pognani C, Meisner M, Stuani A, Bellomi D, Sgarbi L. Procalcitonin and C-reactive protein during systemic inflammatory response syndrome, sepsis and organ dysfunction. Crit Care. (2004) 8:R234–42. 10.1186/cc2877 PubMed DOI PMC

Sridharan P, Chamberlain RS. The efficacy of procalcitonin as a biomarker in the management of sepsis: slaying dragons or tilting at windmills? Surg Infect. (2013) 14:489–511. 10.1089/sur.2012.028 PubMed DOI

Cheadle WG, Hershman MJ, Wellhausen SR, Polk HC, Jr. HLA-DR antigen expression on peripheral blood monocytes correlates with surgical infection. Am J Surg. (1991) 161:639–45. 10.1016/0002-9610(91)91247-G PubMed DOI

Erokhina SA, Streltsova MA, Kanevskiy LM, Telford WG, Sapozhnikov AM, Kovalenko EI. HLA-DR(+) NK cells are mostly characterized by less mature phenotype and high functional activity. Immunol Cell Biol. (2018) 96:212–28. 10.1111/imcb.1032 PubMed DOI PMC

Erokhina SA, Streltsova MA, Kanevskiy LM, Grechikhina MV, Sapozhnikov AM, Kovalenko EI. HLA-DR-expressing NK cells: effective killers suspected for antigen presentation. J Leukoc Biol. (2021) 109:327–37. 10.1002/JLB.3RU0420-668RR PubMed DOI

Vazquez-Tello A, Halwani R, Li R, Nadigel J, Bar-Or A, Mazer BD. IL-17A and IL-17F expression in B lymphocytes. Int Arch Allergy Immunol. (2012) 157:406–16. 10.1159/000329527 PubMed DOI

Srenathan U, Steel K, Taams LS. IL-17+ CD8+ T cells: differentiation, phenotype and role in inflammatory disease. Immunol Lett. (2016) 178:20–6. 10.1016/j.imlet.2016.05.001 PubMed DOI PMC

Chaudhry H, Zhou J, Zhong Y, Ali MM, Mcguire F, Nagarkatti PS, et al. . Role of cytokines as a double-edged sword in sepsis. In Vivo. (2013) 27:669–84. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...