Characterization and purification of pentameric chimeric protein particles using asymmetric flow field-flow fractionation coupled with multiple detectors
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.1.01/0.0/0.0/15_003/0000495
European Regional Development Fund
CZ.02.1.01/0.0/0.0/16_025/0007397
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
33837800
PubMed Central
PMC8035888
DOI
10.1007/s00216-021-03323-6
PII: 10.1007/s00216-021-03323-6
Knihovny.cz E-zdroje
- Klíčová slova
- Asymmetric flow field-flow fractionation (AF4), Circovirus, Recombinant antigen,
- MeSH
- buněčné linie MeSH
- Circovirus chemie MeSH
- frakcionace tokem v poli přístrojové vybavení metody MeSH
- multimerizace proteinu MeSH
- myši MeSH
- rekombinantní fúzní proteiny analýza izolace a purifikace MeSH
- Theilovirus chemie MeSH
- virové proteiny analýza izolace a purifikace MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- rekombinantní fúzní proteiny MeSH
- virové proteiny MeSH
Porcine circovirus causes the post-weaning multi-systemic wasting syndrome. Despite the existence of commercial vaccines, the development of more effective and cheaper vaccines is expected. The usage of chimeric antigens allows serological differentiation between naturally infected and vaccinated animals. In this work, recombinant pentameric vaccination protein particles spontaneously assembled from identical subunits-chimeric fusion proteins derived from circovirus capsid antigen Cap and a multimerizing subunit of mouse polyomavirus capsid protein VP1 were purified and characterized using asymmetric flow field-flow fractionation (AF4) coupled with UV and MALS/DLS (multi-angle light scattering/dynamic light scattering) detectors. Various elution profiles were tested, including constant cross-flow and decreasing cross-flow (linearly and exponentially). The optimal sample retention, separation efficiency, and resolution were assessed by the comparison of the hydrodynamic radius (Rh) measured by online DLS with the Rh values calculated from the simplified retention equation according to the AF4 theory. The results show that the use of the combined elution profiles (exponential and constant cross-flow rates) reduces the time of the separation, prevents undesirable sample-membrane interaction, and yields better resolution. Besides, the results show no self-associations of the individual pentameric particles into larger clusters and no sample degradation during the AF4 separation. The Rg/Rh ratios for different fractions are in good correlation with morphological analyses performed by transmission electron microscopy (TEM). Additionally to the online analysis, the individual fractions were subjected to offline analysis, including batch DLS, TEM, and SDS-PAGE, followed by Western blot.
C2P s r o The Campus Science Park Palachovo náměstí 726 2 625 00 Brno Czech Republic
Institute of Physics AS Na Slovance 1999 2 182 00 Prague 8 Czech Republic
Malvern Panalytical Ltd Enigma Business Park Grovewood Road Great Malvern WR14 1XZ UK
Veterinary Research Institute Hudcova 70 621 00 Brno Czech Republic
Wyatt Technology Europe GmbH Hochstraße 12a 56307 Dernbach Germany
Zobrazit více v PubMed
Gillespie J, Opriessnig T, Meng XJJ, Pelzer K, Buechner-Maxwell V. Porcine Circovirus type 2 and porcine Circovirus-associated disease. J Vet Intern Med. 2009;23:1151–1163. doi: 10.1111/j.1939-1676.2009.0389.x. PubMed DOI PMC
Tischer I, Gelderblom H, Vettermann W, Koch MA. A very small porcine virus with circular single-stranded DNA. Nature. 1982;295:64–66. doi: 10.1038/295064a0. PubMed DOI
Allan GM, Hassard LE, Clark EG, Todd D, McNeilly F, Haines DM, Jewhurst VA, Kennedy S, Ellis JA, Meehan BM. Characterization of novel circovirus DNAs associated with wasting syndromes in pigs. J Gen Virol. 1998;79:2171–2179. doi: 10.1099/0022-1317-79-9-2171. PubMed DOI
Segalés J, Allan GM, Domingo M. Porcine circovirus diseases. Anim Health Res Rev. 2005;6:119–142. doi: 10.1079/AHR2005106. PubMed DOI
Fachinger V, Bischoff R, Ben JS, Saalmüller A, Elbers K. The effect of vaccination against porcine circovirus type 2 in pigs suffering from porcine respiratory disease complex. Vaccine. 2008;26:1488–1499. doi: 10.1016/j.vaccine.2007.11.053. PubMed DOI
Beach NM, Meng X-J. Efficacy and future prospects of commercially available and experimental vaccines against porcine circovirus type 2 (PCV2) Virus Res. 2012;164:33–42. doi: 10.1016/j.virusres.2011.09.041. PubMed DOI
Meng XJ (2013) Circoviridae. In: Fields virology: Sixth Edition. Wolters Kluwer Health Adis (ESP).
Fraiberk M, Hájková M, Krulová M, Kojzarová M, Drda Morávková A, Pšikal I, Forstová J. Exploitation of stable nanostructures based on the mouse polyomavirus for development of a recombinant vaccine against porcine circovirus 2. PLoS One. 2017;12:e0184870. doi: 10.1371/journal.pone.0184870. PubMed DOI PMC
Giddings JC. A new separation concept based on a coupling of concentration and flow nonuniformities. Sep Sci. 1966;1:123–125. doi: 10.1080/01496396608049439. DOI
Podzimek S, Machotova J, Snuparek J, Vecera M, Prokupek L. Characterization of molecular structure of acrylic copolymers prepared via emulsion polymerization using A4F-MALS technique. J Appl Polym Sci. 2014;131. 10.1002/app.40995.
Podzimek S, Machotova J, Zgoni H, Bohacik P, Snuparek J. Application of A4F-MALS for the characterization of polymers prepared by emulsion polymerization: comparison of the molecular structure of styrene-acrylate and methyl methacrylate-acrylate copolymers. Polym Plast Technol Eng. 2016;55:1365–1372. doi: 10.1080/03602559.2016.1146957. DOI
Podzimek S. Light scattering, size exclusion chromatography and asymmetric flow field flow fractionation. Hoboken: John Wiley & Sons, Inc.; 2011.
Wahlund KG, Giddings JC, Wahlund K-G, Giddings JC, Wahlund KG, Giddings JC, Wahlund K-G, Giddings JC. Properties of an asymmetrical flow field-flow fractionation channel having one permeable wall. Anal Chem. 1987;59:1332–1339. doi: 10.1021/ac00136a016. PubMed DOI
Guo P, Li Y, An J, Shen S, Dou H. Study on structure-function of starch by asymmetrical flow field-flow fractionation coupled with multiple detectors: a review. Carbohydr Polym. 2019;226. PubMed
Zhang H, Lyden D. Asymmetric-flow field-flow fractionation technology for exomere and small extracellular vesicle separation and characterization. Nat Protoc. 2019;14:1027–1053. doi: 10.1038/s41596-019-0126-x. PubMed DOI PMC
Hupfeld S, Ausbacher D, Brandl M. Asymmetric flow field-flow fractionation of liposomes: optimization of fractionation variables. J Sep Sci. 2009;32:1465–1470. doi: 10.1002/jssc.200800626. PubMed DOI
Hupfeld S, Moen HH, Ausbacher D, Haas H, Brandl M. Liposome fractionation and size analysis by asymmetrical flow field-flow fractionation/multi-angle light scattering: influence of ionic strength and osmotic pressure of the carrier liquid. Chem Phys Lipids. 2010;163:141–147. doi: 10.1016/j.chemphyslip.2009.10.009. PubMed DOI
Eskelin K, Lampi M, Meier F, Moldenhauer E, Bamford DH, Oksanen HM. Asymmetric flow field flow fractionation methods for virus purification. J Chromatogr A. 2016;1469:108–119. doi: 10.1016/j.chroma.2016.09.055. PubMed DOI
Bousse T, Shore DA, Goldsmith CS, Hossain MJ, Jang Y, Davis CT, Donis RO, Stevens J. Quantitation of influenza virus using field flow fractionation and multi-angle light scattering for quantifying influenza A particles. J Virol Methods. 2013;193:589–596. doi: 10.1016/j.jviromet.2013.07.026. PubMed DOI PMC
Zhang X, Li Y, Shen S, Lee S, Dou H. Field-flow fractionation: a gentle separation and characterization technique in biomedicine. TrAC - Trends Anal Chem. 2018;108:231–238. doi: 10.1016/j.trac.2018.09.005. DOI
Qureshi RN, Kok WT. Application of flow field-flow fractionation for the characterization of macromolecules of biological interest: a review. Anal Bioanal Chem. 2011;399:1401–1411. doi: 10.1007/s00216-010-4278-3. PubMed DOI PMC
Fraunhofer W, Winter G. The use of asymmetrical flow field-flow fractionation in pharmaceutics and biopharmaceutics. Eur J Pharm Biopharm. 2004;58:369–383. doi: 10.1016/j.ejpb.2004.03.034. PubMed DOI
Lampi M, Oksanen HM, Meier F, Moldenhauer E, Poranen MM, Bamford DH, Eskelin K. Asymmetrical flow field-flow fractionation in purification of an enveloped bacteriophage ϕ6. J Chromatogr B Anal Technol Biomed Life Sci. 2018;1095:251–257. doi: 10.1016/j.jchromb.2018.07.008. PubMed DOI
Moon MH. Flow field-flow fractionation: recent applications for lipidomic and proteomic analysis. TrAC - Trends Anal Chem. 2019;118:19–28. doi: 10.1016/j.trac.2019.05.024. DOI
Dou H, Li Y, Choi J, Huo S, Ding L, Shen S, Lee S. Asymmetrical flow field-flow fractionation coupled with multiple detections: a complementary approach in the characterization of egg yolk plasma. J Chromatogr A. 2016;1465:165–174. doi: 10.1016/j.chroma.2016.08.062. PubMed DOI
Gulati NM, Torian U, Gallagher JR, Harris AK. Immunoelectron microscopy of viral antigens. Curr Protoc Microbiol. 2019;53. 10.1002/cpmc.86. PubMed PMC
Johann CD, Kaltenborn A, Schuch HD, Schumacher M. Method for optimizing the separation method for a given sample system by asymmetric field flow fractionation: DE102007047695A1. 2017.
Dou H, Lee YJ, Jung EC, Lee BC, Lee S. Study on steric transition in asymmetrical flow field-flow fractionation and application to characterization of high-energy material. J Chromatogr A. 2013;1304:211–219. doi: 10.1016/j.chroma.2013.06.051. PubMed DOI
Hiemenz PC, Rajagopalan R. Principles of colloid and surface chemistry. Boca Raton: CRC Press, Taylor & Francis Group; 1997. pp. 33487–32742.
Cummins PG, Staples EJ. Particle size distributions determined by a "multiangle" analysis of photon correlation spectroscopy data. Langmuir. 1987;3:1109–1113. doi: 10.1021/la00078a040. DOI
Brewer AK, Striegel AM. Characterizing the size, shape, and compactness of a polydisperse prolate ellipsoidal particle via quadruple-detector hydrodynamic chromatography. Analyst. 2011;136:515–519. doi: 10.1039/c0an00738b. PubMed DOI
Brewer AK, Striegel AM. Particle size characterization by quadruple-detector hydrodynamic chromatography. Anal Bioanal Chem. 2009;393:295–302. doi: 10.1007/s00216-008-2319-y. PubMed DOI
Zielke C, Stradner A, Nilsson L. Characterization of cereal β-glucan extracts: conformation and structural aspects. Food Hydrocoll. 2018;79:218–227. doi: 10.1016/j.foodhyd.2017.12.036. DOI
Runyon JR, Ulmius M, Nilsson L, Ray Runyon J, Ulmius M, Nilsson L, Runyon JR, Ulmius M, Nilsson L. A perspective on the characterization of colloids and macromolecules using asymmetrical flow field-flow fractionation. Colloids Surfaces A Physicochem Eng Asp. 2014;442:25–33. doi: 10.1016/j.colsurfa.2013.04.010. DOI
Coviello T, Kajiwara K, Burchard W, Dentini M, Crescenzi V. Solution properties of xanthan. 1. Dynamic and static light scattering from native and modified xanthans in dilute solutions. Macromolecules. 1986;19:2826–2831. doi: 10.1021/ma00165a027. DOI