Exploitation of stable nanostructures based on the mouse polyomavirus for development of a recombinant vaccine against porcine circovirus 2

. 2017 ; 12 (9) : e0184870. [epub] 20170918

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid28922413

The aim of this study was to develop a suitable vaccine antigen against porcine circovirus 2 (PCV2), the causative agent of post-weaning multi-systemic wasting syndrome, which causes significant economic losses in swine breeding. Chimeric antigens containing PCV2b Cap protein sequences based on the mouse polyomavirus (MPyV) nanostructures were developed. First, universal vectors for baculovirus-directed production of chimeric MPyV VLPs or pentamers of the major capsid protein, VP1, were designed for their exploitation as vaccines against other pathogens. Various strategies were employed based on: A) exposure of selected immunogenic epitopes on the surface of MPyV VLPs by insertion into a surface loop of the VP1 protein, B) insertion of foreign protein molecules inside the VLPs, or C) fusion of a foreign protein or its part with the C-terminus of VP1 protein, to form giant pentamers of a chimeric protein. We evaluated these strategies by developing a recombinant vaccine against porcine circovirus 2. All candidate vaccines induced the production of antibodies against the capsid protein of porcine circovirus after immunization of mice. The candidate vaccine, Var C, based on fusion of mouse polyomavirus and porcine circovirus capsid proteins, could induce the production of antibodies with the highest PCV2 neutralizing capacity. Its ability to induce the production of neutralization antibodies was verified after immunization of pigs. The advantage of this vaccine, apart from its efficient production in insect cells and easy purification, is that it represents a DIVA (differentiating infected from vaccinated animals) vaccine, which also induces an immune response against the mouse polyoma VP1 protein and is thus able to distinguish between vaccinated and naturally infected animals.

Zobrazit více v PubMed

Jegerlehner A, Storni T, Lipowsky G, Schmid M, Pumpens P, Bachmann MF. Regulation of IgG antibody responses by epitope density and CD21-mediated costimulation. Eur J Immunol. 2002. November;32(11):3305–14. doi: 10.1002/1521-4141(200211)32:11<3305::AID-IMMU3305>3.0.CO;2-J PubMed DOI

Jegerlehner A, Tissot A, Lechner F, Sebbel P, Erdmann I, Kündig T, et al. A molecular assembly system that renders antigens of choice highly repetitive for induction of protective B cell responses. Vaccine. 2002. August 19;20(25–26):3104–12. PubMed

Richterová Z, Liebl D, Horák M, Palková Z, Stokrová J, Hozák P, et al. Caveolae are involved in the trafficking of mouse polyomavirus virions and artificial VP1 pseudocapsids toward cell nuclei. J Virol. 2001. November;75(22):10880–91. doi: 10.1128/JVI.75.22.10880-10891.2001 PubMed DOI PMC

Kushnir N, Streatfield SJ, Yusibov V. Virus-like particles as a highly efficient vaccine platform: Diversity of targets and production systems and advances in clinical development. Vaccine. 2012. prosinec;31(1):58–83. doi: 10.1016/j.vaccine.2012.10.083 PubMed DOI PMC

Pushko P, Pumpens P, Grens E. Development of Virus-Like Particle Technology from Small Highly Symmetric to Large Complex Virus-Like Particle Structures. Intervirology. 2013;56(3):141–65. doi: 10.1159/000346773 PubMed DOI

Crisci E, Bárcena J, Montoya M. Virus-like particles: The new frontier of vaccines for animal viral infections. Vet Immunol Immunopathol. 2012. srpen;148(3–4):211–25. doi: 10.1016/j.vetimm.2012.04.026 PubMed DOI PMC

Meshram CD, Baviskar PS, Ognibene CM, Oomens AGP. The Respiratory Syncytial Virus Phosphoprotein, Matrix Protein, and Fusion Protein Carboxy-Terminal Domain Drive Efficient Filamentous Virus-Like Particle Formation. J Virol. 2016. September 21;JVI.01193-16. PubMed PMC

Adeyemi OO, Nicol C, Stonehouse NJ, Rowlands DJ. Increasing Type 1 Poliovirus Capsid Stability by Thermal Selection. J Virol [Internet]. 2017. January 31 [cited 2017 Mar 23];91(4). Available from: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5286869/ PubMed PMC

Teunissen EA, de Raad M, Mastrobattista E. Production and biomedical applications of virus-like particles derived from polyomaviruses. J Controlled Release. 2013. Listopad;172(1):305–21. PubMed

Suchanová J,? panielová H, Forstová J. Applications of Viral Nanoparticles Based on Polyomavirus and Papillomavirus Structures In: Viral Nanotechnology [Internet]. CRC Press; 2015. [cited 2017 Mar 27]. p. 303–62. http://www.crcnetbase.com/doi/abs/10.1201/b18596-23 DOI

Boura E, Liebl D, Spísek R, Fric J, Marek M, Stokrová J, et al. Polyomavirus EGFP-pseudocapsids: analysis of model particles for introduction of proteins and peptides into mammalian cells. FEBS Lett. 2005. December 5;579(29):6549–58. doi: 10.1016/j.febslet.2005.10.062 PubMed DOI

Hrusková V, Morávková A, Babiarová K, Ludvíková V, Fric J, Vonka V, et al. Bcr-Abl fusion sequences do not induce immune responses in mice when administered in mouse polyomavirus based virus-like particles. Int J Oncol. 2009. December;35(6):1247–56. PubMed

Forstová J, Krauzewicz N, Sandig V, Elliott J, Palková Z, Strauss M, et al. Polyoma virus pseudocapsids as efficient carriers of heterologous DNA into mammalian cells. Hum Gene Ther. 1995. March;6(3):297–306. doi: 10.1089/hum.1995.6.3-297 PubMed DOI

Stokrová J, Palková Z, Fischer L, Richterová Z, Korb J, Griffin BE, et al. Interactions of heterologous DNA with polyomavirus major structural protein, VP1. FEBS Lett. 1999. February 19;445(1):119–25. PubMed

Tegerstedt K, Lindencrona JA, Curcio C, Andreasson K, Tullus C, Forni G, et al. A single vaccination with polyomavirus VP1/VP2Her2 virus-like particles prevents outgrowth of HER-2/neu-expressing tumors. Cancer Res. 2005. July 1;65(13):5953–7. doi: 10.1158/0008-5472.CAN-05-0335 PubMed DOI

Chang D, Haynes JI, Brady JN, Consigli RA. The use of additive and subtractive approaches to examine the nuclear localization sequence of the polyomavirus major capsid protein VP1. Virology. 1992. August;189(2):821–7. PubMed

Chang D, Cai X, Consigli RA. Characterization of the DNA binding properties of polyomavirus capsid protein. J Virol. 1993. October;67(10):6327–31. PubMed PMC

Forstová J, Krauzewicz N, Wallace S, Street AJ, Dilworth SM, Beard S, et al. Cooperation of structural proteins during late events in the life cycle of polyomavirus. J Virol. 1993. March;67(3):1405–13. PubMed PMC

Montross L, Watkins S, Moreland RB, Mamon H, Caspar DL, Garcea RL. Nuclear assembly of polyomavirus capsids in insect cells expressing the major capsid protein VP1. J Virol. 1991. September;65(9):4991–8. PubMed PMC

Salunke DM, Caspar DL, Garcea RL. Self-assembly of purified polyomavirus capsid protein VP1. Cell. 1986. September 12;46(6):895–904. PubMed

Stehle T, Harrison SC. Crystal structures of murine polyomavirus in complex with straight-chain and branched-chain sialyloligosaccharide receptor fragments. Struct Lond Engl 1993. 1996. February 15;4(2):183–94. PubMed

Meehan BM, McNeilly F, Todd D, Kennedy S, Jewhurst VA, Ellis JA, et al. Characterization of novel circovirus DNAs associated with wasting syndromes in pigs. J Gen Virol. 1998. September;79 (Pt 9):2171–9. PubMed

Franzo G, Cortey M, Olvera A, Novosel D, Castro AMMGD, Biagini P, et al. Revisiting the taxonomical classification of Porcine Circovirus type 2 (PCV2): still a real challenge. Virol J. 2015;12:131 doi: 10.1186/s12985-015-0361-x PubMed DOI PMC

Cortey M, Olvera A, Grau-Roma L, Segalés J. Further comments on porcine circovirus type 2 (PCV2) genotype definition and nomenclature. Vet Microbiol. 2011. May 5;149(3–4):522–3. doi: 10.1016/j.vetmic.2010.11.009 PubMed DOI

Dupont K, Nielsen EO, Baekbo P, Larsen LE. Genomic analysis of PCV2 isolates from Danish archives and a current PMWS case-control study supports a shift in genotypes with time. Vet Microbiol. 2008. April 1;128(1–2):56–64. doi: 10.1016/j.vetmic.2007.09.016 PubMed DOI

Franzo G, Cortey M, de Castro AMMG, Piovezan U, Szabo MPJ, Drigo M, et al. Genetic characterisation of Porcine circovirus type 2 (PCV2) strains from feral pigs in the Brazilian Pantanal: An opportunity to reconstruct the history of PCV2 evolution. Vet Microbiol. 2015. July 9;178(1–2):158–62. doi: 10.1016/j.vetmic.2015.05.003 PubMed DOI

Guo LJ, Lu YH, Wei YW, Huang LP, Liu CM. Porcine circovirus type 2 (PCV2): genetic variation and newly emerging genotypes in China. Virol J. 2010;7:273 doi: 10.1186/1743-422X-7-273 PubMed DOI PMC

Xiao C-T, Halbur PG, Opriessnig T. Global molecular genetic analysis of porcine circovirus type 2 (PCV2) sequences confirms the presence of four main PCV2 genotypes and reveals a rapid increase of PCV2d. J Gen Virol. 2015. July;96(Pt 7):1830–41. doi: 10.1099/vir.0.000100 PubMed DOI

Harms PA, Sorden SD, Halbur PG, Bolin SR, Lager KM, Morozov I, et al. Experimental reproduction of severe disease in CD/CD pigs concurrently infected with type 2 porcine circovirus and porcine reproductive and respiratory syndrome virus. Vet Pathol. 2001. September;38(5):528–39. doi: 10.1354/vp.38-5-528 PubMed DOI

Segalés J. Porcine circovirus type 2 (PCV2) infections: Clinical signs, pathology and laboratory diagnosis. Virus Res. 2012. Březen;164(1–2):10–9. doi: 10.1016/j.virusres.2011.10.007 PubMed DOI

Allan GM, Kennedy S, McNeilly F, Foster JC, Ellis JA, Krakowka SJ, et al. Experimental Reproduction of Severe Wasting Disease by Co-infection of Pigs with Porcine Circovirus and Porcine Parvovirus. J Comp Pathol. 1999. ervenec;121(1):1–11. doi: 10.1053/jcpa.1998.0295 PubMed DOI

Kennedy S, Moffett D, McNeilly F, Meehan B, Ellis J, Krakowka S, et al. Reproduction of lesions of postweaning multisystemic wasting syndrome by infection of conventional pigs with porcine circovirus type 2 alone or in combination with porcine parvovirus. J Comp Pathol. 2000. January;122(1):9–24. doi: 10.1053/jcpa.1999.0337 PubMed DOI

Allan GM, McNeilly F, Ellis J, Krakowka S, Meehan B, McNair I, et al. Experimental infection of colostrum deprived piglets with porcine circovirus 2 (PCV2) and porcine reproductive and respiratory syndrome virus (PRRSV) potentiates PCV2 replication. Arch Virol. 2000;145(11):2421–9. PubMed

Rovira A, Balasch M, Segalés J, García L, Plana-Durán J, Rosell C, et al. Experimental inoculation of conventional pigs with porcine reproductive and respiratory syndrome virus and porcine circovirus 2. J Virol. 2002. April;76(7):3232–9. doi: 10.1128/JVI.76.7.3232-3239.2002 PubMed DOI PMC

Ellis JA, Allan G, Krakowka S. Effect of coinfection with genogroup 1 porcine torque teno virus on porcine circovirus type 2-associated postweaning multisystemic wasting syndrome in gnotobiotic pigs. Am J Vet Res. 2008. December;69(12):1608–14. doi: 10.2460/ajvr.69.12.1608 PubMed DOI

Opriessnig T, Thacker EL, Yu S, Fenaux M, Meng X-J, Halbur PG. Experimental reproduction of postweaning multisystemic wasting syndrome in pigs by dual infection with Mycoplasma hyopneumoniae and porcine circovirus type 2. Vet Pathol. 2004. November;41(6):624–40. doi: 10.1354/vp.41-6-624 PubMed DOI

Grasland B, Loizel C, Blanchard P, Oger A, Nignol A-C, Bigarré L, et al. Reproduction of PMWS in immunostimulated SPF piglets transfected with infectious cloned genomic DNA of type 2 porcine circovirus. Vet Res. 2005. December;36(5–6):685–97. doi: 10.1051/vetres:2005024 PubMed DOI

Krakowka S, Ellis JA, McNeilly F, Ringler S, Rings DM, Allan G. Activation of the immune system is the pivotal event in the production of wasting disease in pigs infected with porcine circovirus-2 (PCV-2). Vet Pathol. 2001. January;38(1):31–42. doi: 10.1354/vp.38-1-31 PubMed DOI

Hines RK, Lukert PD. Porcine circovirus:A serological survey of swine in the United States.

Tischer I, Gelderblom H, Vettermann W, Koch MA. A very small porcine virus with circular single-stranded DNA. Nature. 1982. leden;295(5844):64–6. PubMed

Finsterbusch T, Mankertz A. Porcine circoviruses—small but powerful. Virus Res. 2009. August;143(2):177–83. doi: 10.1016/j.virusres.2009.02.009 PubMed DOI

Liu J, Chen I, Du Q, Chua H, Kwang J. The ORF3 Protein of Porcine Circovirus Type 2 Is Involved in Viral Pathogenesis In Vivo. J Virol. 2006. May 15;80(10):5065–73. doi: 10.1128/JVI.80.10.5065-5073.2006 PubMed DOI PMC

Karuppannan AK, Liu S, Jia Q, Selvaraj M, Kwang J. Porcine circovirus type 2 ORF3 protein competes with p53 in binding to Pirh2 and mediates the deregulation of p53 homeostasis. Virology. 2010. March 1;398(1):1–11. doi: 10.1016/j.virol.2009.11.028 PubMed DOI

Gao Z, Dong Q, Jiang Y, Opriessnig T, Wang J, Quan Y, et al. ORF4-protein deficient PCV2 mutants enhance virus-induced apoptosis and show differential expression of mRNAs in vitro. Virus Res. 2014. April;183:56–62. doi: 10.1016/j.virusres.2014.01.024 PubMed DOI

Lekcharoensuk P, Morozov I, Paul PS, Thangthumniyom N, Wajjawalku W, Meng XJ. Epitope mapping of the major capsid protein of type 2 porcine circovirus (PCV2) by using chimeric PCV1 and PCV2. J Virol. 2004. August;78(15):8135–45. doi: 10.1128/JVI.78.15.8135-8145.2004 PubMed DOI PMC

Saha D, Lefebvre DJ, Ooms K, Huang L, Delputte PL, Van Doorsselaere J, et al. Single amino acid mutations in the capsid switch the neutralization phenotype of porcine circovirus 2. J Gen Virol. 2012. July;93(Pt 7):1548–55. doi: 10.1099/vir.0.042085-0 PubMed DOI

Shang S-B, Jin Y-L, Jiang X, Zhou J-Y, Zhang X, Xing G, et al. Fine mapping of antigenic epitopes on capsid proteins of porcine circovirus, and antigenic phenotype of porcine circovirus type 2. Mol Immunol. 2009. January;46(3):327–34. doi: 10.1016/j.molimm.2008.10.028 PubMed DOI

Trible BR, Rowland RRR. Genetic variation of porcine circovirus type 2 (PCV2) and its relevance to vaccination, pathogenesis and diagnosis. Virus Res. 2012. Březen;164(1–2):68–77. doi: 10.1016/j.virusres.2011.11.018 PubMed DOI

Khayat R, Brunn N, Speir JA, Hardham JM, Ankenbauer RG, Schneemann A, et al. The 2.3-Angstrom Structure of Porcine Circovirus 2. J Virol. 2011. August 1;85(15):7856–62. doi: 10.1128/JVI.00737-11 PubMed DOI PMC

Nawagitgul P, Morozov I, Bolin SR, Harms PA, Sorden SD, Paul PS. Open reading frame 2 of porcine circovirus type 2 encodes a major capsid protein. J Gen Virol. 2000. September;81(Pt 9):2281–7. doi: 10.1099/0022-1317-81-9-2281 PubMed DOI

Bucarey SA, Noriega J, Reyes P, Tapia C, Sáenz L, Zuñiga A, et al. The optimized capsid gene of porcine circovirus type 2 expressed in yeast forms virus-like particles and elicits antibody responses in mice fed with recombinant yeast extracts. Vaccine. 2009. z;27(42):5781–90. doi: 10.1016/j.vaccine.2009.07.061 PubMed DOI

Marcekova Z, Psikal I, Kosinova E, Benada O, Sebo P, Bumba L. Heterologous expression of full-length capsid protein of porcine circovirus 2 in Escherichia coli and its potential use for detection of antibodies. J Virol Methods. 2009. December;162(1–2):133–41. doi: 10.1016/j.jviromet.2009.07.028 PubMed DOI PMC

Krauzewicz N, Streuli CH, Stuart-Smith N, Jones MD, Wallace S, Griffin BE. Myristylated polyomavirus VP2: role in the life cycle of the virus. J Virol. 1990. September;64(9):4414–20. PubMed PMC

Garcia MI, Perez M, Caruso M, Sthandier O, Ferreira R, Cermola M, et al. A mutation in the DE loop of the VP1 protein that prevents polyomavirus transcription and replication. Virology. 2000. July 5;272(2):293–301. doi: 10.1006/viro.2000.0351 PubMed DOI

Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970. August 15;227(5259):680–5. PubMed

Horníková L, Man P, Forstová J. Blue native protein electrophoresis for studies of mouse polyomavirus morphogenesis and interactions between the major capsid protein VP1 and cellular proteins. J Virol Methods. 2011. December;178(1–2):229–34. doi: 10.1016/j.jviromet.2011.08.019 PubMed DOI

Shevchenko A, Tomas H, Havlis J, Olsen JV, Mann M. In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat Protoc. 2006;1(6):2856–60. doi: 10.1038/nprot.2006.468 PubMed DOI

Rueda P, Fominaya J, Langeveld JPM, Bruschke C, Vela C, Casal JI. Effect of different baculovirus inactivation procedures on the integrity and immunogenicity of porcine parvovirus-like particles. Vaccine. 2000. listopad;19(7–8):726–34. PubMed

Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976. May 7;72:248–54. PubMed

Brunborg IM, Moldal T, Jonassen CM. Quantitation of porcine circovirus type 2 isolated from serum/plasma and tissue samples of healthy pigs and pigs with postweaning multisystemic wasting syndrome using a TaqMan-based real-time PCR. J Virol Methods. 2004. December 15;122(2):171–8. doi: 10.1016/j.jviromet.2004.08.014 PubMed DOI

Meerts P, Misinzo G, Lefebvre D, Nielsen J, Bøtner A, Kristensen CS, et al. Correlation between the presence of neutralizing antibodies against porcine circovirus 2 (PCV2) and protection against replication of the virus and development of PCV2-associated disease. BMC Vet Res. 2006;2:6 doi: 10.1186/1746-6148-2-6 PubMed DOI PMC

Lefebvre DJ, Costers S, Van Doorsselaere J, Misinzo G, Delputte PL, Nauwynck HJ. Antigenic differences among porcine circovirus type 2 strains, as demonstrated by the use of monoclonal antibodies. J Gen Virol. 2008. January;89(Pt 1):177–87. doi: 10.1099/vir.0.83280-0 PubMed DOI

Wu P-C, Lin W-L, Wu C-M, Chi J-N, Chien M-S, Huang C. Characterization of porcine circovirus type 2 (PCV2) capsid particle assembly and its application to virus-like particle vaccine development. Appl Microbiol Biotechnol. 2012. September;95(6):1501–7. doi: 10.1007/s00253-012-4015-2 PubMed DOI

Fric J, Marek M, Hrusková V, Holán V, Forstová J. Cellular and humoral immune responses to chimeric EGFP-pseudocapsids derived from the mouse polyomavirus after their intranasal administration. Vaccine. 2008. June 19;26(26):3242–51. doi: 10.1016/j.vaccine.2008.04.006 PubMed DOI

Mahé D, Blanchard P, Truong C, Arnauld C, Le Cann P, Cariolet R, et al. Differential recognition of ORF2 protein from type 1 and type 2 porcine circoviruses and identification of immunorelevant epitopes. J Gen Virol. 2000;81(7):1815–24. PubMed

Dalton JAR, Jackson RM. An evaluation of automated homology modelling methods at low target–template sequence similarity. Bioinformatics. 2007. August 1;23(15):1901–8. doi: 10.1093/bioinformatics/btm262 PubMed DOI

Alsharifi M, Regner M, Blanden R, Lobigs M, Lee E, Koskinen A, et al. Exhaustion of Type I Interferon Response following an Acute Viral Infection. J Immunol. 2006. September 1;177(5):3235–41. PubMed

Swanson PA II, Lukacher AE, Szomolanyi-Tsuda E. Immunity to polyomavirus infection: The polyomavirus–mouse model. Semin Cancer Biol. 2009. srpen;19(4):244–51. doi: 10.1016/j.semcancer.2009.02.003 PubMed DOI PMC

Nielsen SD, Afzelius P, Ersbøll AK, Nielsen JO, Hansen JE. Expression of the activation antigen CD69 predicts functionality of in vitro expanded peripheral blood mononuclear cells (PBMC) from healthy donors and HIV-infected patients. Clin Exp Immunol. 1998. October;114(1):66–72. doi: 10.1046/j.1365-2249.1998.00685.x PubMed DOI PMC

Gedvilaite A, Zvirbliene A, Staniulis J, Sasnauskas K, Krüger DH, Ulrich R. Segments of puumala hantavirus nucleocapsid protein inserted into chimeric polyomavirus-derived virus-like particles induce a strong immune response in mice. Viral Immunol. 2004;17(1):51–68. doi: 10.1089/088282404322875458 PubMed DOI

Lee E-Y, Kim J-Y, Lee D-K, Yoon I-S, Ko HL, Chung J-W, et al. Sublingual immunization with Japanese encephalitis virus vaccine effectively induces immunity through both cellular and humoral immune responses in mice. Microbiol Immunol. 2016. December;60(12):846–53. doi: 10.1111/1348-0421.12458 PubMed DOI

Fort M, Olvera A, Sibila M, Segalés J, Mateu E. Detection of neutralizing antibodies in postweaning multisystemic wasting syndrome (PMWS)-affected and non-PMWS-affected pigs. Vet Microbiol. 2007. December 15;125(3–4):244–55. doi: 10.1016/j.vetmic.2007.06.004 PubMed DOI

López-Vidal J, Gómez-Sebastián S, Bárcena J, del C Nuñez M, Martínez-Alonso D, Dudognon B, et al. Improved Production Efficiency of Virus-Like Particles by the Baculovirus Expression Vector System. PLoS ONE [Internet]. 2015. October 12 [cited 2017 Mar 23];10(10). Available from: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4601761/ PubMed PMC

Liu Y, Zhang Y, Yao L, Hao H, Fu X, Yang Z, et al. Enhanced production of porcine circovirus type 2 (PCV2) virus-like particles in Sf9 cells by translational enhancers. Biotechnol Lett. 2015. September;37(9):1765–71. doi: 10.1007/s10529-015-1856-7 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...