UV-C irradiation as an effective tool for sterilization of porcine chimeric VP1-PCV2bCap recombinant vaccine

. 2023 Nov 07 ; 13 (1) : 19337. [epub] 20231107

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid37935819
Odkazy

PubMed 37935819
PubMed Central PMC10630496
DOI 10.1038/s41598-023-46791-9
PII: 10.1038/s41598-023-46791-9
Knihovny.cz E-zdroje

Ultraviolet irradiation is an effective method of virus and bacteria inactivation. The dose of UV-C light necessary for baculovirus inactivation by measurement of fluorescent GFP protein produced by baculovirus expression system after the irradiation of baculovirus culture in doses ranging from 3.5 to 42 J/m2 was determined. At a dose of 36.8 J/m2, only 0.5% of GFP-expressing cells were detected by flow cytometry and confocal microscopy. The stability of purified VP1-PCV2bCap protein produced by baculovirus expression system was analyzed after the irradiation at doses ranging from 3.5 to 19.3 J/m2. Up to the dose of 11 J/m2, no significant effect of UV-C light on the stability of VP1-PCV2bCap was detected. We observed a dose-dependent increase in VP1-PCV2bCap-specific immune response in BALB/c mice immunized by recombinant protein sterilized by irradiation in dose 11 J/m2 with no significant difference between vaccines sterilized by UV-C light and filtration. A substantial difference in the production of VP1-PCV2bCap specific IgG was observed in piglets immunized with VP1-PCV2bCap sterilized by UV-C in comparison with protein sterilized by filtration in combination with the inactivation of baculovirus by binary ethylenimine. UV-C irradiation represents an effective method for vaccine sterilization, where commonly used methods of sterilization are not possible.

Zobrazit více v PubMed

Seo HS. Application of radiation technology in vaccines development. Clin. Exp. Vaccine Res. 2015;4:145. doi: 10.7774/cevr.2015.4.2.145. PubMed DOI PMC

Luckow VA. Baculovirus systems for the expression of human gene products. Curr. Opin. Biotechnol. 1993;4:564–572. doi: 10.1016/0958-1669(93)90078-B. PubMed DOI

Rueda P, et al. Effect of different baculovirus inactivation procedures on the integrity and immunogenicity of porcine parvovirus-like particles. Vaccine. 2000;19:726–734. doi: 10.1016/S0264-410X(00)00259-0. PubMed DOI

Hijnen WAM, Beerendonk EF, Medema GJ. Inactivation credit of UV radiation for viruses, bacteria and protozoan (oo)cysts in water: A review. Water Res. 2006;40:3–22. doi: 10.1016/j.watres.2005.10.030. PubMed DOI

Gabriel MA, et al. Ultraviolet irradiation of trypsin, lysozyme and β-galactosidase: How does UVC affect these enzymes when used as a secondary barrier against adventitious agents? Vaccine. 2019;37:6518–6525. doi: 10.1016/j.vaccine.2019.08.063. PubMed DOI

Kotoucek J, et al. Characterization and purification of pentameric chimeric protein particles using asymmetric flow field-flow fractionation coupled with multiple detectors. Anal. Bioanal. Chem. 2021;413:3749–3761. doi: 10.1007/s00216-021-03323-6. PubMed DOI PMC

Vanhee M, Delputte PL, Delrue I, Geldhof MF, Nauwynck HJ. Development of an experimental inactivated PRRSV vaccine that induces virus-neutralizing antibodies. Vet. Res. 2009;40:63. doi: 10.1051/vetres/2009046. PubMed DOI

Blázquez E, et al. Evaluation of the effectiveness of the SurePure Turbulator ultraviolet-C irradiation equipment on inactivation of different enveloped and non-enveloped viruses inoculated in commercially collected liquid animal plasma. PLoS ONE. 2019;14:e0212332. doi: 10.1371/journal.pone.0212332. PubMed DOI PMC

Hessling M, Lau B, Vatter P. Review of virus inactivation by visible light. Photonics. 2022;9:113. doi: 10.3390/photonics9020113. DOI

Wang J, et al. Virus inactivation and protein recovery in a novel ultraviolet-C reactor. Vox Sang. 2004;86:230–238. doi: 10.1111/j.0042-9007.2004.00485.x. PubMed DOI

Lackner C, et al. Reduction of spiked porcine circovirus during the manufacture of a Vero cell-derived vaccine. Vaccine. 2014;32:2056–2061. doi: 10.1016/j.vaccine.2014.02.011. PubMed DOI

Calgua B, et al. UVC Inactivation of dsDNA and ssRNA viruses in water: UV fluences and a qPCR-based approach to evaluate decay on viral infectivity. Food Environ. Virol. 2014;6:260–268. doi: 10.1007/s12560-014-9157-1. PubMed DOI

Pecson BM, Ackermann M, Kohn T. Framework for using quantitative PCR as a nonculture based method to estimate virus infectivity. Environ. Sci. Technol. 2011;45:2257–2263. doi: 10.1021/es103488e. PubMed DOI

Baert L, et al. Detection of murine norovirus 1 by using plaque assay, transfection assay, and real-time reverse transcription-PCR before and after heat exposure. Appl. Environ. Microbiol. 2008;74:543–546. doi: 10.1128/AEM.01039-07. PubMed DOI PMC

Valero Y, Olveira JG, López-Vázquez C, Dopazo CP, Bandín I. BEI inactivated vaccine induces innate and adaptive responses and elicits partial protection upon reassortant betanodavirus infection in senegalese sole. Vaccines. 2021;9:458. doi: 10.3390/vaccines9050458. PubMed DOI PMC

Sadigh-Eteghad S, et al. Immunogenicity of commercial, formaldehyde and binary ethylenimine inactivated Newcastle disease virus vaccines in specific pathogen free chickens. Arch. Razi Inst. 2012;67:21–25.

Bahnemann HG. Inactivation of viral antigens for vaccine preparation with particular reference to the application of binary ethylenimine. Vaccine. 1990;8:299–303. doi: 10.1016/0264-410X(90)90083-X. PubMed DOI PMC

Boura E, et al. Polyomavirus EGFP-pseudocapsids: Analysis of model particles for introduction of proteins and peptides into mammalian cells. FEBS Lett. 2005;579:6549–6558. doi: 10.1016/j.febslet.2005.10.062. PubMed DOI

O’Reilly DR, Miller LK, Luckow VA. Baculovirus Expression Vectors: A Laboratory Manual. W. H. Freeman and Co.; 1992.

Fraiberk M, et al. Exploitation of stable nanostructures based on the mouse polyomavirus for development of a recombinant vaccine against porcine circovirus 2. PLoS ONE. 2017;12:e0184870. doi: 10.1371/journal.pone.0184870. PubMed DOI PMC

Hua T, et al. Tween-20 transiently changes the surface morphology of PK-15 cells and improves PCV2 infection. BMC Vet. Res. 2018;14:138. doi: 10.1186/s12917-018-1457-5. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...