• This record comes from PubMed

Integrated phylogeny of the human brain and pathobiology of Alzheimer's disease: A unifying hypothesis

. 2021 Jun 11 ; 755 () : 135895. [epub] 20210420

Language English Country Ireland Media print-electronic

Document type Journal Article, Research Support, Non-U.S. Gov't, Review

Grant support
R01 NS023945 NINDS NIH HHS - United States
RF1 NS023945 NINDS NIH HHS - United States

Links

PubMed 33862141
PubMed Central PMC9020516
DOI 10.1016/j.neulet.2021.135895
PII: S0304-3940(21)00273-1
Knihovny.cz E-resources

The disproportionate evolutionary expansion of the human cerebral cortex with reinforcement of cholinergic innervations warranted a major rise in the functional and metabolic load of the conserved basal forebrain (BF) cholinergic system. Given that acetylcholine (ACh) regulates properties of the microtubule-associated protein (MAP) tau and promotes non-amyloidogenic processing of amyloid precursor protein (APP), growing neocortex predicts higher demands for ACh, while the emerging role of BF cholinergic projections in Aβ clearance infers greater exposure of source neurons and their innervation fields to amyloid pathology. The higher exposure of evolutionary most recent cortical areas to the amyloid pathology of Alzheimer's disease (AD) with synaptic impairments and atrophy, therefore, might involve attenuated homeostatic effects of BF cholinergic projections, in addition to fall-outs of inherent processes of expanding association areas. This unifying model, thus, views amyloid pathology and loss of cholinergic cells as a quid pro quo of the allometric evolution of the human brain, which in combination with increase in life expectancy overwhelm the fine homeostatic balance and trigger the disease process.

See more in PubMed

Jackson JH, The Croonian Lectures on Evolution and Dissolution of the Nervous System, Br. Med. J. 1 (1884) 591–593. PubMed PMC

Bufill E, Blesa R, Augusti J, Alzheimer’s disease: an evolutionary approach, J. Anthropol. Sci. 91 (2013) 135–157. PubMed

van den Heuvel MP, Scholtens LH, de Lange SC, Pijnenburg R, Cahn W, van Haren NEM, Sommer IE, Bozzali M, Koch K, Boks MP, Repple J, Pievani M, Li L, Preuss TM, Rilling JK, Evolutionary modifications in human brain connectivity associated with schizophrenia, Brain 142 (2019) 3991–4002. PubMed PMC

Walker LC, Jucker M, The Exceptional Vulnerability of Humans to Alzheimer’s Disease, Trends Mol. Med. 23 (2017) 534–545. PubMed PMC

2020 Alzheimer’s disease facts and figures, Alzheimers Dement, DOI 10.1002/alz.12068(2020). PubMed DOI

Collaborators GBDN, Global, regional, and national burden of neurological disorders, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016, Lancet Neurol. 18 (2019) 459–480. PubMed PMC

Arendt T, Stieler J, Ueberham U, Is sporadic Alzheimer’s disease a developmental disorder? J. Neurochem. 143 (2017) 396–408. PubMed

Fjell AM, Amlien IK, Sneve MH, Grydeland H, Tamnes CK, Chaplin TA, Rosa MG, Walhovd KB, The roots of alzheimer’s disease: are high-expanding cortical areas preferentially targeted? Dagger Cereb Cortex 25 (2015) 2556–2565. PubMed PMC

Krienen FM, Buckner RL, Human association cortex: expanded, untethered, neotenous, and plastic, in: Kaas JH (Ed.), Evolutionary Neuroscience, Academic Press, 2020, pp. 845–860.

Hofman MA, Evolution of the human brain: when bigger is better, Front. Neuroanat 8 (2014) 15. PubMed PMC

Hofman MA, On the nature and evolution of the human mind, Prog. Brain Res. 250 (2019) 251–283. PubMed

Rapoport SI, Integrated phylogeny of the primate brain, with special reference to humans and their diseases, Brain Res. Brain Res. Rev. 15 (1990) 267–294. PubMed

Kaas JH, The origin and evolution of neocortex: From early mammals to modern humans, Prog. Brain Res. 250 (2019) 61–81. PubMed

Striedter GF, Principles of Brain Evolution, Sinauer Associates, Sunderland, Mass, 2005.

Raghanti MA, Simic G, Watson S, Stimpson CD, Hof PR, Sherwood CC, Comparative analysis of the nucleus basalis of Meynert among primates, Neuroscience 184 (2011) 1–15. PubMed

Semba K, Phylogenetic and ontogenetic aspects of the basal forebrain cholinergic neurons and their innervation of the cerebral cortex, Prog. Brain Res. 145 (2004) 3–43. PubMed

Gorry JD, Studies on the Comparative Anatomy of the Ganglion Basale of Meynert, Acta Anat. (Basel) 55 (1963) 51–104. PubMed

Wu H, Williams J, Nathans J, Complete morphologies of basal forebrain cholinergic neurons in the mouse, Elife 3 (2014), e02444. PubMed PMC

Perez SE, Dar S, Ikonomovic MD, DeKosky ST, Mufson EJ, Cholinergic forebrain degeneration in the APPswe/PS1DeltaE9 transgenic mouse, Neurobiol. Dis. 28 (2007) 3–15. PubMed PMC

Boncristiano S, Calhoun ME, Kelly PH, Pfeifer M, Bondolfi L, Stalder M, Phinney AL, Abramowski D, Sturchler-Pierrat C, Enz A, Sommer B, Staufenbiel M, Jucker M, Cholinergic changes in the APP23 transgenic mouse model of cerebral amyloidosis, J. Neurosci. 22 (2002) 3234–3243. PubMed PMC

Miettinen RA, Kalesnykas G, Koivisto EH, Estimation of the total number of cholinergic neurons containing estrogen receptor-alpha in the rat basal forebrain, J. Histochem. Cytochem. 50 (2002) 891–902. PubMed

Raghanti MA, Stimpson CD, Marcinkiewicz JL, Erwin JM, Hof PR, Sherwood CC, Cholinergic innervation of the frontal cortex: differences among humans, chimpanzees, and macaque monkeys, J. Comp. Neurol. 506 (2008) 409–424. PubMed

Youssef SA, Capucchio MT, Rofina JE, Chambers JK, Uchida K, Nakayama H, Head E, Pathology of the aging brain in domestic and laboratory animals, and animal models of human neurodegenerative diseases, Vet. Pathol. 53 (2016) 327–348. PubMed

Gunn-Moore D, Kaidanovich-Beilin O, Gallego Iradi MC, Gunn-Moore F, Lovestone S, Alzheimer’s disease in humans and other animals: A consequence of postreproductive life span and longevity rather than aging, Alzheimers Dement. 14 (2018) 195–204. PubMed

Perez SE, Raghanti MA, Hof PR, Kramer L, Ikonomovic MD, Lacor PN, Erwin JM, Sherwood CC, Mufson EJ, Alzheimer’s disease pathology in the neocortex and hippocampus of the western lowland gorilla (Gorilla gorilla gorilla), J. Comp. Neurol. 521 (2013) 4318–4338. PubMed PMC

Perez SE, Sherwood CC, Cranfield MR, Erwin JM, Mudakikwa A, Hof PR, Mufson EJ, Early Alzheimer’s disease-type pathology in the frontal cortex of wild mountain gorillas (Gorilla beringei beringei), Neurobiol. Aging 39 (2016) 195–201. PubMed PMC

Rosen RF, Farberg AS, Gearing M, Dooyema J, Long PM, Anderson DC, Davis-Turak J, Coppola G, Geschwind DH, Pare JF, Duong TQ, Hopkins WD, Preuss TM, Walker LC, Tauopathy with paired helical filaments in an aged chimpanzee, J. Comp. Neurol. 509 (2008) 259–270. PubMed PMC

Rosen RF, Tomidokoro Y, Farberg AS, Dooyema J, Ciliax B, Preuss TM, Neubert TA, Ghiso JA, LeVine H 3rd., L.C. Walker, Comparative pathobiology of beta-amyloid and the unique susceptibility of humans to Alzheimer’s disease, Neurobiol. Aging 44 (2016) 185–196. PubMed PMC

Prpar Mihevc S, Majdic G, Canine Cognitive Dysfunction and Alzheimer’s Disease - Two Facets of the Same Disease? Front. Neurosci. 13 (2019) 604. PubMed PMC

Insua D, Corredoira A, Gonzalez-Martinez A, Suarez ML, Santamarina G, Sarasa M, Pesini P, Expression of p75(NTR), a marker for basal forebrain cholinergic neurons, in young and aged dogs with or without cognitive dysfunction syndrome, J. Alzheimers Dis. 28 (2012) 291–296. PubMed

Edler MK, Munger EL, Meindl RS, Hopkins WD, Ely JJ, Erwin JM, Mufson EJ, Hof PR, Sherwood CC, Raghanti MA, Neuron loss associated with age but not Alzheimer’s disease pathology in the chimpanzee brain, Philos. Trans. R. Soc. Lond., B, Biol. Sci. 375 (2020), 20190619. PubMed PMC

Edler MK, Sherwood CC, Meindl RS, Hopkins WD, Ely JJ, Erwin JM, Mufson EJ, Hof PR, Raghanti MA, Aged chimpanzees exhibit pathologic hallmarks of Alzheimer’s disease, Neurobiol. Aging 59 (2017) 107–120. PubMed PMC

Edler MK, Sherwood CC, Meindl RS, Munger EL, Hopkins WD, Ely JJ, Erwin JM, Perl DP, Mufson EJ, Hof PR, Raghanti MA, Microglia changes associated to Alzheimer’s disease pathology in aged chimpanzees, J. Comp. Neurol. 526 (2018) 2921–2936. PubMed PMC

Munger EL, Edler MK, Hopkins WD, Ely JJ, Erwin JM, Perl DP, Mufson EJ, Hof PR, Sherwood CC, Raghanti MA, Astrocytic changes with aging and Alzheimer’s disease-type pathology in chimpanzees, J. Comp. Neurol. 527 (2019) 1179–1195. PubMed PMC

Rapoport SI, Hypothesis: Alzheimer’s disease is a phylogenetic disease, Med. Hypotheses 29 (1989) 147–150. PubMed

Ovsepian SV, O’Leary VB, Neuronal activity and amyloid plaque pathology: an update, J. Alzheimers Dis. 49 (2016) 13–19. PubMed

Braak H, Braak E, Neuropathological staging of Alzheimer-related changes, Acta Neuropathol. 82 (1991). PubMed

Braak H, Braak E, Staging of Alzheimer-related cortical destruction, Int. Psychogeriatr 9 (Suppl 1) (1997) 257–261, discussion 269–272. PubMed

Thal DR, Rub U, Orantes M, Braak H, Phases of A beta-deposition in the human brain and its relevance for the development of AD, Neurology 58 (2002) 1791–1800. PubMed

Mesulam MM, Aging, Alzheimer’s Disease, and Dementia: Clinical and Neurological Perspectives, Oxfor University Press, Oxford, 2000.

Buckner RL, The serendipitous discovery of the brain’s default network, Neuroimage 62 (2012) 1137–1145. PubMed

Raichle ME, The brain’s default mode network, Annu. Rev. Neurosci. 38 (2015) 433–447. PubMed

Jagust W, Vulnerable neural systems and the borderland of brain aging and neurodegeneration, Neuron 77 (2013) 219–234. PubMed PMC

Jagust WJ, Mormino EC, Lifespan brain activity, beta-amyloid, and Alzheimer’s disease, Trends Cogn. Sci 15 (2011) 520–526. PubMed PMC

Ovsepian SV, O’Leary VB, Zaborszky L, Ntziachristos V, Dolly JO, Synaptic vesicle cycle and amyloid beta: biting the hand that feeds, Alzheimers Dement. 14 (2018) 502–513. PubMed

Yamamoto K, Tanei ZI, Hashimoto T, Wakabayashi T, Okuno H, Naka Y, Yizhar O, Fenno LE, Fukayama M, Bito H, Cirrito JR, Holtzman DM, Deisseroth K, Iwatsubo T, Chronic optogenetic activation augments abeta pathology in a mouse model of Alzheimer disease, Cell Rep. 11 (2015) 859–865. PubMed

Cirrito JR, Yamada KA, Finn MB, Sloviter RS, Bales KR, May PC, Schoepp DD, Paul SM, Mennerick S, Holtzman DM, Synaptic activity regulates interstitial fluid amyloid-beta levels in vivo, Neuron 48 (2005) 913–922. PubMed

Kamenetz F, Tomita T, Hsieh H, Seabrook G, Borchelt D, Iwatsubo T, Sisodia S, Malinow R, APP processing and synaptic function, Neuron 37 (2003) 925–937. PubMed

Buckner RL, Sepulcre J, Talukdar T, Krienen FM, Liu H, Hedden T, Andrews-Hanna JR, Sperling RA, Johnson KA, Cortical hubs revealed by intrinsic functional connectivity: mapping, assessment of stability, and relation to Alzheimer’s disease, J. Neurosci. 29 (2009) 1860–1873. PubMed PMC

Elston GN, Benavides-Piccione R, DeFelipe J, The pyramidal cell in cognition: a comparative study in human and monkey, J. Neurosci. 21 (2001). RC163. PubMed PMC

DeFelipe J, Farinas I, The pyramidal neuron of the cerebral cortex: morphological and chemical characteristics of the synaptic inputs, Prog. Neurobiol. 39 (1992) 563–607. PubMed

Perry G, Taddeo MA, Nunomura A, Zhu X, Zenteno-Savin T, Drew KL, Shimohama S, Avila J, Castellani RJ, Smith MA, Comparative biology and pathology of oxidative stress in Alzheimer and other neurodegenerative diseases: beyond damage and response, Comp. Biochem. Physiol. C Toxicol. Pharmacol 133 (2002) 507–513. PubMed

Tonnies E, Trushina E, Oxidative stress, synaptic dysfunction, and alzheimer’s disease, J. Alzheimers Dis. 57 (2017) 1105–1121. PubMed PMC

Grothe MJ, Teipel SJ, Alzheimer’s Disease Neuroimaging I, Spatial patterns of atrophy, hypometabolism, and amyloid deposition in Alzheimer’s disease correspond to dissociable functional brain networks, Hum. Brain Mapp 37 (2016) 35–53. PubMed PMC

Buckner RL, Snyder AZ, Shannon BJ, LaRossa G, Sachs R, Fotenos AF, Sheline YI, Klunk WE, Mathis CA, Morris JC, Mintun MA, Molecular, structural, and functional characterization of Alzheimer’s disease: evidence for a relationship between default activity, amyloid, and memory, J. Neurosci. 25 (2005) 7709–7717. PubMed PMC

Bartzokis G, Age-related myelin breakdown: a developmental model of cognitive decline and Alzheimer’s disease, Neurobiol. Aging 25 (2004) 5–18, author reply 49–62. PubMed

Bartzokis G, Cummings JL, Sultzer D, Henderson VW, Nuechterlein KH, Mintz J, White matter structural integrity in healthy aging adults and patients with Alzheimer disease: a magnetic resonance imaging study, Arch. Neurol. 60 (2003) 393–398. PubMed

Bartzokis G, Lu PH, Mintz J, Human brain myelination and amyloid beta deposition in Alzheimer’s disease, Alzheimers Dement. 3 (2007) 122–125. PubMed PMC

Kornack DR, Neurogenesis and the evolution of cortical diversity: mode, tempo, and partitioning during development and persistence in adulthood, Brain Behav. Evol 55 (2000) 336–344. PubMed

Kornack DR, Rakic P, Changes in cell-cycle kinetics during the development and evolution of primate neocortex, Proc. Natl. Acad. Sci. U. S. A. 95 (1998) 1242–1246. PubMed PMC

Rakic P, Specification of cerebral cortical areas, Science 241 (1988) 170–176. PubMed

Rakic P, Radial unit hypothesis of neocortical expansion, Novartis Found. Symp. 228 (2000) 30–42, discussion 42–52. PubMed

Takahashi T, Nowakowski RS, Caviness VS Jr., The cell cycle of the pseudostratified ventricular epithelium of the embryonic murine cerebral wall, J. Neurosci. 15 (1995) 6046–6057. PubMed PMC

Hill RS, Walsh CA, Molecular insights into human brain evolution, Nature 437 (2005) 64–67. PubMed

Herzog AG, Van Hoesen GW, Temporal neocortical afferent connections to the amygdala in the rhesus monkey, Brain Res. 115 (1976) 57–69. PubMed

Stephan H, Andy OJ, The Allocortex in Primates, Appleton-Century-Crofts, New York, 1970.

Geula C, Mesulam MM, Cortical cholinergic fibers in aging and Alzheimer’s disease: a morphometric study, Neuroscience 33 (1989) 469–481. PubMed

Ovsepian SV, Enhancement of the synchronized firing of CA1 pyramidal cells by medial septum preconditioning: time-dependent involvement of muscarinic cholinoceptors and GABAB receptors, Neurosci. Lett. 393 (2006) 1–6. PubMed

Ovsepian SV, Differential cholinergic modulation of synaptic encoding and gain control mechanisms in rat hippocampus, Neurosci. Res. 61 (2008) 92–98. PubMed

Ovsepian SV, Anwyl R, Rowan MJ, Endogenous acetylcholine lowers the threshold for long-term potentiation induction in the CA1 area through muscarinic receptor activation: in vivo study, Eur. J. Neurosci. 20 (2004) 1267–1275. PubMed

Braak H, Pigment architecture of the human telencephalic cortex, Cell Tissue Res. 190 (1978) 509–523. PubMed

Mesulam MM, Mufson EJ, Levey AI, Wainer BH, Cholinergic innervation of cortex by the basal forebrain: cytochemistry and cortical connections of the septal area, diagonal band nuclei, nucleus basalis (substantia innominata), and hypothalamus in the rhesus monkey, J. Comp. Neurol. 214 (1983) 170–197. PubMed

Richardson RT, DeLong MR, A reappraisal of the functions of the nucleus basalis of Meynert, Trends Neurosci. 11 (1988) 264–267. PubMed

Arendt T, Bigl V, Tennstedt A, Arendt A, Neuronal loss in different parts of the nucleus basalis is related to neuritic plaque formation in cortical target areas in Alzheimer’s disease, Neuroscience 14 (1985) 1–14. PubMed

Cavanagh JB, The problems of neurons with long axons, Lancet 1 (1984) 1284–1287. PubMed

Ferraiuolo L, Kirby J, Grierson AJ, Sendtner M, Shaw PJ, Molecular pathways of motor neuron injury in amyotrophic lateral sclerosis, Nat. Rev. Neurol 7 (2011) 616–630. PubMed

Ovsepian SV, Antyborzec I, O’Leary VB, Zaborszky L, Herms J, Oliver Dolly J, Neurotrophin receptor p75 mediates the uptake of the amyloid beta (Abeta) peptide, guiding it to lysosomes for degradation in basal forebrain cholinergic neurons, Brain Struct. Funct 219 (2014) 1527–1541. PubMed PMC

Ovsepian SV, Herms J, Cholinergic neurons-keeping check on amyloid beta in the cerebral cortex, Front. Cell. Neurosci 7 (2013) 252. PubMed PMC

Mesulam M, The cholinergic lesion of Alzheimer’s disease: pivotal factor or side show? Learn. Mem. 11 (2004) 43–49. PubMed

Geula C, Mesulam MM, Saroff DM, Wu CK, Relationship between plaques, tangles, and loss of cortical cholinergic fibers in Alzheimer disease, J. Neuropathol. Exp. Neurol. 57 (1998) 63–75. PubMed

Geula C, Greenberg BD, Mesulam MM, Cholinesterase activity in the plaques, tangles and angiopathy of Alzheimer’s disease does not emanate from amyloid, Brain Res. 644 (1994) 327–330. PubMed

Schliebs R, Arendt T, The cholinergic system in aging and neuronal degeneration, Behav. Brain Res. 221 (2011) 555–563. PubMed

Mesulam MM, Geula C, Nucleus basalis (Ch4) and cortical cholinergic innervation in the human brain: observations based on the distribution of acetylcholinesterase and choline acetyltransferase, J. Comp. Neurol. 275 (1988) 216–240. PubMed

Kish SJ, Robitaille Y, el-Awar M, Deck JH, Simmons J, Schut L, Chang LJ, DiStefano L, Freedman M, Non-Alzheimer-type pattern of brain cholineacetyltransferase reduction in dominantly inherited olivopontocerebellar atrophy, Ann. Neurol. 26 (1989) 362–367. PubMed

Robitaille Y, Schut L, Kish SJ, Structural and immunocytochemical features of olivopontocerebellar atrophy caused by the spinocerebellar ataxia type 1 (SCA-1) mutation define a unique phenotype, Acta Neuropathol. 90 (1995) 572–581. PubMed

McKinney M, Jacksonville MC, Brain cholinergic vulnerability: relevance to behavior and disease, Biochem. Pharmacol. 70 (2005) 1115–1124. PubMed

Woolf NJ, Jacobs RW, Butcher LL, The pontomesencephalotegmental cholinergic system does not degenerate in Alzheimer’s disease, Neurosci. Lett. 96 (1989) 277–282. PubMed

Mesulam M, Cholinergic aspects of aging and Alzheimer’s disease, Biol. Psychiatry 71 (2012) 760–761. PubMed PMC

Fisher A, Cholinergic modulation of amyloid precursor protein processing with emphasis on M1 muscarinic receptor: perspectives and challenges in treatment of Alzheimer’s disease, J. Neurochem. 120 (Suppl 1) (2012) 22–33. PubMed

Ovsepian SV, O’Leary VB, Zaborszky L, Cholinergic mechanisms in the cerebral cortex: beyond synaptic transmission, Neuroscientist 22 (2016) 238–251. PubMed PMC

Nitsch RM, Slack BE, Wurtman RJ, Growdon JH, Release of Alzheimer amyloid precursor derivatives stimulated by activation of muscarinic acetylcholine receptors, Science 258 (1992) 304–307. PubMed

Yaar M, Zhai S, Pilch PF, Doyle SM, Eisenhauer PB, Fine RE, Gilchrest BA, Binding of beta-amyloid to the p75 neurotrophin receptor induces apoptosis. A possible mechanism for Alzheimer’s disease, J. Clin. Invest. 100 (1997) 2333–2340. PubMed PMC

Gil-Bea FJ, Gerenu G, Aisa B, Kirazov LP, Schliebs R, Ramirez MJ, Cholinergic denervation exacerbates amyloid pathology and induces hippocampal atrophy in Tg2576 mice, Neurobiol. Dis. 48 (2012) 439–446. PubMed

Hartig W, Saul A, Kacza J, Grosche J, Goldhammer S, Michalski D, Wirths O, Immunolesion-induced loss of cholinergic projection neurones promotes beta-amyloidosis and tau hyperphosphorylation in the hippocampus of triple-transgenic mice, Neuropathol. Appl. Neurobiol 40 (2014) 106–120. PubMed

Laursen B, Mork A, Plath N, Kristiansen U, Bastlund JF, Cholinergic degeneration is associated with increased plaque deposition and cognitive impairment in APPswe/PS1dE9 mice, Behav. Brain Res. 240 (2013) 146–152. PubMed

Wang YJ, Wang X, Lu JJ, Li QX, Gao CY, Liu XH, Sun Y, Yang M, Lim Y, Evin G, Zhong JH, Masters C, Zhou XF, p75NTR regulates Abeta deposition by increasing Abeta production but inhibiting Abeta aggregation with its extracellular domain, J. Neurosci. 31 (2011) 2292–2304. PubMed PMC

Roher AE, Kuo YM, Potter PE, Emmerling MR, Durham RA, Walker DG, Sue LI, Honer WG, Beach TG, Cortical cholinergic denervation elicits vascular A beta deposition, Ann. N. Y. Acad. Sci. 903 (2000) 366–373. PubMed

Knowles JK, Rajadas J, Nguyen TV, Yang T, LeMieux MC, Vander Griend L, Ishikawa C, Massa SM, Wyss-Coray T, Longo FM, The p75 neurotrophin receptor promotes amyloid-beta(1–42)-induced neuritic dystrophy in vitro and in vivo, J. Neurosci. 29 (2009) 10627–10637. PubMed PMC

Counts SE, Mufson EJ, The role of nerve growth factor receptors in cholinergic basal forebrain degeneration in prodromal Alzheimer disease, J. Neuropathol. Exp. Neurol. 64 (2005) 263–272. PubMed

Qian L, Milne MR, Shepheard S, Rogers ML, Medeiros R, Coulson EJ, Removal of p75 Neurotrophin Receptor Expression from Cholinergic Basal Forebrain Neurons Reduces Amyloid-beta Plaque Deposition and Cognitive Impairment in Aged APP/PS1 Mice, Mol. Neurobiol. 56 (2019) 4639–4652. PubMed

Hasselmo ME, Barkai E, Cholinergic modulation of activity-dependent synaptic plasticity in the piriform cortex and associative memory function in a network biophysical simulation, J. Neurosci. 15 (1995) 6592–6604. PubMed PMC

Finch CE, Evolution in health and medicine Sackler colloquium: Evolution of the human lifespan and diseases of aging: roles of infection, inflammation, and nutrition, Proc Natl Acad Sci U S A 107 (Suppl 1) (2010) 1718–1724. PubMed PMC

Antyborzec I, O’Leary VB, Dolly JO, Ovsepian SV, Low-Affinity Neurotrophin Receptor p75 Promotes the Transduction of Targeted Lentiviral Vectors to Cholinergic Neurons of Rat Basal Forebrain, Neurotherapeutics 13 (2016) 859–870. PubMed PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...