Integrated phylogeny of the human brain and pathobiology of Alzheimer's disease: A unifying hypothesis
Language English Country Ireland Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't, Review
Grant support
R01 NS023945
NINDS NIH HHS - United States
RF1 NS023945
NINDS NIH HHS - United States
PubMed
33862141
PubMed Central
PMC9020516
DOI
10.1016/j.neulet.2021.135895
PII: S0304-3940(21)00273-1
Knihovny.cz E-resources
- Keywords
- Alzheimer’s disease, Amyloid deposition, Brain evolution, Cholinergic neurons, Cortical expansion, Default mode networks, p75 NTR,
- MeSH
- Alzheimer Disease metabolism pathology MeSH
- Default Mode Network metabolism pathology MeSH
- Phylogeny * MeSH
- Humans MeSH
- Cerebral Cortex metabolism pathology MeSH
- Cholinergic Neurons metabolism pathology MeSH
- Nerve Tissue Proteins metabolism MeSH
- Receptors, Nerve Growth Factor metabolism MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH
- Names of Substances
- NGFR protein, human MeSH Browser
- Nerve Tissue Proteins MeSH
- Receptors, Nerve Growth Factor MeSH
The disproportionate evolutionary expansion of the human cerebral cortex with reinforcement of cholinergic innervations warranted a major rise in the functional and metabolic load of the conserved basal forebrain (BF) cholinergic system. Given that acetylcholine (ACh) regulates properties of the microtubule-associated protein (MAP) tau and promotes non-amyloidogenic processing of amyloid precursor protein (APP), growing neocortex predicts higher demands for ACh, while the emerging role of BF cholinergic projections in Aβ clearance infers greater exposure of source neurons and their innervation fields to amyloid pathology. The higher exposure of evolutionary most recent cortical areas to the amyloid pathology of Alzheimer's disease (AD) with synaptic impairments and atrophy, therefore, might involve attenuated homeostatic effects of BF cholinergic projections, in addition to fall-outs of inherent processes of expanding association areas. This unifying model, thus, views amyloid pathology and loss of cholinergic cells as a quid pro quo of the allometric evolution of the human brain, which in combination with increase in life expectancy overwhelm the fine homeostatic balance and trigger the disease process.
See more in PubMed
Jackson JH, The Croonian Lectures on Evolution and Dissolution of the Nervous System, Br. Med. J. 1 (1884) 591–593. PubMed PMC
Bufill E, Blesa R, Augusti J, Alzheimer’s disease: an evolutionary approach, J. Anthropol. Sci. 91 (2013) 135–157. PubMed
van den Heuvel MP, Scholtens LH, de Lange SC, Pijnenburg R, Cahn W, van Haren NEM, Sommer IE, Bozzali M, Koch K, Boks MP, Repple J, Pievani M, Li L, Preuss TM, Rilling JK, Evolutionary modifications in human brain connectivity associated with schizophrenia, Brain 142 (2019) 3991–4002. PubMed PMC
Walker LC, Jucker M, The Exceptional Vulnerability of Humans to Alzheimer’s Disease, Trends Mol. Med. 23 (2017) 534–545. PubMed PMC
2020 Alzheimer’s disease facts and figures, Alzheimers Dement, DOI 10.1002/alz.12068(2020). PubMed DOI
Collaborators GBDN, Global, regional, and national burden of neurological disorders, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016, Lancet Neurol. 18 (2019) 459–480. PubMed PMC
Arendt T, Stieler J, Ueberham U, Is sporadic Alzheimer’s disease a developmental disorder? J. Neurochem. 143 (2017) 396–408. PubMed
Fjell AM, Amlien IK, Sneve MH, Grydeland H, Tamnes CK, Chaplin TA, Rosa MG, Walhovd KB, The roots of alzheimer’s disease: are high-expanding cortical areas preferentially targeted? Dagger Cereb Cortex 25 (2015) 2556–2565. PubMed PMC
Krienen FM, Buckner RL, Human association cortex: expanded, untethered, neotenous, and plastic, in: Kaas JH (Ed.), Evolutionary Neuroscience, Academic Press, 2020, pp. 845–860.
Hofman MA, Evolution of the human brain: when bigger is better, Front. Neuroanat 8 (2014) 15. PubMed PMC
Hofman MA, On the nature and evolution of the human mind, Prog. Brain Res. 250 (2019) 251–283. PubMed
Rapoport SI, Integrated phylogeny of the primate brain, with special reference to humans and their diseases, Brain Res. Brain Res. Rev. 15 (1990) 267–294. PubMed
Kaas JH, The origin and evolution of neocortex: From early mammals to modern humans, Prog. Brain Res. 250 (2019) 61–81. PubMed
Striedter GF, Principles of Brain Evolution, Sinauer Associates, Sunderland, Mass, 2005.
Raghanti MA, Simic G, Watson S, Stimpson CD, Hof PR, Sherwood CC, Comparative analysis of the nucleus basalis of Meynert among primates, Neuroscience 184 (2011) 1–15. PubMed
Semba K, Phylogenetic and ontogenetic aspects of the basal forebrain cholinergic neurons and their innervation of the cerebral cortex, Prog. Brain Res. 145 (2004) 3–43. PubMed
Gorry JD, Studies on the Comparative Anatomy of the Ganglion Basale of Meynert, Acta Anat. (Basel) 55 (1963) 51–104. PubMed
Wu H, Williams J, Nathans J, Complete morphologies of basal forebrain cholinergic neurons in the mouse, Elife 3 (2014), e02444. PubMed PMC
Perez SE, Dar S, Ikonomovic MD, DeKosky ST, Mufson EJ, Cholinergic forebrain degeneration in the APPswe/PS1DeltaE9 transgenic mouse, Neurobiol. Dis. 28 (2007) 3–15. PubMed PMC
Boncristiano S, Calhoun ME, Kelly PH, Pfeifer M, Bondolfi L, Stalder M, Phinney AL, Abramowski D, Sturchler-Pierrat C, Enz A, Sommer B, Staufenbiel M, Jucker M, Cholinergic changes in the APP23 transgenic mouse model of cerebral amyloidosis, J. Neurosci. 22 (2002) 3234–3243. PubMed PMC
Miettinen RA, Kalesnykas G, Koivisto EH, Estimation of the total number of cholinergic neurons containing estrogen receptor-alpha in the rat basal forebrain, J. Histochem. Cytochem. 50 (2002) 891–902. PubMed
Raghanti MA, Stimpson CD, Marcinkiewicz JL, Erwin JM, Hof PR, Sherwood CC, Cholinergic innervation of the frontal cortex: differences among humans, chimpanzees, and macaque monkeys, J. Comp. Neurol. 506 (2008) 409–424. PubMed
Youssef SA, Capucchio MT, Rofina JE, Chambers JK, Uchida K, Nakayama H, Head E, Pathology of the aging brain in domestic and laboratory animals, and animal models of human neurodegenerative diseases, Vet. Pathol. 53 (2016) 327–348. PubMed
Gunn-Moore D, Kaidanovich-Beilin O, Gallego Iradi MC, Gunn-Moore F, Lovestone S, Alzheimer’s disease in humans and other animals: A consequence of postreproductive life span and longevity rather than aging, Alzheimers Dement. 14 (2018) 195–204. PubMed
Perez SE, Raghanti MA, Hof PR, Kramer L, Ikonomovic MD, Lacor PN, Erwin JM, Sherwood CC, Mufson EJ, Alzheimer’s disease pathology in the neocortex and hippocampus of the western lowland gorilla (Gorilla gorilla gorilla), J. Comp. Neurol. 521 (2013) 4318–4338. PubMed PMC
Perez SE, Sherwood CC, Cranfield MR, Erwin JM, Mudakikwa A, Hof PR, Mufson EJ, Early Alzheimer’s disease-type pathology in the frontal cortex of wild mountain gorillas (Gorilla beringei beringei), Neurobiol. Aging 39 (2016) 195–201. PubMed PMC
Rosen RF, Farberg AS, Gearing M, Dooyema J, Long PM, Anderson DC, Davis-Turak J, Coppola G, Geschwind DH, Pare JF, Duong TQ, Hopkins WD, Preuss TM, Walker LC, Tauopathy with paired helical filaments in an aged chimpanzee, J. Comp. Neurol. 509 (2008) 259–270. PubMed PMC
Rosen RF, Tomidokoro Y, Farberg AS, Dooyema J, Ciliax B, Preuss TM, Neubert TA, Ghiso JA, LeVine H 3rd., L.C. Walker, Comparative pathobiology of beta-amyloid and the unique susceptibility of humans to Alzheimer’s disease, Neurobiol. Aging 44 (2016) 185–196. PubMed PMC
Prpar Mihevc S, Majdic G, Canine Cognitive Dysfunction and Alzheimer’s Disease - Two Facets of the Same Disease? Front. Neurosci. 13 (2019) 604. PubMed PMC
Insua D, Corredoira A, Gonzalez-Martinez A, Suarez ML, Santamarina G, Sarasa M, Pesini P, Expression of p75(NTR), a marker for basal forebrain cholinergic neurons, in young and aged dogs with or without cognitive dysfunction syndrome, J. Alzheimers Dis. 28 (2012) 291–296. PubMed
Edler MK, Munger EL, Meindl RS, Hopkins WD, Ely JJ, Erwin JM, Mufson EJ, Hof PR, Sherwood CC, Raghanti MA, Neuron loss associated with age but not Alzheimer’s disease pathology in the chimpanzee brain, Philos. Trans. R. Soc. Lond., B, Biol. Sci. 375 (2020), 20190619. PubMed PMC
Edler MK, Sherwood CC, Meindl RS, Hopkins WD, Ely JJ, Erwin JM, Mufson EJ, Hof PR, Raghanti MA, Aged chimpanzees exhibit pathologic hallmarks of Alzheimer’s disease, Neurobiol. Aging 59 (2017) 107–120. PubMed PMC
Edler MK, Sherwood CC, Meindl RS, Munger EL, Hopkins WD, Ely JJ, Erwin JM, Perl DP, Mufson EJ, Hof PR, Raghanti MA, Microglia changes associated to Alzheimer’s disease pathology in aged chimpanzees, J. Comp. Neurol. 526 (2018) 2921–2936. PubMed PMC
Munger EL, Edler MK, Hopkins WD, Ely JJ, Erwin JM, Perl DP, Mufson EJ, Hof PR, Sherwood CC, Raghanti MA, Astrocytic changes with aging and Alzheimer’s disease-type pathology in chimpanzees, J. Comp. Neurol. 527 (2019) 1179–1195. PubMed PMC
Rapoport SI, Hypothesis: Alzheimer’s disease is a phylogenetic disease, Med. Hypotheses 29 (1989) 147–150. PubMed
Ovsepian SV, O’Leary VB, Neuronal activity and amyloid plaque pathology: an update, J. Alzheimers Dis. 49 (2016) 13–19. PubMed
Braak H, Braak E, Neuropathological staging of Alzheimer-related changes, Acta Neuropathol. 82 (1991). PubMed
Braak H, Braak E, Staging of Alzheimer-related cortical destruction, Int. Psychogeriatr 9 (Suppl 1) (1997) 257–261, discussion 269–272. PubMed
Thal DR, Rub U, Orantes M, Braak H, Phases of A beta-deposition in the human brain and its relevance for the development of AD, Neurology 58 (2002) 1791–1800. PubMed
Mesulam MM, Aging, Alzheimer’s Disease, and Dementia: Clinical and Neurological Perspectives, Oxfor University Press, Oxford, 2000.
Buckner RL, The serendipitous discovery of the brain’s default network, Neuroimage 62 (2012) 1137–1145. PubMed
Raichle ME, The brain’s default mode network, Annu. Rev. Neurosci. 38 (2015) 433–447. PubMed
Jagust W, Vulnerable neural systems and the borderland of brain aging and neurodegeneration, Neuron 77 (2013) 219–234. PubMed PMC
Jagust WJ, Mormino EC, Lifespan brain activity, beta-amyloid, and Alzheimer’s disease, Trends Cogn. Sci 15 (2011) 520–526. PubMed PMC
Ovsepian SV, O’Leary VB, Zaborszky L, Ntziachristos V, Dolly JO, Synaptic vesicle cycle and amyloid beta: biting the hand that feeds, Alzheimers Dement. 14 (2018) 502–513. PubMed
Yamamoto K, Tanei ZI, Hashimoto T, Wakabayashi T, Okuno H, Naka Y, Yizhar O, Fenno LE, Fukayama M, Bito H, Cirrito JR, Holtzman DM, Deisseroth K, Iwatsubo T, Chronic optogenetic activation augments abeta pathology in a mouse model of Alzheimer disease, Cell Rep. 11 (2015) 859–865. PubMed
Cirrito JR, Yamada KA, Finn MB, Sloviter RS, Bales KR, May PC, Schoepp DD, Paul SM, Mennerick S, Holtzman DM, Synaptic activity regulates interstitial fluid amyloid-beta levels in vivo, Neuron 48 (2005) 913–922. PubMed
Kamenetz F, Tomita T, Hsieh H, Seabrook G, Borchelt D, Iwatsubo T, Sisodia S, Malinow R, APP processing and synaptic function, Neuron 37 (2003) 925–937. PubMed
Buckner RL, Sepulcre J, Talukdar T, Krienen FM, Liu H, Hedden T, Andrews-Hanna JR, Sperling RA, Johnson KA, Cortical hubs revealed by intrinsic functional connectivity: mapping, assessment of stability, and relation to Alzheimer’s disease, J. Neurosci. 29 (2009) 1860–1873. PubMed PMC
Elston GN, Benavides-Piccione R, DeFelipe J, The pyramidal cell in cognition: a comparative study in human and monkey, J. Neurosci. 21 (2001). RC163. PubMed PMC
DeFelipe J, Farinas I, The pyramidal neuron of the cerebral cortex: morphological and chemical characteristics of the synaptic inputs, Prog. Neurobiol. 39 (1992) 563–607. PubMed
Perry G, Taddeo MA, Nunomura A, Zhu X, Zenteno-Savin T, Drew KL, Shimohama S, Avila J, Castellani RJ, Smith MA, Comparative biology and pathology of oxidative stress in Alzheimer and other neurodegenerative diseases: beyond damage and response, Comp. Biochem. Physiol. C Toxicol. Pharmacol 133 (2002) 507–513. PubMed
Tonnies E, Trushina E, Oxidative stress, synaptic dysfunction, and alzheimer’s disease, J. Alzheimers Dis. 57 (2017) 1105–1121. PubMed PMC
Grothe MJ, Teipel SJ, Alzheimer’s Disease Neuroimaging I, Spatial patterns of atrophy, hypometabolism, and amyloid deposition in Alzheimer’s disease correspond to dissociable functional brain networks, Hum. Brain Mapp 37 (2016) 35–53. PubMed PMC
Buckner RL, Snyder AZ, Shannon BJ, LaRossa G, Sachs R, Fotenos AF, Sheline YI, Klunk WE, Mathis CA, Morris JC, Mintun MA, Molecular, structural, and functional characterization of Alzheimer’s disease: evidence for a relationship between default activity, amyloid, and memory, J. Neurosci. 25 (2005) 7709–7717. PubMed PMC
Bartzokis G, Age-related myelin breakdown: a developmental model of cognitive decline and Alzheimer’s disease, Neurobiol. Aging 25 (2004) 5–18, author reply 49–62. PubMed
Bartzokis G, Cummings JL, Sultzer D, Henderson VW, Nuechterlein KH, Mintz J, White matter structural integrity in healthy aging adults and patients with Alzheimer disease: a magnetic resonance imaging study, Arch. Neurol. 60 (2003) 393–398. PubMed
Bartzokis G, Lu PH, Mintz J, Human brain myelination and amyloid beta deposition in Alzheimer’s disease, Alzheimers Dement. 3 (2007) 122–125. PubMed PMC
Kornack DR, Neurogenesis and the evolution of cortical diversity: mode, tempo, and partitioning during development and persistence in adulthood, Brain Behav. Evol 55 (2000) 336–344. PubMed
Kornack DR, Rakic P, Changes in cell-cycle kinetics during the development and evolution of primate neocortex, Proc. Natl. Acad. Sci. U. S. A. 95 (1998) 1242–1246. PubMed PMC
Rakic P, Specification of cerebral cortical areas, Science 241 (1988) 170–176. PubMed
Rakic P, Radial unit hypothesis of neocortical expansion, Novartis Found. Symp. 228 (2000) 30–42, discussion 42–52. PubMed
Takahashi T, Nowakowski RS, Caviness VS Jr., The cell cycle of the pseudostratified ventricular epithelium of the embryonic murine cerebral wall, J. Neurosci. 15 (1995) 6046–6057. PubMed PMC
Hill RS, Walsh CA, Molecular insights into human brain evolution, Nature 437 (2005) 64–67. PubMed
Herzog AG, Van Hoesen GW, Temporal neocortical afferent connections to the amygdala in the rhesus monkey, Brain Res. 115 (1976) 57–69. PubMed
Stephan H, Andy OJ, The Allocortex in Primates, Appleton-Century-Crofts, New York, 1970.
Geula C, Mesulam MM, Cortical cholinergic fibers in aging and Alzheimer’s disease: a morphometric study, Neuroscience 33 (1989) 469–481. PubMed
Ovsepian SV, Enhancement of the synchronized firing of CA1 pyramidal cells by medial septum preconditioning: time-dependent involvement of muscarinic cholinoceptors and GABAB receptors, Neurosci. Lett. 393 (2006) 1–6. PubMed
Ovsepian SV, Differential cholinergic modulation of synaptic encoding and gain control mechanisms in rat hippocampus, Neurosci. Res. 61 (2008) 92–98. PubMed
Ovsepian SV, Anwyl R, Rowan MJ, Endogenous acetylcholine lowers the threshold for long-term potentiation induction in the CA1 area through muscarinic receptor activation: in vivo study, Eur. J. Neurosci. 20 (2004) 1267–1275. PubMed
Braak H, Pigment architecture of the human telencephalic cortex, Cell Tissue Res. 190 (1978) 509–523. PubMed
Mesulam MM, Mufson EJ, Levey AI, Wainer BH, Cholinergic innervation of cortex by the basal forebrain: cytochemistry and cortical connections of the septal area, diagonal band nuclei, nucleus basalis (substantia innominata), and hypothalamus in the rhesus monkey, J. Comp. Neurol. 214 (1983) 170–197. PubMed
Richardson RT, DeLong MR, A reappraisal of the functions of the nucleus basalis of Meynert, Trends Neurosci. 11 (1988) 264–267. PubMed
Arendt T, Bigl V, Tennstedt A, Arendt A, Neuronal loss in different parts of the nucleus basalis is related to neuritic plaque formation in cortical target areas in Alzheimer’s disease, Neuroscience 14 (1985) 1–14. PubMed
Cavanagh JB, The problems of neurons with long axons, Lancet 1 (1984) 1284–1287. PubMed
Ferraiuolo L, Kirby J, Grierson AJ, Sendtner M, Shaw PJ, Molecular pathways of motor neuron injury in amyotrophic lateral sclerosis, Nat. Rev. Neurol 7 (2011) 616–630. PubMed
Ovsepian SV, Antyborzec I, O’Leary VB, Zaborszky L, Herms J, Oliver Dolly J, Neurotrophin receptor p75 mediates the uptake of the amyloid beta (Abeta) peptide, guiding it to lysosomes for degradation in basal forebrain cholinergic neurons, Brain Struct. Funct 219 (2014) 1527–1541. PubMed PMC
Ovsepian SV, Herms J, Cholinergic neurons-keeping check on amyloid beta in the cerebral cortex, Front. Cell. Neurosci 7 (2013) 252. PubMed PMC
Mesulam M, The cholinergic lesion of Alzheimer’s disease: pivotal factor or side show? Learn. Mem. 11 (2004) 43–49. PubMed
Geula C, Mesulam MM, Saroff DM, Wu CK, Relationship between plaques, tangles, and loss of cortical cholinergic fibers in Alzheimer disease, J. Neuropathol. Exp. Neurol. 57 (1998) 63–75. PubMed
Geula C, Greenberg BD, Mesulam MM, Cholinesterase activity in the plaques, tangles and angiopathy of Alzheimer’s disease does not emanate from amyloid, Brain Res. 644 (1994) 327–330. PubMed
Schliebs R, Arendt T, The cholinergic system in aging and neuronal degeneration, Behav. Brain Res. 221 (2011) 555–563. PubMed
Mesulam MM, Geula C, Nucleus basalis (Ch4) and cortical cholinergic innervation in the human brain: observations based on the distribution of acetylcholinesterase and choline acetyltransferase, J. Comp. Neurol. 275 (1988) 216–240. PubMed
Kish SJ, Robitaille Y, el-Awar M, Deck JH, Simmons J, Schut L, Chang LJ, DiStefano L, Freedman M, Non-Alzheimer-type pattern of brain cholineacetyltransferase reduction in dominantly inherited olivopontocerebellar atrophy, Ann. Neurol. 26 (1989) 362–367. PubMed
Robitaille Y, Schut L, Kish SJ, Structural and immunocytochemical features of olivopontocerebellar atrophy caused by the spinocerebellar ataxia type 1 (SCA-1) mutation define a unique phenotype, Acta Neuropathol. 90 (1995) 572–581. PubMed
McKinney M, Jacksonville MC, Brain cholinergic vulnerability: relevance to behavior and disease, Biochem. Pharmacol. 70 (2005) 1115–1124. PubMed
Woolf NJ, Jacobs RW, Butcher LL, The pontomesencephalotegmental cholinergic system does not degenerate in Alzheimer’s disease, Neurosci. Lett. 96 (1989) 277–282. PubMed
Mesulam M, Cholinergic aspects of aging and Alzheimer’s disease, Biol. Psychiatry 71 (2012) 760–761. PubMed PMC
Fisher A, Cholinergic modulation of amyloid precursor protein processing with emphasis on M1 muscarinic receptor: perspectives and challenges in treatment of Alzheimer’s disease, J. Neurochem. 120 (Suppl 1) (2012) 22–33. PubMed
Ovsepian SV, O’Leary VB, Zaborszky L, Cholinergic mechanisms in the cerebral cortex: beyond synaptic transmission, Neuroscientist 22 (2016) 238–251. PubMed PMC
Nitsch RM, Slack BE, Wurtman RJ, Growdon JH, Release of Alzheimer amyloid precursor derivatives stimulated by activation of muscarinic acetylcholine receptors, Science 258 (1992) 304–307. PubMed
Yaar M, Zhai S, Pilch PF, Doyle SM, Eisenhauer PB, Fine RE, Gilchrest BA, Binding of beta-amyloid to the p75 neurotrophin receptor induces apoptosis. A possible mechanism for Alzheimer’s disease, J. Clin. Invest. 100 (1997) 2333–2340. PubMed PMC
Gil-Bea FJ, Gerenu G, Aisa B, Kirazov LP, Schliebs R, Ramirez MJ, Cholinergic denervation exacerbates amyloid pathology and induces hippocampal atrophy in Tg2576 mice, Neurobiol. Dis. 48 (2012) 439–446. PubMed
Hartig W, Saul A, Kacza J, Grosche J, Goldhammer S, Michalski D, Wirths O, Immunolesion-induced loss of cholinergic projection neurones promotes beta-amyloidosis and tau hyperphosphorylation in the hippocampus of triple-transgenic mice, Neuropathol. Appl. Neurobiol 40 (2014) 106–120. PubMed
Laursen B, Mork A, Plath N, Kristiansen U, Bastlund JF, Cholinergic degeneration is associated with increased plaque deposition and cognitive impairment in APPswe/PS1dE9 mice, Behav. Brain Res. 240 (2013) 146–152. PubMed
Wang YJ, Wang X, Lu JJ, Li QX, Gao CY, Liu XH, Sun Y, Yang M, Lim Y, Evin G, Zhong JH, Masters C, Zhou XF, p75NTR regulates Abeta deposition by increasing Abeta production but inhibiting Abeta aggregation with its extracellular domain, J. Neurosci. 31 (2011) 2292–2304. PubMed PMC
Roher AE, Kuo YM, Potter PE, Emmerling MR, Durham RA, Walker DG, Sue LI, Honer WG, Beach TG, Cortical cholinergic denervation elicits vascular A beta deposition, Ann. N. Y. Acad. Sci. 903 (2000) 366–373. PubMed
Knowles JK, Rajadas J, Nguyen TV, Yang T, LeMieux MC, Vander Griend L, Ishikawa C, Massa SM, Wyss-Coray T, Longo FM, The p75 neurotrophin receptor promotes amyloid-beta(1–42)-induced neuritic dystrophy in vitro and in vivo, J. Neurosci. 29 (2009) 10627–10637. PubMed PMC
Counts SE, Mufson EJ, The role of nerve growth factor receptors in cholinergic basal forebrain degeneration in prodromal Alzheimer disease, J. Neuropathol. Exp. Neurol. 64 (2005) 263–272. PubMed
Qian L, Milne MR, Shepheard S, Rogers ML, Medeiros R, Coulson EJ, Removal of p75 Neurotrophin Receptor Expression from Cholinergic Basal Forebrain Neurons Reduces Amyloid-beta Plaque Deposition and Cognitive Impairment in Aged APP/PS1 Mice, Mol. Neurobiol. 56 (2019) 4639–4652. PubMed
Hasselmo ME, Barkai E, Cholinergic modulation of activity-dependent synaptic plasticity in the piriform cortex and associative memory function in a network biophysical simulation, J. Neurosci. 15 (1995) 6592–6604. PubMed PMC
Finch CE, Evolution in health and medicine Sackler colloquium: Evolution of the human lifespan and diseases of aging: roles of infection, inflammation, and nutrition, Proc Natl Acad Sci U S A 107 (Suppl 1) (2010) 1718–1724. PubMed PMC
Antyborzec I, O’Leary VB, Dolly JO, Ovsepian SV, Low-Affinity Neurotrophin Receptor p75 Promotes the Transduction of Targeted Lentiviral Vectors to Cholinergic Neurons of Rat Basal Forebrain, Neurotherapeutics 13 (2016) 859–870. PubMed PMC