Variability of Normal Pressure Hydrocephalus Imaging Biomarkers with Respect to Section Plane Angulation: How Wrong a Radiologist Can Be?

. 2021 Jul ; 42 (7) : 1201-1207. [epub] 20210422

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33888457

BACKGROUND AND PURPOSE: Systematic analysis of angulation-related variability of idiopathic normal pressure hydrocephalus imaging biomarkers has not been published yet. Our aim was to evaluate the variability of these radiologic biomarkers with respect to imaging plane angulation. MATERIALS AND METHODS: Eighty subjects (35 with clinically confirmed idiopathic normal pressure hydrocephalus and 45 age- and sex-matched healthy controls) were prospectively enrolled in a 3T brain MR imaging study. Two independent readers assessed 12 radiologic idiopathic normal pressure hydrocephalus biomarkers on sections aligned parallel or perpendicular to the bicallosal, bicommissural, hypophysis-fastigium, and brain stem vertical lines, respectively. RESULTS: Disproportionately enlarged subarachnoid space hydrocephalus, simplified callosal angle, frontal horn diameter, z-Evans Index, and cella media vertical width did not show significant systematic differences in any of 6 section plane combinations studied. The remaining 7 biomarkers (including the Evans Index and callosal angle) showed significant differences in up to 4 of 6 mutually compared section plane combinations. The values obtained from sections aligned with the brain stem vertical line (parallel to the posterior brain stem margin) showed the most deviating results from other section angulations. CONCLUSIONS: Seven of 12 idiopathic normal pressure hydrocephalus biomarkers including the frequently used Evans Index and callosal angle showed statistically significant deviations when measured on sections whose angulations differed or did not comply with the proper section definition published in the original literature. Strict adherence to the methodology of idiopathic normal pressure hydrocephalus biomarker assessment is, therefore, essential to avoid an incorrect diagnosis. Increased radiologic and clinical attention should be paid to the biomarkers showing low angulation-related variability yet high specificity for idiopathic normal pressure hydrocephalus-related morphologic changes such as the z-Evans Index, frontal horn diameter, or disproportionately enlarged subarachnoid space hydrocephalus.

Zobrazit více v PubMed

Brean A, Eide PK. Prevalence of probable idiopathic normal pressure hydrocephalus in a Norwegian population. Acta Neurol Scand 2008;118:48–53 10.1111/j.1600-0404.2007.00982.x PubMed DOI

Isaacs AM, Riva-Cambrin J, Yavin D, et al. . Age-specific global epidemiology of hydrocephalus: systematic review, metanalysis and global birth surveillance. PLoS ONE 2018;13:e0204926 10.1371/journal.pone.0204926 PubMed DOI PMC

Miskin N, Patel H, Franceschi AM, et al. . Alzheimer’s Disease Neuroimaging Initiative. Diagnosis of normal-pressure hydrocephalus: use of traditional measures in the era of volumetric MR imaging. Radiology 2017;285:197–205 10.1148/radiol.2017161216 PubMed DOI PMC

Ambarki K, Israelsson H, Wåhlin A, et al. . Brain ventricular size in healthy elderly: comparison between Evans Index and volume measurement. Neurosurgery 2010;67:94–99 10.1227/01.NEU.0000370939.30003.D1 PubMed DOI

Ishii K, Kanda T, Harada A, et al. . Clinical impact of the callosal angle in the diagnosis of idiopathic normal pressure hydrocephalus. Eur Radiol 2008;18:2678–83 10.1007/s00330-008-1044-4 PubMed DOI

Cagnin A, Simioni M, Tagliapietra M, et al. . A simplified callosal angle measure best differentiates idiopathic-normal pressure hydrocephalus from neurodegenerative dementia. J Alzheimers Dis 2015;46:1033–38 10.3233/JAD-150107 PubMed DOI

Yamada S, Ishikawa M, Yamamoto K. Optimal diagnostic indices for idiopathic normal pressure hydrocephalus based on the 3D quantitative volumetric analysis for the cerebral ventricle and subarachnoid space. AJNR Am J Neuroradiol 2015;36:2262–69 10.3174/ajnr.A4440 PubMed DOI PMC

Kojoukhova M, Koivisto AM, Korhonen R, et al. . Feasibility of radiological markers in idiopathic normal pressure hydrocephalus. Acta Neurochir 2015;157:1709–18 10.1007/s00701-015-2503-8 PubMed DOI

Toma AK, Holl E, Kitchen ND, et al. . Evans’ index revisited: the need for an alternative in normal pressure hydrocephalus. Neurosurgery 2011;68:939–44 10.1227/NEU.0b013e318208f5e0 PubMed DOI

Bao J, Gao Y, Cao Y, et al. . Feasibility of simple linear measurements to determine ventricular enlargement in patients with idiopathic normal pressure hydrocephalus. J Craniofac Surg 2016;27:e462–65 10.1097/SCS.0000000000002779 PubMed DOI

Reinard K, Basheer A, Phillips S, et al. . Simple and reproducible linear measurements to determine ventricular enlargement in adults. Surg Neurol Int 2015;6:59 10.4103/2152-7806.154777 PubMed DOI PMC

Yamada S, Ishikawa M, Yamamoto K. Comparison of CSF distribution between idiopathic normal pressure hydrocephalus and Alzheimer disease. AJNR Am J Neuroradiol 2016;37:1249–55 10.3174/ajnr.A4695 PubMed DOI PMC

Sasaki M, Honda S, Yuasa T, et al. . Narrow CSF space at high convexity and high midline areas in idiopathic normal pressure hydrocephalus detected by axial and coronal MRI. Neuroradiology 2008;50:117–22 10.1007/s00234-007-0318-x PubMed DOI

Bradley WG Jr. CSF flow in the brain in the context of normal pressure hydrocephalus. AJNR Am J Neuroradiol 2015;36:831–38 10.3174/ajnr.A4124 PubMed DOI PMC

Benedetto N, Gambacciani C, Aquila F, et al. . A new quantitative method to assess disproportionately enlarged subarachnoid space (DESH) in patients with possible idiopathic normal pressure hydrocephalus: the SILVER index. Clin Neurol Neurosurg 2017;158:27–32 10.1016/j.clineuro.2017.04.015 PubMed DOI

Evans WA Jr. An encephalographic ratio for estimating ventricular enlargement and cerebral atrophy. Arch NeurPsych 1942;47:931–37

Synek V, Reuben JR, Du Boulay GH. Comparing Evans’ index and computerized axial tomography in assessing relationship of ventricular size to brain size. Neurology 1976;26:231–33 10.1212/wnl.26.3.231 PubMed DOI

Relkin N, Marmarou A, Klinge P, et al. . Diagnosing idiopathic normal-pressure hydrocephalus. Neurosurgery 2005;57:S4–16 10.1227/01.neu.0000168185.29659.c5 PubMed DOI

Kitagaki H, Mori E, Ishii K, et al. . CSF spaces in idiopathic normal pressure hydrocephalus: morphology and volumetry. AJNR Am J Neuroradiol 1998;19:1277–84 PubMed PMC

Hashimoto M, Ishikawa M, Mori E, et al. . Study of INPH on neurological improvement (SINPHONI). Diagnosis of idiopathic normal pressure hydrocephalus is supported by MRI-based scheme: a prospective cohort study. Cerebrospinal Fluid Res 2010;7:18 10.1186/1743-8454-7-18 PubMed DOI PMC

Ryska P, Slezak O, Eklund A, et al. . Radiological markers of idiopathic normal pressure hydrocephalus: relative comparison of their diagnostic performance. J Neurol Sci 2020;408:116581 10.1016/j.jns.2019.116581 PubMed DOI

Agerskov S, Wallin M, Hellström P, et al. . Absence of disproportionately enlarged subarachnoid space hydrocephalus, a sharp callosal angle, or other morphologic MRI markers should not be used to exclude patients with idiopathic normal pressure hydrocephalus from shunt surgery. AJNR Am J Neuroradiol 2019;40:74–79 10.3174/ajnr.A5910 PubMed DOI PMC

Virhammar J, Laurell K, Cesarini KG, et al. . The callosal angle measured on MRI as a predictor of outcome in idiopathic normal-pressure hydrocephalus. J Neurosurg 2014;120:178–84 10.3171/2013.8.JNS13575 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...