• This record comes from PubMed

Measurement-Based Domain Parameter Optimization in Electrical Impedance Tomography Imaging

. 2021 Apr 03 ; 21 (7) : . [epub] 20210403

Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
FEKT-S-20-6360 BUT internal grant office

This paper discusses the optimization of domain parameters in electrical impedance tomography-based imaging. Precise image reconstruction requires accurate, well-correlated physical and numerical finite element method (FEM) models; thus, we employed the Nelder-Mead algorithm and a complete electrode model to evaluate the individual parameters, including the initial conductivity, electrode misplacement, and shape deformation. The optimization process was designed to calculate the parameters of the numerical model before the image reconstruction. The models were verified via simulation and experimental measurement with single source current patterns. The impact of the optimization on the above parameters was reflected in the applied image reconstruction process, where the conductivity error dropped by 6.16% and 11.58% in adjacent and opposite driving, respectively. In the shape deformation, the inhomogeneity area ratio increased by 11.0% and 48.9%; the imprecise placement of the 6th electrode was successfully optimized with adjacent driving; the conductivity error dropped by 12.69%; and the inhomogeneity localization exhibited a rise of 66.7%. The opposite driving option produces undesired duality resulting from the measurement pattern. The designed optimization process proved to be suitable for correlating the numerical and the physical models, and it also enabled us to eliminate imaging uncertainties and artifacts.

See more in PubMed

Putensen C., Hentze B., Muenster S., Muders T. Electrical Impedance Tomography for Cardio-Pulmonary Monitoring. J. Clin. Med. 2019;8:1176. doi: 10.3390/jcm8081176. PubMed DOI PMC

Grivans C., Lundin S., Stenqvist O., Lindgren S. Positive end-expiratory pressure-induced changes in end-expiratory lung volume measured by spirometry and electric impedance tomography. Acta Anaesthesiol. Scand. 2011;55:1068–1077. doi: 10.1111/j.1399-6576.2011.02511.x. PubMed DOI

Khan T.A., Ling S.H. Review on Electrical Impedance Tomography: Artificial Intelligence Methods and its Applications. Algorithms. 2019;12:88. doi: 10.3390/a12050088. DOI

Kłosowski G., Rymarczyk T., Gola A. Increasing the Reliability of Flood Embankments with Neural Imaging Method. Appl. Sci. 2018;8:1457. doi: 10.3390/app8091457. DOI

Rymarczyk T. Detection of seepages in flood embankments using the ElasticNET method. Electrotech. Rev. 2019;1:159–162. doi: 10.15199/48.2019.01.40. DOI

Juřička D., Novotná J., Houška J., Pařílková J., Hladký J., Pecina V., Cihlářová H., Burnog M., Elbl J., Rosická Z., et al. Large-scale permafrost degradation as a primary factor in Larix sibirica forest dieback in the Khentii massif, northern Mongolia. J. For. Res. 2018;31:197–208. doi: 10.1007/s11676-018-0866-4. DOI

Lesparre N., Grychtol B., Gibert D., Komorowski J.-C., Adler A. Cross-section electrical resistance tomography of La Soufrière of Guadeloupe lava dome. Geophys. J. Int. 2014;197:1516–1526. doi: 10.1093/gji/ggu104. DOI

Wang M., Jones T., Williams R. Visualization of Asymmetric Solids Distribution in Horizontal Swirling Flows Using Electrical Resistance Tomography. Chem. Eng. Res. Des. 2003;81:854–861. doi: 10.1205/026387603322482095. DOI

Faia P.M., Silva R., Rasteiro M.G., Garcia F.A.P., Ferreira A.R., Santos M.J., Santos J.B., Coimbra A.P. Imaging Particulate Two-Phase Flow in Liquid Suspensions with Electric Impedance Tomography. Part. Sci. Technol. 2012;30:329–342. doi: 10.1080/02726351.2011.575444. DOI

Faia P., Silva R., Rasteiro M.G., Garcia F. Electrical Tomography: A Review of Configurations, and Application to Fibre Flow Suspensions Characterisation. Appl. Sci. 2020;10:2355. doi: 10.3390/app10072355. DOI

Rymarczyk T., Sikora J. Applying industrial tomography to control and optimization flow systems. Open Phys. 2018;16:332–345. doi: 10.1515/phys-2018-0046. DOI

Kriz T., Dušek J. Electrical impedance tomography in the testing of material defects; Proceedings of the 2017 Progress in Electromagnetics Research Symposium—Spring (PIERS); St. Petersburg, Russia. 22–25 May 2017; pp. 90–94. DOI

Karhunen K., Seppänen A., Lehikoinen A., Monteiro P.J., Kaipio J.P. Electrical Resistance Tomography imaging of concrete. Cem. Concr. Res. 2010;40:137–145. doi: 10.1016/j.cemconres.2009.08.023. DOI

Rymarczyk T., Adamkiewicz P., Duda K., Szumowski J., Sikora J. New electrical tomographic method to determine dampness in historical buildings. Arch. Electr. Eng. 2016;65:273–283. doi: 10.1515/aee-2016-0019. DOI

Rymarczyk T., Kłosowski G., Kozłowski E., Tchórzewski P. Comparison of Selected Machine Learning Algorithms for Industrial Electrical Tomography. Sensors. 2019;19:1521. doi: 10.3390/s19071521. PubMed DOI PMC

Barber D.C., Brown B.H. Errors in reconstruction of resistivity images using a linear reconstruction technique. Clin. Phys. Physiol. Meas. 1988;9:101–104. doi: 10.1088/0143-0815/9/4A/017. PubMed DOI

Kolehmainen V., Vauhkonen M., Karjalainen P.A., Kaipio J.P. Assessment of errors in static electrical impedance tomography with adjacent and trigonometric current patterns. Physiol. Meas. 1997;18:289–303. doi: 10.1088/0967-3334/18/4/003. PubMed DOI

Kolehmainen V., Lassas M., Ola P. Electrical Impedance Tomography Problem With Inaccurately Known Boundary and Contact Impedances. IEEE Trans. Med. Imaging. 2008;27:1404–1414. doi: 10.1109/TMI.2008.920600. PubMed DOI

Jain H., Isaacson D., Edic P., Newell J. Electrical impedance tomography of complex conductivity distributions with noncircular boundary. IEEE Trans. Biomed. Eng. 1997;44:1051–1060. doi: 10.1109/10.641332. PubMed DOI

Murphy E., Mueller J. Effect of Domain Shape Modeling and Measurement Errors on the 2-D D-Bar Method for EIT. IEEE Trans. Med. Imaging. 2009;28:1576–1584. doi: 10.1109/TMI.2009.2021611. PubMed DOI

Woo E.J., Hua P., Webster J.G., Tompkins W.J., Pallás-Areny R. Skin impedance measurements using simple and compound electrodes. Med Biol. Eng. Comput. 1992;30:97–102. doi: 10.1007/BF02446200. PubMed DOI

Vilhunen T., Kaipio J., Vauhkonen P.J., Savolainen T., Vauhkonen M. Simultaneous reconstruction of electrode contact impedances and internal electrical properties: I. Theory. Meas. Sci. Technol. 2002;13:1848–1854. doi: 10.1088/0957-0233/13/12/307. DOI

Heikkinen L.M., Vilhunen T., West R.M., Vauhkonen M. Simultaneous reconstruction of electrode contact impedances and internal electrical properties: II. Laboratory experiments. Meas. Sci. Technol. 2002;13:1855–1861. doi: 10.1088/0957-0233/13/12/308. DOI

Boverman G., Isaacson D., Saulnier G.J., Newell J.C. Methods for Compensating for Variable Electrode Contact in EIT. IEEE Trans. Biomed. Eng. 2009;56:2762–2772. doi: 10.1109/TBME.2009.2027129. PubMed DOI PMC

Nissinen A., Kolehmainen V.P., Kaipio J.P. Compensation of Modelling Errors Due to Unknown Domain Boundary in Electrical Impedance Tomography. IEEE Trans. Med. Imaging. 2010;30:231–242. doi: 10.1109/TMI.2010.2073716. PubMed DOI

Demidenko E., Borsic A., Wan Y., Halter R.J., Hartov A. Statistical Estimation of EIT Electrode Contact Impedance Using a Magic Toeplitz Matrix. IEEE Trans. Biomed. Eng. 2011;58:2194–2201. doi: 10.1109/TBME.2011.2125790. PubMed DOI PMC

Dardé J., Hakula H., Hyvönen N., Staboulis S. Fine-tuning electrode information in electrical impedance tomography. Inverse Probl. Imaging. 2012;6:399–421. doi: 10.3934/ipi.2012.6.399. DOI

Hyvönen N., Seppänen A., Staboulis S. Optimizing Electrode Positions in Electrical Impedance Tomography. SIAM J. Appl. Math. 2014;74:1831–1851. doi: 10.1137/140966174. DOI

Boyle A., Scott A.J. Ph.D. Thesis. Carleton University; Ottawa, ON, Canada: 2016. Geophysical Applications of Electrical Impedance Tomography. DOI

Boverman G., Isaacson D., Newell J.C., Saulnier G.J., Kao T.-J., Amm B.C., Wang X., Davenport D.M., Chong D.H., Sahni R., et al. Efficient Simultaneous Reconstruction of Time-Varying Images and Electrode Contact Impedances in Electrical Impedance Tomography. IEEE Trans. Biomed. Eng. 2016;64:795–806. doi: 10.1109/TBME.2016.2578646. PubMed DOI PMC

Smyl D., Liu D. Optimizing Electrode Positions in 2-D Electrical Impedance Tomography Using Deep Learning. IEEE Trans. Instrum. Meas. 2020;69:6030–6044. doi: 10.1109/TIM.2020.2970371. DOI

Smyl D., Liu D. Less is often more: Applied inverse problems using hp-forward models. J. Comput. Phys. 2019;399:108949. doi: 10.1016/j.jcp.2019.108949. DOI

Brown B.H., Seagar A.D. The Sheffield data collection system. Clin. Phys. Physiol. Meas. 1987;8:91–97. doi: 10.1088/0143-0815/8/4A/012. PubMed DOI

Avis N.J., Barber D.C. Image reconstruction using non-adjacent drive configurations (electric impedance tomography) Physiol. Meas. 1994;15:A153–A160. doi: 10.1088/0967-3334/15/2A/020. PubMed DOI

Adler A., Gaggero P.O., Maimaitijiang Y. Adjacent stimulation and measurement patterns considered harmful. Physiol. Meas. 2011;32:731–744. doi: 10.1088/0967-3334/32/7/S01. PubMed DOI

Liu K., Wu Y., Wang S., Wang H., Chen H., Chen B., Yao J. Artificial Sensitive Skin for Robotics Based on Electrical Impedance Tomography. Adv. Intell. Syst. 2020;2:1–13. doi: 10.1002/aisy.202000151. DOI

Dusek J., Mikulka J., Balajka M., Dedkova J., Parilkova J., Munsterova Z. Designing a Cost-Effective Multiplexer for Electrical Impedance Tomography; Proceedings of the 2019 11th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT); Dublin, Ireland. 28–30 October 2019; pp. 1–4. DOI

Liu D., Kolehmainen V., Siltanen S., Seppänen A. A nonlinear approach to difference imaging in EIT; assessment of the robustness in the presence of modelling errors. Inverse Probl. 2015;31:035012. doi: 10.1088/0266-5611/31/3/035012. DOI

Holder D.S. Electrical Impedance Tomography: Methods, History and Applications. CRC Press; Boca Raton, FL, USA: 2004.

Yang W.Q., Peng L. Image reconstruction algorithms for electrical capacitance tomography. Meas. Sci. Technol. 2002;14:R1–R13. doi: 10.1088/0957-0233/14/1/201. DOI

Cui Z., Wang Q., Xue Q., Fan W., Zhang L., Cao Z., Sun B., Wang H., Yang W. A review on image reconstruction algorithms for electrical capacitance/resistance tomography. Sens. Rev. 2016;36:429–445. doi: 10.1108/SR-01-2016-0027. DOI

Dusek J., Mikulka J. Electrical Impedance Tomography-Based Spatial Reconstruction of Admittivity in a Cylindrical Object; Proceedings of the 2020 19th International Conference on Mechatronics—Mechatronika (ME); Prague, Czech Republic. 2–4 December 2020; pp. 1–6.

Borsic A. Ph.D. Thesis. Oxford Brookes University; Oxford, UK: 2002. Regularisation Methods for Imaging from Electrical Measurements.

Lagarias J.C., Reeds J.A., Wright M.H., Wright P.E. Convergence Properties of the Nelder--Mead Simplex Method in Low Dimensions. SIAM J. Optim. 1998;9:112–147. doi: 10.1137/S1052623496303470. DOI

Lasheen A., El-Garhy A., Saad E., Eid S. Using Hybrid Genetic and Nelder-Mead Algorithm for Decoupling of MIMO Systems with Application on Two Coupled Distillation Columns Process. Int. J. Math. Comput. Simul. 2009;3:146–157.

Haddad O.B., Hamedi F., Orouji H., Pazoki M., Loáiciga H.A. A Re-Parameterized and Improved Nonlinear Muskingum Model for Flood Routing. Water Resour. Manag. 2015;29:3419–3440. doi: 10.1007/s11269-015-1008-9. DOI

Adler A., Lionheart W.R.B. Uses and abuses of EIDORS: An extensible software base for EIT. Physiol. Meas. 2006;27:S25–S42. doi: 10.1088/0967-3334/27/5/S03. PubMed DOI

Dimas C., Sotiriadis P.P. Electrical impedance tomography image reconstruction for adjacent and opposite strategy using FEMM and EIDORS simulation models; Proceedings of the 2018 7th International Conference on Modern Circuits and Systems Technologies (MOCAST); Thessaloniki, Greece. 7–9 May 2018; pp. 1–4.

Krčmařík D., Petrů M., Kočí J. Thorax measurement and analysis using electrical impedance tomography. Vibroengineering Procedia. 2019;26:68–73. doi: 10.21595/vp.2019.20986. DOI

Apaloo-Bara K.K., Salami A.A., Kodjo M.K., Guenoukpati A., Djandja S.O., Bedja K.-S. Estimation of Soils Electrical Resistivity using ArtificialNeural Network Approach. Am. J. Appl. Sci. 2019;16:43–58. doi: 10.3844/ajassp.2019.43.58. DOI

Find record

Citation metrics

Logged in users only

Archiving options

Loading data ...