Measurement-Based Domain Parameter Optimization in Electrical Impedance Tomography Imaging
Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
FEKT-S-20-6360
BUT internal grant office
PubMed
33916751
PubMed Central
PMC8038345
DOI
10.3390/s21072507
PII: s21072507
Knihovny.cz E-resources
- Keywords
- Nelder–Mead optimization, complete electrode model, domain deformation, electrical impedance tomography, electrode locations,
- MeSH
- Algorithms MeSH
- Electric Impedance MeSH
- Phantoms, Imaging MeSH
- Computer Simulation MeSH
- Image Processing, Computer-Assisted * MeSH
- Tomography * MeSH
- Publication type
- Journal Article MeSH
This paper discusses the optimization of domain parameters in electrical impedance tomography-based imaging. Precise image reconstruction requires accurate, well-correlated physical and numerical finite element method (FEM) models; thus, we employed the Nelder-Mead algorithm and a complete electrode model to evaluate the individual parameters, including the initial conductivity, electrode misplacement, and shape deformation. The optimization process was designed to calculate the parameters of the numerical model before the image reconstruction. The models were verified via simulation and experimental measurement with single source current patterns. The impact of the optimization on the above parameters was reflected in the applied image reconstruction process, where the conductivity error dropped by 6.16% and 11.58% in adjacent and opposite driving, respectively. In the shape deformation, the inhomogeneity area ratio increased by 11.0% and 48.9%; the imprecise placement of the 6th electrode was successfully optimized with adjacent driving; the conductivity error dropped by 12.69%; and the inhomogeneity localization exhibited a rise of 66.7%. The opposite driving option produces undesired duality resulting from the measurement pattern. The designed optimization process proved to be suitable for correlating the numerical and the physical models, and it also enabled us to eliminate imaging uncertainties and artifacts.
See more in PubMed
Putensen C., Hentze B., Muenster S., Muders T. Electrical Impedance Tomography for Cardio-Pulmonary Monitoring. J. Clin. Med. 2019;8:1176. doi: 10.3390/jcm8081176. PubMed DOI PMC
Grivans C., Lundin S., Stenqvist O., Lindgren S. Positive end-expiratory pressure-induced changes in end-expiratory lung volume measured by spirometry and electric impedance tomography. Acta Anaesthesiol. Scand. 2011;55:1068–1077. doi: 10.1111/j.1399-6576.2011.02511.x. PubMed DOI
Khan T.A., Ling S.H. Review on Electrical Impedance Tomography: Artificial Intelligence Methods and its Applications. Algorithms. 2019;12:88. doi: 10.3390/a12050088. DOI
Kłosowski G., Rymarczyk T., Gola A. Increasing the Reliability of Flood Embankments with Neural Imaging Method. Appl. Sci. 2018;8:1457. doi: 10.3390/app8091457. DOI
Rymarczyk T. Detection of seepages in flood embankments using the ElasticNET method. Electrotech. Rev. 2019;1:159–162. doi: 10.15199/48.2019.01.40. DOI
Juřička D., Novotná J., Houška J., Pařílková J., Hladký J., Pecina V., Cihlářová H., Burnog M., Elbl J., Rosická Z., et al. Large-scale permafrost degradation as a primary factor in Larix sibirica forest dieback in the Khentii massif, northern Mongolia. J. For. Res. 2018;31:197–208. doi: 10.1007/s11676-018-0866-4. DOI
Lesparre N., Grychtol B., Gibert D., Komorowski J.-C., Adler A. Cross-section electrical resistance tomography of La Soufrière of Guadeloupe lava dome. Geophys. J. Int. 2014;197:1516–1526. doi: 10.1093/gji/ggu104. DOI
Wang M., Jones T., Williams R. Visualization of Asymmetric Solids Distribution in Horizontal Swirling Flows Using Electrical Resistance Tomography. Chem. Eng. Res. Des. 2003;81:854–861. doi: 10.1205/026387603322482095. DOI
Faia P.M., Silva R., Rasteiro M.G., Garcia F.A.P., Ferreira A.R., Santos M.J., Santos J.B., Coimbra A.P. Imaging Particulate Two-Phase Flow in Liquid Suspensions with Electric Impedance Tomography. Part. Sci. Technol. 2012;30:329–342. doi: 10.1080/02726351.2011.575444. DOI
Faia P., Silva R., Rasteiro M.G., Garcia F. Electrical Tomography: A Review of Configurations, and Application to Fibre Flow Suspensions Characterisation. Appl. Sci. 2020;10:2355. doi: 10.3390/app10072355. DOI
Rymarczyk T., Sikora J. Applying industrial tomography to control and optimization flow systems. Open Phys. 2018;16:332–345. doi: 10.1515/phys-2018-0046. DOI
Kriz T., Dušek J. Electrical impedance tomography in the testing of material defects; Proceedings of the 2017 Progress in Electromagnetics Research Symposium—Spring (PIERS); St. Petersburg, Russia. 22–25 May 2017; pp. 90–94. DOI
Karhunen K., Seppänen A., Lehikoinen A., Monteiro P.J., Kaipio J.P. Electrical Resistance Tomography imaging of concrete. Cem. Concr. Res. 2010;40:137–145. doi: 10.1016/j.cemconres.2009.08.023. DOI
Rymarczyk T., Adamkiewicz P., Duda K., Szumowski J., Sikora J. New electrical tomographic method to determine dampness in historical buildings. Arch. Electr. Eng. 2016;65:273–283. doi: 10.1515/aee-2016-0019. DOI
Rymarczyk T., Kłosowski G., Kozłowski E., Tchórzewski P. Comparison of Selected Machine Learning Algorithms for Industrial Electrical Tomography. Sensors. 2019;19:1521. doi: 10.3390/s19071521. PubMed DOI PMC
Barber D.C., Brown B.H. Errors in reconstruction of resistivity images using a linear reconstruction technique. Clin. Phys. Physiol. Meas. 1988;9:101–104. doi: 10.1088/0143-0815/9/4A/017. PubMed DOI
Kolehmainen V., Vauhkonen M., Karjalainen P.A., Kaipio J.P. Assessment of errors in static electrical impedance tomography with adjacent and trigonometric current patterns. Physiol. Meas. 1997;18:289–303. doi: 10.1088/0967-3334/18/4/003. PubMed DOI
Kolehmainen V., Lassas M., Ola P. Electrical Impedance Tomography Problem With Inaccurately Known Boundary and Contact Impedances. IEEE Trans. Med. Imaging. 2008;27:1404–1414. doi: 10.1109/TMI.2008.920600. PubMed DOI
Jain H., Isaacson D., Edic P., Newell J. Electrical impedance tomography of complex conductivity distributions with noncircular boundary. IEEE Trans. Biomed. Eng. 1997;44:1051–1060. doi: 10.1109/10.641332. PubMed DOI
Murphy E., Mueller J. Effect of Domain Shape Modeling and Measurement Errors on the 2-D D-Bar Method for EIT. IEEE Trans. Med. Imaging. 2009;28:1576–1584. doi: 10.1109/TMI.2009.2021611. PubMed DOI
Woo E.J., Hua P., Webster J.G., Tompkins W.J., Pallás-Areny R. Skin impedance measurements using simple and compound electrodes. Med Biol. Eng. Comput. 1992;30:97–102. doi: 10.1007/BF02446200. PubMed DOI
Vilhunen T., Kaipio J., Vauhkonen P.J., Savolainen T., Vauhkonen M. Simultaneous reconstruction of electrode contact impedances and internal electrical properties: I. Theory. Meas. Sci. Technol. 2002;13:1848–1854. doi: 10.1088/0957-0233/13/12/307. DOI
Heikkinen L.M., Vilhunen T., West R.M., Vauhkonen M. Simultaneous reconstruction of electrode contact impedances and internal electrical properties: II. Laboratory experiments. Meas. Sci. Technol. 2002;13:1855–1861. doi: 10.1088/0957-0233/13/12/308. DOI
Boverman G., Isaacson D., Saulnier G.J., Newell J.C. Methods for Compensating for Variable Electrode Contact in EIT. IEEE Trans. Biomed. Eng. 2009;56:2762–2772. doi: 10.1109/TBME.2009.2027129. PubMed DOI PMC
Nissinen A., Kolehmainen V.P., Kaipio J.P. Compensation of Modelling Errors Due to Unknown Domain Boundary in Electrical Impedance Tomography. IEEE Trans. Med. Imaging. 2010;30:231–242. doi: 10.1109/TMI.2010.2073716. PubMed DOI
Demidenko E., Borsic A., Wan Y., Halter R.J., Hartov A. Statistical Estimation of EIT Electrode Contact Impedance Using a Magic Toeplitz Matrix. IEEE Trans. Biomed. Eng. 2011;58:2194–2201. doi: 10.1109/TBME.2011.2125790. PubMed DOI PMC
Dardé J., Hakula H., Hyvönen N., Staboulis S. Fine-tuning electrode information in electrical impedance tomography. Inverse Probl. Imaging. 2012;6:399–421. doi: 10.3934/ipi.2012.6.399. DOI
Hyvönen N., Seppänen A., Staboulis S. Optimizing Electrode Positions in Electrical Impedance Tomography. SIAM J. Appl. Math. 2014;74:1831–1851. doi: 10.1137/140966174. DOI
Boyle A., Scott A.J. Ph.D. Thesis. Carleton University; Ottawa, ON, Canada: 2016. Geophysical Applications of Electrical Impedance Tomography. DOI
Boverman G., Isaacson D., Newell J.C., Saulnier G.J., Kao T.-J., Amm B.C., Wang X., Davenport D.M., Chong D.H., Sahni R., et al. Efficient Simultaneous Reconstruction of Time-Varying Images and Electrode Contact Impedances in Electrical Impedance Tomography. IEEE Trans. Biomed. Eng. 2016;64:795–806. doi: 10.1109/TBME.2016.2578646. PubMed DOI PMC
Smyl D., Liu D. Optimizing Electrode Positions in 2-D Electrical Impedance Tomography Using Deep Learning. IEEE Trans. Instrum. Meas. 2020;69:6030–6044. doi: 10.1109/TIM.2020.2970371. DOI
Smyl D., Liu D. Less is often more: Applied inverse problems using hp-forward models. J. Comput. Phys. 2019;399:108949. doi: 10.1016/j.jcp.2019.108949. DOI
Brown B.H., Seagar A.D. The Sheffield data collection system. Clin. Phys. Physiol. Meas. 1987;8:91–97. doi: 10.1088/0143-0815/8/4A/012. PubMed DOI
Avis N.J., Barber D.C. Image reconstruction using non-adjacent drive configurations (electric impedance tomography) Physiol. Meas. 1994;15:A153–A160. doi: 10.1088/0967-3334/15/2A/020. PubMed DOI
Adler A., Gaggero P.O., Maimaitijiang Y. Adjacent stimulation and measurement patterns considered harmful. Physiol. Meas. 2011;32:731–744. doi: 10.1088/0967-3334/32/7/S01. PubMed DOI
Liu K., Wu Y., Wang S., Wang H., Chen H., Chen B., Yao J. Artificial Sensitive Skin for Robotics Based on Electrical Impedance Tomography. Adv. Intell. Syst. 2020;2:1–13. doi: 10.1002/aisy.202000151. DOI
Dusek J., Mikulka J., Balajka M., Dedkova J., Parilkova J., Munsterova Z. Designing a Cost-Effective Multiplexer for Electrical Impedance Tomography; Proceedings of the 2019 11th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT); Dublin, Ireland. 28–30 October 2019; pp. 1–4. DOI
Liu D., Kolehmainen V., Siltanen S., Seppänen A. A nonlinear approach to difference imaging in EIT; assessment of the robustness in the presence of modelling errors. Inverse Probl. 2015;31:035012. doi: 10.1088/0266-5611/31/3/035012. DOI
Holder D.S. Electrical Impedance Tomography: Methods, History and Applications. CRC Press; Boca Raton, FL, USA: 2004.
Yang W.Q., Peng L. Image reconstruction algorithms for electrical capacitance tomography. Meas. Sci. Technol. 2002;14:R1–R13. doi: 10.1088/0957-0233/14/1/201. DOI
Cui Z., Wang Q., Xue Q., Fan W., Zhang L., Cao Z., Sun B., Wang H., Yang W. A review on image reconstruction algorithms for electrical capacitance/resistance tomography. Sens. Rev. 2016;36:429–445. doi: 10.1108/SR-01-2016-0027. DOI
Dusek J., Mikulka J. Electrical Impedance Tomography-Based Spatial Reconstruction of Admittivity in a Cylindrical Object; Proceedings of the 2020 19th International Conference on Mechatronics—Mechatronika (ME); Prague, Czech Republic. 2–4 December 2020; pp. 1–6.
Borsic A. Ph.D. Thesis. Oxford Brookes University; Oxford, UK: 2002. Regularisation Methods for Imaging from Electrical Measurements.
Lagarias J.C., Reeds J.A., Wright M.H., Wright P.E. Convergence Properties of the Nelder--Mead Simplex Method in Low Dimensions. SIAM J. Optim. 1998;9:112–147. doi: 10.1137/S1052623496303470. DOI
Lasheen A., El-Garhy A., Saad E., Eid S. Using Hybrid Genetic and Nelder-Mead Algorithm for Decoupling of MIMO Systems with Application on Two Coupled Distillation Columns Process. Int. J. Math. Comput. Simul. 2009;3:146–157.
Haddad O.B., Hamedi F., Orouji H., Pazoki M., Loáiciga H.A. A Re-Parameterized and Improved Nonlinear Muskingum Model for Flood Routing. Water Resour. Manag. 2015;29:3419–3440. doi: 10.1007/s11269-015-1008-9. DOI
Adler A., Lionheart W.R.B. Uses and abuses of EIDORS: An extensible software base for EIT. Physiol. Meas. 2006;27:S25–S42. doi: 10.1088/0967-3334/27/5/S03. PubMed DOI
Dimas C., Sotiriadis P.P. Electrical impedance tomography image reconstruction for adjacent and opposite strategy using FEMM and EIDORS simulation models; Proceedings of the 2018 7th International Conference on Modern Circuits and Systems Technologies (MOCAST); Thessaloniki, Greece. 7–9 May 2018; pp. 1–4.
Krčmařík D., Petrů M., Kočí J. Thorax measurement and analysis using electrical impedance tomography. Vibroengineering Procedia. 2019;26:68–73. doi: 10.21595/vp.2019.20986. DOI
Apaloo-Bara K.K., Salami A.A., Kodjo M.K., Guenoukpati A., Djandja S.O., Bedja K.-S. Estimation of Soils Electrical Resistivity using ArtificialNeural Network Approach. Am. J. Appl. Sci. 2019;16:43–58. doi: 10.3844/ajassp.2019.43.58. DOI