Strong Antimicrobial Effects of Xanthohumol and Beta-Acids from Hops against Clostridioides difficile Infection In Vivo
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
NV- 17-31765A
Agentura Pro Zdravotnický Výzkum České Republiky
PubMed
33917416
PubMed Central
PMC8067520
DOI
10.3390/antibiotics10040392
PII: antibiotics10040392
Knihovny.cz E-zdroje
- Klíčová slova
- C. difficile, hops, infection, rat model,
- Publikační typ
- časopisecké články MeSH
Clostridioides (C.) difficile is an important causative pathogen of nosocomial gastrointestinal infections in humans with an increasing incidence, morbidity, and mortality. The available treatment options against this pathogen are limited. The standard antibiotics are expensive, can promote emerging resistance, and the recurrence rate of the infection is high. Therefore, there is an urgent need for new approaches to meet these challenges. One of the possible treatment alternatives is to use compounds available in commonly used plants. In this study, purified extracts isolated from hops-alpha and beta acids and xanthohumol-were tested in vivo for their inhibitory effect against C. difficile. A rat model of the peroral intestinal infection by C. difficile has been developed. The results show that both xanthohumol and beta acids from hops exert a notable antimicrobial effect in the C. difficile infection. The xanthohumol application showed the most pronounced antimicrobial effect together with an improvement of local inflammatory signs in the large intestine. Thus, the hops compounds represent promising antimicrobial agents for the treatment of intestinal infections caused by C. difficile.
Food Research Institute 110 00 Prague Czech Republic
Institute of Clinical Microbiology University Hospital 500 03 Hradec Kralove Czech Republic
Research Institute of Brewing and Malting 110 00 Prague Czech Republic
Zobrazit více v PubMed
Oka K., Osaki T., Hanawa T., Kurata S., Sugiyama E., Takahashi M., Tanaka M., Taguchi H., Kamiya S. Establishment of an Endogenous Clostridium difficile Rat Infection Model and Evaluation of the Effects of Clostridium butyricum MIYAIRI 588 Probiotic Strain. Front. Microbiol. 2018;9:1264. doi: 10.3389/fmicb.2018.01264. PubMed DOI PMC
Shah D., Dang M.D., Hasbun R., Koo H.L., Jiang Z.D., DuPont H.L., Garey K.W. Clostridium difficile infection: Update on emerging antibiotic treatment options and antibiotic resistance. Expert Rev. Anti-Infect. Ther. 2010;8:555–564. doi: 10.1586/eri.10.28. PubMed DOI PMC
Zhu D., Sorg J.A., Sun X. Clostridioides difficile Biology: Sporulation, Germination, and Corresponding Therapies for C. difficile Infection. Front. Cell. Infect. Microbiol. 2018;8:29. doi: 10.3389/fcimb.2018.00029. PubMed DOI PMC
Janoir C. Virulence factors of Clostridium difficile and their role during infection. Anaerobe. 2016;37:13–24. doi: 10.1016/j.anaerobe.2015.10.009. PubMed DOI
Koenigsknecht M.J., Theriot C.M., Bergin I.L., Schumacher C.A., Schloss P.D., Young V.B. Dynamics and establishment of Clostridium difficile infection in the murine gastrointestinal tract. Infect. Immun. 2015;83:934–941. doi: 10.1128/IAI.02768-14. PubMed DOI PMC
Dharbhamulla N., Abdelhady A., Domadia M., Patel S., Gaughan J., Roy S. Risk Factors Associated With Recurrent Clostridium difficile Infection. J. Clin. Med. Res. 2019;11:1–6. doi: 10.14740/jocmr3531w. PubMed DOI PMC
Dieterle M.G., Rao K., Young V.B. Novel therapies and preventative strategies for primary and recurrent Clostridium difficile infections. Ann. N. Y. Acad. Sci. 2019;1435:110–138. doi: 10.1111/nyas.13958. PubMed DOI PMC
Ooijevaar R.E., van Beurden Y.H., Terveer E.M., Goorhuis A., Bauer M.P., Keller J.J., Mulder C.J.J., Kuijper E.J. Update of treatment algorithms for Clostridium difficile infection. Clin. Microbiol. Infect. 2018;24:452–462. doi: 10.1016/j.cmi.2017.12.022. PubMed DOI
Singh T., Bedi P., Bumrah K., Singh J., Rai M., Seelam S. Updates in Treatment of Recurrent Clostridium difficile Infection. J. Clin. Med. Res. 2019;11:465–471. doi: 10.14740/jocmr3854. PubMed DOI PMC
Wilcox M.H., Gerding D.N., Poxton I.R., Kelly C., Nathan R., Birch T., Cornely O.A., Rahav G., Bouza E., Lee C., et al. Bezlotoxumab for Prevention of Recurrent Clostridium difficile Infection. N. Engl. J. Med. 2017;376:305–317. doi: 10.1056/NEJMoa1602615. PubMed DOI
Bartmanska A., Walecka-Zacharska E., Tronina T., Poplonski J., Sordon S., Brzezowska E., Bania J., Huszcza E. Antimicrobial Properties of Spent Hops Extracts, Flavonoids Isolated Therefrom, and Their Derivatives. Molecules. 2018;23:2059. doi: 10.3390/molecules23082059. PubMed DOI PMC
Bogdanova K., Roderova M., Kolar M., Langova K., Dusek M., Jost P., Kubelkova K., Bostik P., Olsovska J. Antibiofilm activity of bioactive hop compounds humulone, lupulone and xanthohumol toward susceptible and resistant staphylococci. Res. Microbiol. 2018;169:127–134. doi: 10.1016/j.resmic.2017.12.005. PubMed DOI
Cermak P., Olsovska J., Mikyska A., Dusek M., Kadleckova Z., Vanicek J., Nyc O., Sigler K., Bostikova V., Bostik P. Strong antimicrobial activity of xanthohumol and other derivatives from hops (Humulus lupulus L.) on gut anaerobic bacteria. APMIS. 2017;125:1033–1038. doi: 10.1111/apm.12747. PubMed DOI
Jeliazkova E., Zheljazkov V.D., Kacaniova M., Astatkie T., Tekwani B.L. Sequential Elution of Essential Oil Constituents during Steam Distillation of Hops (Humulus lupulus L.) and Influence on Oil Yield and Antimicrobial Activity. J. Oleo Sci. 2018;67:871–883. doi: 10.5650/jos.ess17216. PubMed DOI
Mody D., Athamneh A.I.M., Seleem M.N. Curcumin: A natural derivative with antibacterial activity against Clostridium difficile. J. Glob. Antimicrob. Resist. 2020;21:154–161. doi: 10.1016/j.jgar.2019.10.005. PubMed DOI PMC
Roehrer S., Behr J., Stork V., Ramires M., Medard G., Frank O., Kleigrewe K., Hofmann T., Minceva M. Xanthohumol C, a minor bioactive hop compound: Production, purification strategies and antimicrobial test. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2018;1095:39–49. doi: 10.1016/j.jchromb.2018.07.018. PubMed DOI
Best E.L., Freeman J., Wilcox M.H. Models for the study of Clostridium difficile infection. Gut Microbes. 2012;3:145–167. doi: 10.4161/gmic.19526. PubMed DOI PMC
De Wolfe T.J., Kates A.E., Barko L., Darien B.J., Safdar N. Modified Mouse Model of Clostridioides difficile Infection as a Platform for Probiotic Efficacy Studies. Antimicrob. Agents Chemother. 2019;63:e00111-19. doi: 10.1128/AAC.00111-19. PubMed DOI PMC
Deng H., Yang S., Zhang Y., Qian K., Zhang Z., Liu Y., Wang Y., Bai Y., Fan H., Zhao X., et al. Bacteroides fragilis Prevents Clostridium difficile Infection in a Mouse Model by Restoring Gut Barrier and Microbiome Regulation. Front. Microbiol. 2018;9:2976. doi: 10.3389/fmicb.2018.02976. PubMed DOI PMC
Shelby R.D., Tengberg N., Conces M., Olson J.K., Navarro J.B., Bailey M.T., Goodman S.D., Besner G.E. Development of a Standardized Scoring System to Assess a Murine Model of Clostridium difficile Colitis. J. Investig. Surg. 2020;33:887–895. doi: 10.1080/08941939.2019.1571129. PubMed DOI
Gupta S., Allen-Vercoe E., Petrof E.O. Fecal microbiota transplantation: In perspective. Ther. Adv. Gastroenterol. 2016;9:229–239. doi: 10.1177/1756283X15607414. PubMed DOI PMC
Hui W., Li T., Liu W., Zhou C., Gao F. Fecal microbiota transplantation for treatment of recurrent C. difficile infection: An updated randomized controlled trial meta-analysis. PLoS ONE. 2019;14:e0210016. doi: 10.1371/journal.pone.0210016. PubMed DOI PMC
Bocquet L., Sahpaz S., Bonneau N., Beaufay C., Mahieux S., Samaillie J., Roumy V., Jacquin J., Bordage S., Hennebelle T., et al. Phenolic Compounds from Humulus lupulus as Natural Antimicrobial Products: New Weapons in the Fight against Methicillin Resistant Staphylococcus aureus, Leishmania mexicana and Trypanosoma brucei Strains. Molecules. 2019;24:1024. doi: 10.3390/molecules24061024. PubMed DOI PMC
Karabin M., Hudcova T., Jelinek L., Dostalek P. Biologically Active Compounds from Hops and Prospects for Their Use. Compr. Rev. Food Sci. Food Saf. 2016;15:542–567. doi: 10.1111/1541-4337.12201. PubMed DOI
Cheon D., Kim J., Jeon D., Shin H.C., Kim Y. Target Proteins of Phloretin for Its Anti-Inflammatory and Antibacterial Activities Against Propionibacterium acnes-Induced Skin Infection. Molecules. 2019;24:1319. doi: 10.3390/molecules24071319. PubMed DOI PMC
Krofta K., Liskova H., Vrabcova S. Process for Preparing Pure Beta Acids of Hop. Patent Number CZ303017B6. 2012 Feb 29;
Biendl M. Isolation of Prenylflavovnoids from Hops. International Society for Horticultural Science. [(accessed on 15 January 2021)]; Available online: http://www.actahort.org/books/1010/1010_15.htm.
Pejchal J., Novotny J., Marak V., Osterreicher J., Tichy A., Vavrova J., Sinkorova Z., Zarybnicka L., Novotna E., Chladek J., et al. Activation of p38 MAPK and expression of TGF-beta1 in rat colon enterocytes after whole body gamma-irradiation. Int. J. Radiat. Biol. 2012;88:348–358. doi: 10.3109/09553002.2012.654044. PubMed DOI