Degradation Products of Polychlorinated Biphenyls and Their In Vitro Transformation by Ligninolytic Fungi
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
SS02030008
Technology Agency of the Czech Republic
UNCE/SCI/006
Univerzita Karlova v Praze
PubMed
33918084
PubMed Central
PMC8070434
DOI
10.3390/toxics9040081
PII: toxics9040081
Knihovny.cz E-zdroje
- Klíčová slova
- Irpex lacteus, Pleurotus ostreatus, biodegradation, chlorobenzaldehydes, chlorobenzyl alcohols, hydroxylated PCBs,
- Publikační typ
- časopisecké články MeSH
Metabolites of polychlorinated biphenyls (PCBs)-hydroxylated PCBs (OH-PCBs), chlorobenzyl alcohols (CB-OHs), and chlorobenzaldehydes (CB-CHOs)-were incubated in vitro with the extracellular liquid of Pleurotus ostreatus, which contains mainly laccase and low manganese-dependent peroxidase (MnP) activity. The enzymes were able to decrease the amount of most of the tested OH-PCBs by > 80% within 1 h; the removal of more recalcitrant OH-PCBs was greatly enhanced by the addition of the laccase mediator syringaldehyde. Conversely, glutathione substantially hindered the reaction, suggesting that it acted as a laccase inhibitor. Hydroxylated dibenzofuran and chlorobenzoic acid were identified as transformation products of OH-PCBs. The extracellular enzymes also oxidized the CB-OHs to the corresponding CB-CHOs on the order of hours to days; however, the mediated and nonmediated setups exhibited only slight differences, and the participating enzymes could not be determined. When CB-CHOs were used as the substrates, only partial transformation was observed. In an additional experiment, the extracellular liquid of Irpex lacteus, which contains predominantly MnP, was able to efficiently transform CB-CHOs with the aid of glutathione; mono- and di-chloroacetophenones were detected as transformation products. These results demonstrate that extracellular enzymes of ligninolytic fungi can act on a wide range of PCB metabolites, emphasizing their potential for bioremediation.
Zobrazit více v PubMed
Čvančarová M., Křesinová Z., Filipová A., Covino S., Cajthaml T. Biodegradation of PCBs by ligninolytic fungi and characterization of the degradation products. Chemosphere. 2012;88:1317–1323. doi: 10.1016/j.chemosphere.2012.03.107. PubMed DOI
Kamei I., Kogura R., Kondo R. Metabolism of 4,4′-dichlorobiphenyl by white-rot fungi Phanerochaete chrysosporium and Phanerochaete sp. MZ142. Appl. Microbiol. Biotechnol. 2006;72:566–575. doi: 10.1007/s00253-005-0303-4. PubMed DOI
Keum Y.S., Li Q.X. Fungal laccase-catalyzed degradation of hydroxy polychlorinated biphenyls. Chemosphere. 2004;56:23–30. doi: 10.1016/j.chemosphere.2004.02.028. PubMed DOI
Muzikář M., Křesinová Z., Svobodová K., Filipová A., Čvančarová M., Cajthamlová K., Cajthaml T. Biodegradation of chlorobenzoic acids by ligninolytic fungi. J. Hazard. Mater. 2011;196:386–394. doi: 10.1016/j.jhazmat.2011.09.041. PubMed DOI
Marek R.F., Martinez A., Hornbuckle K.C. Discovery of hydroxylated polychlorinated biphenyls (OH-PCBs) in sediment from a Lake Michigan waterway and original commercial Aroclors. Environ. Sci. Technol. 2013;47:8204–8210. doi: 10.1021/es402323c. PubMed DOI PMC
Ueno D., Darling C., Alaee M., Campbell L., Pacepavicius G., Teixeira C., Muir D. Detection of hydroxylated polychlorinated biphenyls (OH-PCBs) in the abiotic environment: Surface water and precipitation from Ontario, Canada. Environ. Sci. Technol. 2007;41:1841–1848. doi: 10.1021/es061539l. PubMed DOI
Bytingsvik J., Lie E., Aars J., Derocher A.E., Wiig Ø., Jenssen B.M. PCBs and OH-PCBs in polar bear mother–cub pairs: A comparative study based on plasma levels in 1998 and 2008. Sci. Total Environ. 2012;417–418:117–128. doi: 10.1016/j.scitotenv.2011.12.033. PubMed DOI
Park J.S., Linderholm L., Charles M.J., Athanasiadou M., Petrik J., Kocan A., Drobna B., Trnovec T., Bergman Å., Hertz-Picciotto I. Polychlorinated biphenyls and their hydroxylated metabolites (OH-PCBs) in pregnant women from eastern Slovakia. Environ. Health Perspect. 2007;115:20–27. doi: 10.1289/ehp.8913. PubMed DOI PMC
Nomiyama K., Tsujisawa Y., Ashida E., Yachimori S., Eguchi A., Iwata H., Tanabe S. Mother to Fetus Transfer of Hydroxylated Polychlorinated Biphenyl Congeners (OH-PCBs) in the Japanese Macaque (Macaca fuscata): Extrapolation of Exposure Scenarios to Humans. Environ. Sci. Technol. 2020;54:11386–11395. doi: 10.1021/acs.est.0c01805. PubMed DOI
Kunisue T., Tanabe S. Hydroxylated polychlorinated biphenyls (OH-PCBs) in the blood of mammals and birds from Japan: Lower chlorinated OH-PCBs and profiles. Chemosphere. 2009;74:950–961. doi: 10.1016/j.chemosphere.2008.10.038. PubMed DOI
Liu J., Hu D., Jiang G., Schnoor J.L. In vivo biotransformation of 3,3′,4,4′-tetrachlorobiphenyl by whole plants–poplars and switchgrass. Environ. Sci. Technol. 2009;43:7503–7509. doi: 10.1021/es901244h. PubMed DOI PMC
Liao Z., Zeng M., Wang L. Atmospheric oxidation mechansim of polychlorinated biphenyls (PCBs) initiated by OH radicals. Chemosphere. 2020;240:124756. doi: 10.1016/j.chemosphere.2019.124756. PubMed DOI
Sun J., Zhu L., Pan L., Wei Z., Song Y., Zhang Y., Qu L., Zhan Y. Detection of methoxylated and hydroxylated polychlorinated biphenyls in sewage sludge in China with evidence for their microbial transformation. Sci. Rep. 2016;6:29782. doi: 10.1038/srep29782. PubMed DOI PMC
Tehrani R., Van Aken B. Hydroxylated polychlorinated biphenyls in the environment: Sources, fate, and toxicities. Environ. Sci. Pollut. Res. 2014;21:6334–6345. doi: 10.1007/s11356-013-1742-6. PubMed DOI PMC
Dhakal K., Gadupudi G.S., Lehmler H.J., Ludewig G., Duffel M.W., Robertson L.W. Sources and toxicities of phenolic polychlorinated biphenyls (OH-PCBs) Environ. Sci. Pollut. Res. 2018;25:16277–16290. doi: 10.1007/s11356-017-9694-x. PubMed DOI PMC
Lans M.C., Klasson-Wehler E., Willemsen M., Meussen E., Safe S., Brouwer A. Structure-dependent, competitive interaction of hydroxy-polychlorobiphenyls, -dibenzo-p-dioxins and -dibenzofurans with human transthyretin. Chem. Biol. Interact. 1993;88:7–21. doi: 10.1016/0009-2797(93)90081-9. PubMed DOI
Kamata R., Shiraishi F., Nakajima D., Takigami H., Shiraishi H. Mono-hydroxylated polychlorinated biphenyls are potent aryl hydrocarbon receptor ligands in recombinant yeast cells. Toxicol. In Vitro. 2009;23:736–743. doi: 10.1016/j.tiv.2009.03.004. PubMed DOI
Schultz A., Jonas U., Hammer E., Schauer F. Dehalogenation of Chlorinated Hydroxybiphenyls by Fungal Laccase. Appl. Environ. Microbiol. 2001;67:4377–4381. doi: 10.1128/AEM.67.9.4377-4381.2001. PubMed DOI PMC
Fujihiro S., Higuchi R., Hisamatsu S., Sonoki S. Metabolism of hydroxylated PCB congeners by cloned laccase isoforms. Appl. Microbiol. Biotechnol. 2009;82:853–860. doi: 10.1007/s00253-008-1798-2. PubMed DOI
Kordon K., Mikolasch A., Schauer F. Oxidative dehalogenation of chlorinated hydroxybiphenyls by laccases of white-rot fungi. Int. Biodeterior. Biodegrad. 2010;64:203–209. doi: 10.1016/j.ibiod.2009.10.010. DOI
Stella T., Covino S., Křesinová Z., D’Annibale A., Petruccioli M., Čvančarová M., Cajthaml T. Chlorobenzoic acid degradation by Lentinus (Panus) tigrinus: In vivo and in vitro mechanistic study-evidence for P-450 involvement in the transformation. J. Hazard. Mater. 2013;260:975–983. doi: 10.1016/j.jhazmat.2013.07.004. PubMed DOI
Stella T., Covino S., Čvančarová M., Filipová A., Petruccioli M., D’Annibale A., Cajthaml T. Bioremediation of long-term PCB-contaminated soil by white-rot fungi. J. Hazard. Mater. 2017;324:701–710. doi: 10.1016/j.jhazmat.2016.11.044. PubMed DOI
Matsumura E., Yamamoto E., Numata A., Kawano T., Shin T., Murao S. Structures of the Laccase-Catalyzed Oxidation Products of Hydroxy-Benzoic Acids in the Presence of ABTS [2,2′-Azino-di-(3-ethylbenzothiazoline-6-sulfonic Acid)] Agric. Biol. Chem. 1986;50:1355–1357. doi: 10.1080/00021369.1986.10867576. DOI
Ngo T.T., Lenhoff H.M. A sensitive and versatile chromogenic assay for peroxidase and peroxidase-coupled reactions. Anal. Biochem. 1980;105:389–397. doi: 10.1016/0003-2697(80)90475-3. PubMed DOI
Šnajdr J., Valášková V., Merhautová V., Cajthaml T., Baldrian P. Activity and spatial distribution of lignocellulose-degrading enzymes during forest soil colonization by saprotrophic basidiomycetes. Enzyme Microb. Technol. 2008;43:186–192. doi: 10.1016/j.enzmictec.2007.11.008. DOI
Tien M., Kirk T.K. Lignin-degrading enzyme from Phanerochaete chrysosporium: Purification, characterization, and catalytic properties of a unique H2O2-requiring oxygenase. Proc. Natl. Acad. Sci. USA. 1984;81:2280–2284. doi: 10.1073/pnas.81.8.2280. PubMed DOI PMC
Covino S., Svobodová K., Křesinová Z., Petruccioli M., Federici F., D’Annibale A., Čvančarová M., Cajthaml T. In vivo and in vitro polycyclic aromatic hydrocarbons degradation by Lentinus (Panus) tigrinus CBS 577.79. Bioresour. Technol. 2010;101:3004–3012. doi: 10.1016/j.biortech.2009.12.020. PubMed DOI
Linhartová L., Michalíková K., Šrédlová K., Cajthaml T. Biodegradability of Dental Care Antimicrobial Agents Chlorhexidine and Octenidine by Ligninolytic Fungi. Molecules. 2020;25:400. doi: 10.3390/molecules25020400. PubMed DOI PMC
Hong J.E., Pyo H., Park S.J., Lee W. Determination of hydroxy-PCBs in urine by gas chromatography/mass spectrometry with solid-phase extraction and derivatization. Anal. Chim. Acta. 2005;531:249–256. doi: 10.1016/j.aca.2004.10.030. DOI
Kuroki H., Hattori R., Haraguchi K., Masuda Y. Synthesis and mass spectral properties of polychlorinated dibenzofuran (PCDF) metabolites. Chemosphere. 1987;16:1641–1647. doi: 10.1016/0045-6535(87)90142-1. DOI
Ferreira P., Medina M., Guillén F., Martínez M.J., Van Berkel W.J.H., Martínez Á.T. Spectral and catalytic properties of aryl-alcohol oxidase, a fungal flavoenzyme acting on polyunsaturated alcohols. Biochem. J. 2005;389:731–738. doi: 10.1042/BJ20041903. PubMed DOI PMC
Nikolaivits E., Siaperas R., Agrafiotis A., Ouazzani J., Magoulas A., Gioti A., Topakas E. Functional and transcriptomic investigation of laccase activity in the presence of PCB29 identifies two novel enzymes and the multicopper oxidase repertoire of a marine-derived fungus. Sci. Total Environ. 2021;775:145818. doi: 10.1016/j.scitotenv.2021.145818. PubMed DOI
Takagi S., Shirota C., Sakaguchi K., Suzuki J., Sue T., Nagasaka H., Hisamatsu S., Sonoki S. Exoenzymes of Trametes versicolor can metabolize coplanar PCB congeners and hydroxy PCB. Chemosphere. 2007;67:S54–S57. doi: 10.1016/j.chemosphere.2006.05.090. PubMed DOI
Mota M.I.F., Rodrigues Pinto P.C., Loureiro J.M., Rodrigues A.E. Recovery of Vanillin and Syringaldehyde from Lignin Oxidation: A Review of Separation and Purification Processes. Sep. Purif. Rev. 2016;45:227–259. doi: 10.1080/15422119.2015.1070178. DOI
Nguyen L.N., van de Merwe J.P., Hai F.I., Leusch F.D.L., Kang J., Price W.E., Roddick F., Magram S.F., Nghiem L.D. Laccase–syringaldehyde-mediated degradation of trace organic contaminants in an enzymatic membrane reactor: Removal efficiency and effluent toxicity. Bioresour. Technol. 2016;200:477–484. doi: 10.1016/j.biortech.2015.10.054. PubMed DOI
Jiang G.X., Niu J.F., Zhang S.P., Zhang Z.Y., Xie B. Prediction of biodegradation rate constants of hydroxylated polychlorinated biphenyls by fungal laccases from Trametes versicolor and Pleurotus ostreatus. Bull. Environ. Contam. Toxicol. 2008;81:1–6. doi: 10.1007/s00128-008-9433-6. PubMed DOI
Baldrian P. Increase of laccase activity during interspecific interactions of white-rot fungi. FEMS Microbiol. Ecol. 2004;50:245–253. doi: 10.1016/j.femsec.2004.07.005. PubMed DOI
Pawlik A., Wójcik M., Rułka K., Motyl-Gorzel K., Osińska-Jaroszuk M., Wielbo J., Marek-Kozaczuk M., Skorupska A., Rogalski J., Janusz G. Purification and characterization of laccase from Sinorhizobium meliloti and analysis of the lacc gene. Int. J. Biol. Macromol. 2016;92:138–147. doi: 10.1016/j.ijbiomac.2016.07.012. PubMed DOI
Qin X., Sun X., Huang H., Bai Y., Wang Y., Luo H., Yao B., Zhang X., Su X. Oxidation of a non-phenolic lignin model compound by two Irpex lacteus manganese peroxidases: Evidence for implication of carboxylate and radicals. Biotechnol. Biofuels. 2017;10:103. doi: 10.1186/s13068-017-0787-z. PubMed DOI PMC
Wang X., Qin X., Hao Z., Luo H., Yao B., Su X. Degradation of Four Major Mycotoxins by Eight Manganese Peroxidases in Presence of a Dicarboxylic Acid. Toxins. 2019;11:566. doi: 10.3390/toxins11100566. PubMed DOI PMC
Hofrichter M., Ziegenhagen D., Vares T., Friedrich M., Jäger M.G., Fritsche W., Hatakka A. Oxidative decomposition of malonic acid as basis for the action of manganese peroxidase in the absence of hydrogen peroxide. FEBS Lett. 1998;434:362–366. doi: 10.1016/S0014-5793(98)01023-0. PubMed DOI
Rodríguez E., Nuero O., Guillén F., Martínez A.T., Martínez M.J. Degradation of phenolic and non-phenolic aromatic pollutants by four Pleurotus species: The role of laccase and versatile peroxidase. Soil Biol. Biochem. 2004;36:909–916. doi: 10.1016/j.soilbio.2004.02.005. DOI
Sack U., Hofrichter M., Fritsche W. Degradation of polycyclic aromatic hydrocarbons by manganese peroxidase of Nematoloma frowardii. FEMS Microbiol. Lett. 1997;152:227–234. doi: 10.1111/j.1574-6968.1997.tb10432.x. PubMed DOI
Van Aken B., Cameron M.D., Stahl J.D., Plumat A., Naveau H., Aust S.D., Agathos S.N. Glutathione-mediated mineralization of 14C-labeled 2-amino-4,6-dinitrotoluene by manganese-dependent peroxidase H5 from the white-rot fungus Phanerochaete chrysosporium. Appl. Microbiol. Biotechnol. 2000;54:659–664. doi: 10.1007/s002530000436. PubMed DOI