Biodegradability of Dental Care Antimicrobial Agents Chlorhexidine and Octenidine by Ligninolytic Fungi

. 2020 Jan 18 ; 25 (2) : . [epub] 20200118

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31963668

Grantová podpora
17-15678Y Grantová Agentura České Republiky

Chlorhexidine (CHX) and octenidine (OCT), antimicrobial compounds used in oral care products (toothpastes and mouthwashes), were recently revealed to interfere with human sex hormone receptor pathways. Experiments employing model organisms-white-rot fungi Irpex lacteus and Pleurotus ostreatus-were carried out in order to investigate the biodegradability of these endocrine-disrupting compounds and the capability of the fungi and their extracellular enzyme apparatuses to biodegrade CHX and OCT. Up to 70% ± 6% of CHX was eliminated in comparison with a heat-killed control after 21 days of in vivo incubation. An additional in vitro experiment confirmed manganese-dependent peroxidase and laccase are partially responsible for the removal of CHX. Up to 48% ± 7% of OCT was removed in the same in vivo experiment, but the strong sorption of OCT on fungal biomass prevented a clear evaluation of the involvement of the fungi or extracellular enzymes. On the other hand, metabolites indicating the enzymatic transformation of both CHX and OCT were detected and their chemical structures were proposed by means of liquid chromatography-mass spectrometry. Complete biodegradation by the ligninolytic fungi was not achieved for any of the studied analytes, which emphasizes their recalcitrant character with low possibility to be removed from the environment.

Zobrazit více v PubMed

Usage of Mouthwash/dental Rinse in the U.S. 2011–2023. [(accessed on 29 November 2019)]; Available online: https://www.statista.com/statistics/286902/usage-mouthwash-dental-rinse-us-trend/

Ostman M., Lindberg R.H., Fick J., Bjorn E., Tysklind M. Screening of biocides, metals and antibiotics in Swedish sewage sludge and wastewater. Water Res. 2017;115:318–328. doi: 10.1016/j.watres.2017.03.011. PubMed DOI

Cesen M., Heath D., Krivec M., Kosmrlj J., Kosjek T., Heath E. Seasonal and spatial variations in the occurrence, mass loadings and removal of compounds of emerging concern in the Slovene aqueous environment and environmental risk assessment. Environ. Pollut. 2018;242:143–154. doi: 10.1016/j.envpol.2018.06.052. PubMed DOI

Tezel U., Pavlostathis S.G. Quaternary ammonium disinfectants: Microbial adaptation, degradation and ecology. Curr. Opin. Biotechnol. 2015;33:296–304. doi: 10.1016/j.copbio.2015.03.018. PubMed DOI

Zhang C., Cui F., Zeng G.M., Jiang M., Yang Z.Z., Yu Z.G., Zhu M.Y., Shen L.Q. Quaternary ammonium compounds (QACs): A review on occurrence, fate and toxicity in the environment. Sci. Total Environ. 2015;518:352–362. doi: 10.1016/j.scitotenv.2015.03.007. PubMed DOI

Fortunato M.S., Baroni S., Gonzalez A.J., Roncancio J.D.A., Papalia M., Martinefsky M., Tripodi V., Planes E., Gallego A., Korol S.E. Biodegradability of Disinfectants in Surface Waters from Buenos Aires: Isolation of an Indigenous Strain Able to Degrade and Detoxify Benzalkonium Chloride. Water Air Soil Pollut. 2018;229:120. doi: 10.1007/s11270-018-3780-7. DOI

Hu A.Y., Ju F., Hou L.Y., Li J.W., Yang X.Y., Wang H.J., Mulla S.I., Sun Q., Burgmann H., Yu C.P. Strong impact of anthropogenic contamination on the co-occurrence patterns of a riverine microbial community. Environ. Microbiol. 2017;19:4993–5009. doi: 10.1111/1462-2920.13942. PubMed DOI

Oh S., Tandukar M., Pavlostathis S.G., Chain P.S.G., Konstantinidis K.T. Microbial community adaptation to quaternary ammonium biocides as revealed by metagenomics. Environ. Microbiol. 2013;15:2850–2864. doi: 10.1111/1462-2920.12154. PubMed DOI

Keerthisinghe T.P., Nguyen L.N., Kwon E.E., Oh S. Antiseptic chlorhexidine in activated sludge: Biosorption, antimicrobial susceptibility, and alteration of community structure. J. Environ. Manag. 2019;237:629–635. doi: 10.1016/j.jenvman.2019.02.043. PubMed DOI

Braoudaki M., Hilton A.C. Low level of cross-resistance between triclosan and antibiotics in Escherichia coli K-12 and E. coli O55 compared to E-coli O157. FEMS Microbiol. Lett. 2004;235:305–309. doi: 10.1111/j.1574-6968.2004.tb09603.x. PubMed DOI

Tandukar M., Oh S., Tezel U., Konstantinidis K.T., Pavlostathis S.G. Long-Term Exposure to Benzalkonium Chloride Disinfectants Results in Change of Microbial Community Structure and Increased Antimicrobial Resistance. Environ. Sci. Technol. 2013;47:9730–9738. doi: 10.1021/es401507k. PubMed DOI

Michalíková K., Linhartová L., Ezechiáš M., Cajthaml T. Assessment of agonistic and antagonistic properties of widely used oral care antimicrobial substances toward steroid estrogenic and androgenic receptors. Chemosphere. 2019;217:534–541. doi: 10.1016/j.chemosphere.2018.11.006. PubMed DOI

Ostman M., Fick J., Tysklind M. Detailed mass flows and removal efficiencies for biocides and antibiotics in Swedish sewage treatment plants. Sci. Total Environ. 2018;640:327–336. doi: 10.1016/j.scitotenv.2018.05.304. PubMed DOI

Nguyen L.N., Oh S. Impacts of antiseptic cetylpyridinium chloride on microbiome and its removal efficiency in aerobic activated sludge. Int. Biodeterior. Biodegrad. 2019;137:23–29. doi: 10.1016/j.ibiod.2018.11.006. DOI

Kido Y., Kodama H., Uraki F., Uyeda M., Tsuruoka M., Shibata M. Microbial-degradation of disinfectants. 2. Complete degradation of chlorhexidine. Jpn. J. Toxicol. Environ. Health. 1988;34:97–101. doi: 10.1248/jhs1956.34.97. DOI

Uyeda M., Shiosaki T., Yokomizo K., Suzuki K., Uraki F., Tanaka T., Kido Y. Microbial degradation of disinfectants, structures of chlorhexidine degradation intermediates, CHDI-B, CHDI-BR and CHDI-D, produced by Pseudomonas sp strain No A-3. Jpn. J. Toxicol. Environ. Health. 1996;42:121–126. doi: 10.1248/jhs1956.42.121. DOI

Assadian O. Octenidine dihydrochloride: Chemical characteristics and antimicrobial properties. J. Wound Care. 2016;25:S3–S6. doi: 10.12968/jowc.2016.25.Sup3.S3. PubMed DOI

Čvančarová M., Křesinová Z., Filipová A., Covino S., Cajthaml T. Biodegradation of PCBs by ligninolytic fungi and characterization of the degradation products. Chemosphere. 2012;88:1317–1323. doi: 10.1016/j.chemosphere.2012.03.107. PubMed DOI

Šrédlová K., Škrob Z., Filipová A., Mašín P., Holecová J., Cajthaml T. Biodegradation of PCBs in contaminated water using spent oyster mushroom substrate and a trickle-bed bioreactor. Water Res. 2020;170:115274. doi: 10.1016/j.watres.2019.115274. PubMed DOI

Covino S., Svobodová K., Křesinová Z., Petruccioli M., Federici F., D’Annibale A., Čvančarová M., Cajthaml T. In vivo and in vitro polycyclic aromatic hydrocarbons degradation by Lentinus (Panus) tigrinus CBS 577.79. Bioresour. Technol. 2010;101:3004–3012. doi: 10.1016/j.biortech.2009.12.020. PubMed DOI

Cajthaml T., Erbanová P., Kollmann A., Novotný C., Šašek V., Mougin C. Degradation of PAHs by ligninolytic enzymes of Irpex lacteus. Folia Microbiol. 2008;53:289–294. doi: 10.1007/s12223-008-0045-7. PubMed DOI

Muzikář M., Křesinová Z., Svobodová K., Filipová A., Čvančarová M., Cajthamlová K., Cajthaml T. Biodegradation of chlorobenzoic acids by ligninolytic fungi. J. Hazard. Mater. 2011;196:386–394. doi: 10.1016/j.jhazmat.2011.09.041. PubMed DOI

Karakaya P., Christodoulatos C., Koutsospyros A., Balas W., Nicolich S., Sidhoum M. Biodegradation of the High Explosive Hexanitrohexaazaisowurtzitane (CL-20) Int. J. Environ. Res. Public Health. 2009;6:1371–1392. doi: 10.3390/ijerph6041371. PubMed DOI PMC

Dao A.T.N., Vonck J., Janssens T.K.S., Dang H.T.C., Brouwer A., de Boer T.E. Screening white-rot fungi for bioremediation potential of 2,3,7,8-tetrachlorodibenzo-p-dioxin. Ind. Crops Prod. 2019;128:153–161. doi: 10.1016/j.indcrop.2018.10.059. DOI

Cajthaml T. Biodegradation of endocrine-disrupting compounds by ligninolytic fungi: Mechanisms involved in the degradation. Environ. Microbiol. 2015;17:4822–4834. doi: 10.1111/1462-2920.12460. PubMed DOI

Cajthaml T., Křesinová Z., Svobodová K., Möder M. Biodegradation of endocrine-disrupting compounds and suppression of estrogenic activity by ligninolytic fungi. Chemosphere. 2009;75:745–750. doi: 10.1016/j.chemosphere.2009.01.034. PubMed DOI

Cajthaml T., Svobodová K. Biodegradation of aromatic pollutants by ligninolytic fungal strains. In: Singh S., editor. Microbial Degradation of Xenobiotics. Springer; Berlin/Heidelberg, Germany: 2012. pp. 291–316.

Křesinová Z., Möeder M., Ezechiáš M., Svobodová K., Cajthaml T. Mechanistic Study of 17 alpha-Ethinylestradiol Biodegradation by Pleurotus ostreatus: Tracking of Extracelullar and Intracelullar Degradation Mechanisms. Environ. Sci. Technol. 2012;46:13377–13385. doi: 10.1021/es3029507. PubMed DOI

Sun K., Huang Q.G., Gao Y.Z. Laccase-Catalyzed Oxidative Coupling Reaction of Triclosan in Aqueous Solution. Water Air Soil Pollut. 2016;227:358. doi: 10.1007/s11270-016-3064-z. DOI

Bilal M., Asgher M., Iqbal H.M.N., Hu H.B., Zhang X.H. Bio-based degradation of emerging endocrine-disrupting and dye-based pollutants using cross-linked enzyme aggregates. Environ. Sci. Pollut. Res. 2017;24:7035–7041. doi: 10.1007/s11356-017-8369-y. PubMed DOI

Baborová P., Möder M., Baldrián P., Cajthamlová K., Cajthaml T. Purification of a new manganese peroxidase of the white-rot fungus Irpex lacteus, and degradation of polycyclic aromatic hydrocarbons by the enzyme. Res. Microbiol. 2006;157:248–253. doi: 10.1016/j.resmic.2005.09.001. PubMed DOI

Stella T., Covino S., Křesinová Z., D’Annibale A., Petruccioli M., Čvančarová M., Cajthaml T. Chlorobenzoic acid degradation by Lentinus (Panus) tigrinus: In vivo and in vitro mechanistic study-evidence for P-450 involvement in the transformation. J. Hazard. Mater. 2013;260:975–983. doi: 10.1016/j.jhazmat.2013.07.004. PubMed DOI

Novotný C., Erbanová P., Cajthaml T., Rothschild N., Dosoretz C., Sasek V. Irpex lacteus, a white rot fungus applicable to water and soil bioremediation. Appl. Microbiol. Biot. 2000;54:850–853. doi: 10.1007/s002530000432. PubMed DOI

Svobodová K., Erbanová P., Sklenář J., Novotný C. The role of Mn-dependent peroxidase in dye decolorization by static and agitated cultures of Irpex lacteus. Folia Microbiol. 2006;51:573–578. doi: 10.1007/BF02931622. PubMed DOI

Kasinath A., Novotny C., Svobodová K., Patel K.C., Šašek V. Decolorization of synthetic dyes by Irpex lacteus in liquid cultures and packed-bed bioreactor. Enzyme Microb. Technol. 2003;32:167–173. doi: 10.1016/S0141-0229(02)00279-X. DOI

Havlíková L., Matysová L., Nováková L., Hájkova R., Solich P. HPLC determination of chlorhexidine gluconate and p-chloroaniline in topical ointment. J. Pharm. Biomed. 2007;43:1169–1173. doi: 10.1016/j.jpba.2006.09.037. PubMed DOI

Dynes J.J., Lawrence J.R., Korber D.R., Swerhone G.D.W., Leppard G.G., Hitchcock A.P. Quantitative mapping of chlorhexidine in natural river biofilms. Sci. Total Environ. 2006;369:369–383. doi: 10.1016/j.scitotenv.2006.04.033. PubMed DOI

Lawrence J.R., Zhu B., Swerhone G.D.W., Topp E., Roy J., Wassenaar L.I., Rema T., Korber D.R. Community-level assessment of the effects of the broad-spectrum antimicrobial chlorhexidine on the outcome of river microbial biofilm development. Appl. Environ. Microb. 2008;74:3541–3550. doi: 10.1128/AEM.02879-07. PubMed DOI PMC

Tanaka T., Murayama S., Tuda N., Nishiyama M., Nakagawa K., Matsuo Y., Isohama Y., Kido Y. Microbial degradation of disinfectants. a new chlorhexidine degradation intermediate (CHDI), CHDI-C, produced by Pseudomonas sp Strain No. A-3. J. Health Sci. 2005;51:357–361. doi: 10.1248/jhs.51.357. DOI

Szostak K., Czogalla A., Przybylo M., Langner M. New lipid formulation of octenidine dihydrochloride. J. Lipos Res. 2018;28:106–111. doi: 10.1080/08982104.2016.1275678. PubMed DOI

Kobakhidze A., Elisashvili V., Corvini P.F.X., Čvančarová M. Biotransformation of ritalinic acid by laccase in the presence of mediator TEMPO. New Biotechnol. 2018;43:44–52. doi: 10.1016/j.nbt.2017.08.008. PubMed DOI

Asgher M., Ramzan M., Bilal M. Purification and characterization of manganese peroxidases from native and mutant Trametes versicolor IBL-04. Chin. J. Catal. 2016;37:561–570. doi: 10.1016/S1872-2067(15)61044-0. DOI

Pointing S.B. Feasibility of bioremediation by white-rot fungi. Appl. Microbiol. Biot. 2001;57:20–33. PubMed

Tanaka T., Ishii M., Nakano S., Mori Y., Yano Y., Iijima T., Takeda K., Kido Y. Microbial degradation of disinfectants: Two new aromatic degradation products of chlorhexidine, chlorhexidine aromatic degradation product (CHADP)-4 and CHADP6, produced by Pseudomonas sp strain No. A-3. J. Health Sci. 2006;52:58–62. doi: 10.1248/jhs.52.58. DOI

Ha Y., Cheung A.P. New stability-indicating high performance liquid chromatography assay and proposed hydrolytic pathways of chlorhexidine. J. Pharm. Biomed. 1996;14:1327–1334. doi: 10.1016/S0731-7085(96)01763-3. PubMed DOI

Zong Z., Kirsch L.E. Studies on the Instability of Chlorhexidine, Part I: Kinetics and Mechanisms. J. Pharm. Sci. 2012;101:2417–2427. doi: 10.1002/jps.23151. PubMed DOI

Matsumura E., Yamamoto E., Numata A., Kawano T., Shin T., Murao S. Structures of the laccase-catalyzed oxidation-products of hydroxy-benzoic acids in the presence of ABTS (2,2’-azino-di-(3-ethylbenzothiazoline-6-sulfonic acid)) Agric. Biol. Chem. Tokyo. 1986;50:1355–1357. doi: 10.1080/00021369.1986.10867576. DOI

Dejong E., Cazemier A.E., Field J.A., Debont J.A.M. Physiological-role of chlorinated aryl alcohols biosynthesized de-novo by the white-rot fungus Bjerkandera sp strain BOS55. Appl. Environ. Microb. 1994;60:271–277. doi: 10.1128/AEM.60.1.271-277.1994. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...