Benefits of Resistance Training in Early and Late Stages of Frailty and Sarcopenia: A Systematic Review and Meta-Analysis of Randomized Controlled Studies
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article, Review
Grant support
project Q41
Charles University
PRIMUS/19/HUM/012
Charles University
PubMed
33921356
PubMed Central
PMC8070531
DOI
10.3390/jcm10081630
PII: jcm10081630
Knihovny.cz E-resources
- Keywords
- aging, exercise, muscle mass, older adults, physical performance, weakness,
- Publication type
- Journal Article MeSH
- Review MeSH
Sarcopenia and frailty are age-related syndromes with negative effects on the quality of life of older people and on public health costs. Although extensive research has been carried out on the effects of physical exercise and physical syndromes, there is a knowledge gap when it comes to the effect of resistance training on muscular strength, physical performance, and body composition at early (prevention) and late (treatment) stages in both syndromes combined. We conducted this systematic review and meta-analysis (CRD42019138253) to gather the evidence of randomized controlled trials examining the effects of resistance training programs lasting ≥8 weeks on strength, physical function, and body composition of adults ≥65 years old diagnosed with pre-sarcopenia, sarcopenia, pre-frailty, or frailty. A search from the earliest record up to and including December 2020 was carried out using the PubMed, Scopus, Web of Science, and Cochrane Library databases. A total of 25 studies (n = 2267 participants) were included. Meta-analysis showed significant changes in favour of resistance training for handgrip (ES = 0.51, p = 0.001) and lower-limb strength (ES = 0.93, p < 0.001), agility (ES = 0.78, p = 0.003), gait speed (ES = 0.75, p < 0.001), postural stability (ES = 0.68, p = 0.007), functional performance (ES = 0.76, p < 0.001), fat mass (ES = 0.41, p = 0.001), and muscle mass (ES = 0.29, p = 0.002). Resistance training during early stages had positive effects in all variables during early stages (ES > 0.12), being particularly effective in improving gait speed (ES = 0.63, p = 0.016) and functional strength (ES = 0.53, p = 0.011). Based on these results, resistance training should be considered as a highly effective preventive strategy to delay and attenuate the negative effects of sarcopenia and frailty in both early and late stages.
Faculty of Motor Rehabilitation University of Physical Education 31 571 Krakow Poland
Faculty of Physical Education and Sport Charles University 16252 Prague Czech Republic
See more in PubMed
Beard J.R., Officer A., de Carvalho I.A., Sadana R., Pot A.M., Michel J.-P., Lloyd-Sherlock P., Epping-Jordan J.E., Peeters G.M.E.E.G., Mahanani W.R., et al. The World report on ageing and health: A policy framework for healthy ageing. Lancet. 2016;387:2145–2154. doi: 10.1016/S0140-6736(15)00516-4. PubMed DOI PMC
Bevan S. Economic impact of musculoskeletal disorders (MSDs) on work in Europe. Best Pract. Res. Clin. Rheumatol. 2015;29:356–373. doi: 10.1016/j.berh.2015.08.002. PubMed DOI
Ethgen O., Beaudart C., Buckinx F., Bruyère O., Reginster J.Y. The Future Prevalence of Sarcopenia in Europe: A Claim for Public Health Action. Calcif. Tissue Int. 2017;100:229–234. doi: 10.1007/s00223-016-0220-9. PubMed DOI PMC
Rolland Y., Czerwinski S., Van Kan G.A., Morley J.E., Cesari M., Onder G., Woo J., Baumgartner R., Pillard F., Boirie Y., et al. Sarcopenia: Its assessment, etiology, pathogenesis, consequences and future perspectives. J. Nutr. Heal. Aging. 2008;12:430–450. doi: 10.1007/BF02982704. PubMed DOI PMC
Svensson R.B., Heinemeier K.M., Couppé C., Kjaer M., Magnusson S.P. Effect of aging and exercise on the tendon. J. Appl. Physiol. 2016;121:1237–1246. doi: 10.1152/japplphysiol.00328.2016. PubMed DOI
Thompson B.J., Ryan E.D., Herda T.J., Costa P.B., Herda A.A., Cramer J.T. Age-related changes in the rate of muscle activation and rapid force characteristics. Age. 2014;36:839–849. doi: 10.1007/s11357-013-9605-0. PubMed DOI PMC
Xue Q.L. The Frailty Syndrome: Definition and Natural History. Clin. Geriatr. Med. 2011;27:1–15. doi: 10.1016/j.cger.2010.08.009. PubMed DOI PMC
Bock J.O., König H.H., Brenner H., Haefeli W.E., Quinzler R., Matschinger H., Saum K.U., Schöttker B., Heider D. Associations of frailty with health care costs—Results of the ESTHER cohort study. BMC Health Serv. Res. 2016;16 doi: 10.1186/s12913-016-1360-3. PubMed DOI PMC
Woolford S.J., Sohan O., Dennison E.M., Cooper C., Patel H.P. Approaches to the diagnosis and prevention of frailty. Aging Clin. Exp. Res. 2020;32:1629–1637. doi: 10.1007/s40520-020-01559-3. PubMed DOI PMC
De Mello R.G.B., Dalla Corte R.R., Gioscia J., Moriguchi E.H. Effects of Physical Exercise Programs on Sarcopenia Management, Dynapenia, and Physical Performance in the Elderly: A Systematic Review of Randomized Clinical Trials. J. Aging Res. 2019 doi: 10.1155/2019/1959486. PubMed DOI PMC
Cadore E.L., Rodríguez-Mañas L., Sinclair A., Izquierdo M. Effects of Different Exercise Interventions on Risk of Falls, Gait Ability, and Balance in Physically Frail Older Adults: A Systematic Review. Rejuvenation Res. 2013;16:105–114. doi: 10.1089/rej.2012.1397. PubMed DOI PMC
Courel-Ibáñez J., Pallarés J.G., García-Conesa S., Buendía-Romero Á., Martínez-Cava A., Izquierdo M. Supervised Exercise (Vivifrail) Protects Institutionalized Older Adults Against Severe Functional Decline After 14 Weeks of COVID Confinement. J. Am. Med. Dir. Assoc. 2021;22:217–219.e2. doi: 10.1016/j.jamda.2020.11.007. PubMed DOI PMC
British Geriatrics Society (BGS) Frailty: What’s It All About? [(accessed on 25 March 2021)];British Geriatrics Society. Available online: https://www.bgs.org.uk/resources/frailty-what’s-it-all-about.
Marzetti E., Calvani R., Tosato M., Cesari M., Di Bari M., Cherubini A., Broccatelli M., Savera G., D’Elia M., Pahor M., et al. Physical activity and exercise as countermeasures to physical frailty and sarcopenia. Aging Clin. Exp. Res. 2017;29:35–42. doi: 10.1007/s40520-016-0705-4. PubMed DOI
Yoo S.Z., No M.H., Heo J.W., Park D.H., Kang J.H., Kim S.H., Kwak H.B. Role of exercise in age-related sarcopenia. J. Exerc. Rehabil. 2018;14:551. doi: 10.12965/jer.1836268.134. PubMed DOI PMC
McLeod J.C., Stokes T., Phillips S.M. Resistance exercise training as a primary countermeasure to age-related chronic disease. Front. Physiol. 2019;10:645. doi: 10.3389/fphys.2019.00645. PubMed DOI PMC
Papa E.V., Dong X., Hassan M. Resistance training for activity limitations in older adults with skeletal muscle function deficits: A systematic review. Clin. Interv. Aging. 2017;12:955–961. doi: 10.2147/CIA.S104674. PubMed DOI PMC
Lai C.C., Tu Y.K., Wang T.G., Huang Y.T., Chien K.L. Effects of resistance training, endurance training and whole-body vibration on lean body mass, muscle strength and physical performance in older people: A systematic review and network meta-analysis. Age Ageing. 2018;47:367–373. doi: 10.1093/ageing/afy009. PubMed DOI
Pollock M.L., Franklin B.A., Balady G.J., Chaitman B.L., Fleg J.L., Fletcher B., Limacher M., Pina I.L., Stein R.A., Williams M., et al. Resistance exercise in individuals with and without cardiovascular disease: Benefits, rationale, safety, and prescription: An advisory from the Committee on Exercise, Rehabilitation, and Prevention, Council on Clinical Cardiology, American Heart Association. Circulation. 2000;101:828–833. PubMed
Shaw I., Shaw B.S. Effect of resistance training on cardiorespiratory endurance and coronary artery disease risk. Cardiovasc. J. S. Afr. 2005;16:256–259. PubMed
Fragala M.S., Cadore E.L., Dorgo S., Izquierdo M., Kraemer W.J., Peterson M.D., Ryan E.D. Resistance Training for Older Adults. Position Statement from the National Strength and Conditioning Association. J. Strength Cond. Res. 2019;33:2019–2052. doi: 10.1519/JSC.0000000000003230. PubMed DOI
Bao W., Sun Y., Zhang T., Zou L., Wu X., Wang D., Chen Z. Exercise programs for muscle mass, muscle strength and physical performance in older adults with sarcopenia: A systematic review and meta-analysis. Aging Dis. 2020;11:863–873. doi: 10.14336/AD.2019.1012. PubMed DOI PMC
Oliveira J.S., Pinheiro M.B., Fairhall N., Walsh S., Franks T.C., Kwok W., Bauman A., Sherrington C. Evidence on Physical Activity and the Prevention of Frailty and Sarcopenia among Older People: A Systematic Review to Inform the World Health Organization Physical Activity Guidelines. J. Phys. Act. Health. 2020;17:1247–1258. doi: 10.1123/jpah.2020-0323. PubMed DOI
Lopez P., Pinto R.S., Radaelli R., Rech A., Grazioli R., Izquierdo M., Cadore E.L. Benefits of resistance training in physically frail elderly: A systematic review. Aging Clin. Exp. Res. 2018;30:889–899. doi: 10.1007/s40520-017-0863-z. PubMed DOI
Law T.D., Clark L.A., Clark B.C. Resistance Exercise to Prevent and Manage Sarcopenia and Dynapenia. Annu. Rev. Gerontol. Geriatr. 2016;36:205–228. doi: 10.1891/0198-8794.36.205. PubMed DOI PMC
Moher D., Liberati A., Tetzlaff J., Altman D.G., Group T.P. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med. 2009;6:e1000097. doi: 10.1371/journal.pmed.1000097. PubMed DOI PMC
Mayer F., Scharhag-Rosenberger F., Carlsohn A., Cassel M., Müller S., Scharhag J. The intensity and effects of strength training in the elderly. Dtsch. Arztebl. 2011;108:359–364. doi: 10.3238/arztebl.2011.0359. PubMed DOI PMC
Petrella R.J., Chudyk A. Exercise prescription in the older athlete as it applies to muscle, tendon, and arthroplasty. Clin. J. Sport Med. 2008;18:522–530. doi: 10.1097/JSM.0b013e3181862a5e. PubMed DOI
Oxman A.D. Grading quality of evidence and strength of recommendations. Br. Med. J. 2004;328:1490–1494. PubMed PMC
De Morton N.A. The PEDro scale is a valid measure of the methodological quality of clinical trials: A demographic study. Aust. J. Physiother. 2009;55:129–133. doi: 10.1016/S0004-9514(09)70043-1. PubMed DOI
Herbert R., Moseley A., Sherrington C. PEDro: A database of randomised controlled trials in physiotherapy. Health Inf. Manag. 1998;28:186–188. doi: 10.1177/183335839902800410. PubMed DOI
Maher C.G., Sherrington C., Herbert R.D., Moseley A.M., Elkins M. Reliability of the PEDro Scale for Rating Quality of Randomized Controlled Trials. Phys. Ther. 2003;83:713–721. doi: 10.1093/ptj/83.8.713. PubMed DOI
Hedges L.V., Tipton E., Johnson M.C. Robust variance estimation in meta-regression with dependent effect size estimates. Res. Synth. Methods. 2010;1:39–65. doi: 10.1002/jrsm.5. PubMed DOI
Tipton E. Small sample adjustments for robust variance estimation with meta-regression. Psychol. Methods. 2015;20:375–393. doi: 10.1037/met0000011. PubMed DOI
Melsen W.G., Bootsma M.C.J., Rovers M.M., Bonten M.J.M. The effects of clinical and statistical heterogeneity on the predictive values of results from meta-analyses. Clin. Microbiol. Infect. 2014;20:123–129. doi: 10.1111/1469-0691.12494. PubMed DOI
Aas S.N., Seynnes O., Benestad H.B., Raastad T. Strength training and protein supplementation improve muscle mass, strength, and function in mobility-limited older adults: A randomized controlled trial. Aging Clin. Exp. Res. 2020 doi: 10.1007/s40520-019-01234-2. PubMed DOI
Bellomo R.G., Iodice P., Maffulli N., Maghradze T., Coco V., Saggini R. Muscle strength and balance training in sarcopenic elderly: A pilot study with randomized controlled trial. Eur. J. Inflamm. 2013:193–201. doi: 10.1177/1721727X1301100118. DOI
Binder E.F., Schechtman K.B., Ehsani A.A., Steger-May K., Brown M., Sinacore D.R., Yarasheski K.E., Holloszy J.O. Effects of exercise training on frailty in community-dwelling older adults: Results of a randomized, controlled trial. J. Am. Geriatr. Soc. 2002:1921–1928. doi: 10.1046/j.1532-5415.2002.50601.x. PubMed DOI
Binder E.F., Yarasheski K.E., Steger-May K., Sinacore D.R., Brown M., Schechtman K.B., Holloszy J.O. Effects of progressive resistance training on body composition in frail older adults: Results of a randomized, controlled trial. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2005:1425–1431. doi: 10.1093/gerona/60.11.1425. PubMed DOI
Cadore E.L., Casas-Herrero A., Zambom-Ferraresi F., Idoate F., Millor N., Gómez M., Rodriguez-Mañas L., Izquierdo M. Multicomponent exercises including muscle power training enhance muscle mass, power output, and functional outcomes in institutionalized frail nonagenarians. Age. 2014;36:773–785. doi: 10.1007/s11357-013-9586-z. PubMed DOI PMC
Cebrià I., Iranzo M., Balasch-Bernat M., Tortosa-Chuliá M., Balasch-Parisi S. Effects of resistance training of peripheral muscles versus respiratory muscles in older adults with sarcopenia who are institutionalized: A randomized controlled trial. J. Aging Phys. Act. 2018;26:637–646. doi: 10.1123/japa.2017-0268. PubMed DOI
Chan D.C.D., Tsou H.H., Yang R.S., Tsauo J.Y., Chen C.Y., Hsiung C.A., Kuo K.N. A pilot randomized controlled trial to improve geriatric frailty. BMC Geriatr. 2012 doi: 10.1186/1471-2318-12-58. PubMed DOI PMC
Chen H.T., Chung Y.C., Chen Y.J., Ho S.Y., Wu H.J. Effects of Different Types of Exercise on Body Composition, Muscle Strength, and IGF-1 in the Elderly with Sarcopenic Obesity. J. Am. Geriatr. Soc. 2017:827–832. doi: 10.1111/jgs.14722. PubMed DOI
Chen H.T., Wu H.J., Chen Y.J., Ho S.Y., Chung Y.C. Effects of 8-week kettlebell training on body composition, muscle strength, pulmonary function, and chronic low-grade inflammation in elderly women with sarcopenia. Exp. Gerontol. 2018;112:112–118. doi: 10.1016/j.exger.2018.09.015. PubMed DOI
Clegg A., Barber S., Young J., Iliffe S., Forster A. The Home-based Older People’s Exercise (HOPE) trial: A pilot randomised controlled trial of a home-based exercise intervention for older people with frailty. Age Ageing. 2014;43:687–695. doi: 10.1093/ageing/afu033. PubMed DOI PMC
Fiatarone M.A., O’Neill E.F., Ryan N.D., Clements K.M., Solares G.R., Nelson M.E., Roberts S.B., Kehayias J.J., Lipsitz L.A., Evans W.J. Exercise Training and Nutritional Supplementation for Physical Frailty in Very Elderly People. N. Engl. J. Med. 1994;330:1769–1775. doi: 10.1056/NEJM199406233302501. PubMed DOI
Gené Huguet L., Navarro González M., Kostov B., Ortega Carmona M., Colungo Francia C., Carpallo Nieto M., Hervás Docón A., Vilarrasa Sauquet R., García Prado R., Sisó-Almirall A. Pre Frail 80: Multifactorial Intervention to Prevent Progression of Pre-Frailty to Frailty in the Elderly. J. Nutr. Health Aging. 2018;22:1266–1274. doi: 10.1007/s12603-018-1089-2. PubMed DOI
Hassan B.H., Hewitt J., Keogh J.W.L., Bermeo S., Duque G., Henwood T.R. Impact of resistance training on sarcopenia in nursing care facilities: A pilot study. Geriatr. Nurs. 2016;37:116–121. doi: 10.1016/j.gerinurse.2015.11.001. PubMed DOI
Kim H.K., Suzuki T., Saito K., Yoshida H., Kobayashi H., Kato H., Katayama M. Effects of exercise and amino acid supplementation on body composition and physical function in community-dwelling elderly Japanese sarcopenic women: A randomized controlled trial. J. Am. Geriatr. Soc. 2011:16–23. doi: 10.1111/j.1532-5415.2011.03776.x. PubMed DOI
Kim H., Suzuki T., Saito K., Yoshida H., Kojima N., Kim M., Sudo M., Yamashiro Y., Tokimitsu I. Effects of exercise and tea catechins on muscle mass, strength and walking ability in community-dwelling elderly Japanese sarcopenic women: A randomized controlled trial. Geriatr. Gerontol. Int. 2012;13:458–465. doi: 10.1111/j.1447-0594.2012.00923.x. PubMed DOI
Liao C.-D., Tsauo J.-Y., Lin L.-F., Huang S.-W., Ku J.-W., Chou L.-C., Liou T.-H. Effects of elastic resistance exercise on body composition and physical capacity in older women with sarcopenic obesity: A CONSORT-compliant prospective randomized controlled trial. Medicine. 2017;96:e7115. doi: 10.1097/MD.0000000000007115. PubMed DOI PMC
Lichtenberg T., Von Stengel S., Sieber C., Kemmler W. The favorable effects of a high-intensity resistance training on sarcopenia in older community-dwelling men with osteosarcopenia: The randomized controlled frost study. Clin. Interv. Aging. 2019;14:2173–2186. doi: 10.2147/CIA.S225618. PubMed DOI PMC
Maruya K., Asakawa Y., Ishibashi H., Fujita H., Arai T., Yamaguchi H. Effect of a simple and adherent home exercise program on the physical function of community dwelling adults sixty years of age and older with pre-sarcopenia or sarcopenia. J. Phys. Ther. Sci. 2016;28:3138–3188. doi: 10.1589/jpts.28.3183. PubMed DOI PMC
Ng T.P., Feng L., Nyunt M.S.Z., Feng L., Niti M., Tan B.Y., Chan G., Khoo S.A., Chan S.M., Yap P., et al. Nutritional, Physical, Cognitive, and Combination Interventions and Frailty Reversal among Older Adults: A Randomized Controlled Trial. Am. J. Med. 2015;128:1225–1236.e1. doi: 10.1016/j.amjmed.2015.06.017. PubMed DOI
Park J., Kwon Y., Park H. Effects of 24-Week Aerobic and Resistance Training on Carotid Artery Intima-Media Thickness and Flow Velocity in Elderly Women with Sarcopenic Obesity. J. Atheroscler. Thromb. 2017;24:1117–1124. doi: 10.5551/jat.39065. PubMed DOI PMC
Serra-Prat M., Sist X., Domenich R., Jurado L., Saiz A., Roces A., Palomera E., Tarradelles M., Papiol M. Effectiveness of an intervention to prevent frailty in pre-frail community-dwelling older people consulting in primary care: A randomised controlled trial. Age Ageing. 2017;46:401–407. doi: 10.1093/ageing/afw242. PubMed DOI
Tsekoura M., Billis E., Tsepis E., Dimitriadis Z., Matzaroglou C., Tyllianakis M., Panagiotopoulos E., Gliatis J. The Effects of Group and Home-Based Exercise Programs in Elderly with Sarcopenia: A Randomized Controlled Trial. J. Clin. Med. 2018;7:480. doi: 10.3390/jcm7120480. PubMed DOI PMC
Vikberg S., Sörlén N., Brandén L., Johansson J., Nordström A., Hult A., Nordström P. Effects of Resistance Training on Functional Strength and Muscle Mass in 70-Year-Old Individuals with Pre-sarcopenia: A Randomized Controlled Trial. J. Am. Med. Dir. Assoc. 2019;20:28–34. doi: 10.1016/j.jamda.2018.09.011. PubMed DOI
Yamada M., Kimura Y., Ishiyama D., Nishio N., Otobe Y., Tanaka T., Ohji S., Koyama S., Sato A., Suzuki M., et al. Synergistic effect of bodyweight resistance exercise and protein supplementation on skeletal muscle in sarcopenic or dynapenic older adults. Geriatr. Gerontol. Int. 2019 doi: 10.1111/ggi.13643. PubMed DOI
Zech A., Drey M., Freiberger E., Hentschke C., Bauer J.M., Sieber C.C., Pfeifer K. Residual effects of muscle strength and muscle power training and detraining on physical function in community-dwelling prefrail older adults: A randomized controlled trial. BMC Geriatr. 2012;12:68. doi: 10.1186/1471-2318-12-68. PubMed DOI PMC
Zhu L.Y., Chan R., Kwok T., Cheng K.C.C., Ha A., Woo J. Effects of exercise and nutrition supplementation in community-dwelling older Chinese people with sarcopenia: A randomized controlled trial. Age Ageing. 2019:220–228. doi: 10.1093/ageing/afy179. PubMed DOI
Cruz-Jentoft A.J., Bahat G., Bauer J., Boirie Y., Bruyère O., Cederholm T., Cooper C., Landi F., Rolland Y., Sayer A.A., et al. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing. 2019;48:16–31. doi: 10.1093/ageing/afy169. PubMed DOI PMC
Lee S.H., Gong H.S. Measurement and interpretation of handgrip strength for research on sarcopenia and osteoporosis. J. Bone Metab. 2020;27:85–96. doi: 10.11005/jbm.2020.27.2.85. PubMed DOI PMC
Mathiowetz V., Weber K., Volland G., Kashman N. Reliability and validity of grip and pinch strength evaluations. J. Hand Surg. Am. 1984;9:222–226. doi: 10.1016/S0363-5023(84)80146-X. PubMed DOI
Tieland M., Verdijk L.B., De Groot L.C.P.G.M., Van Loon L.J.C. Handgrip strength does not represent an appropriate measure to evaluate changes in muscle strength during an exercise intervention program in frail older people. Int. J. Sport Nutr. Exerc. Metab. 2015;25:27–36. doi: 10.1123/ijsnem.2013-0123. PubMed DOI
Yeung S.S.Y., Reijnierse E.M., Trappenburg M.C., Hogrel J.Y., McPhee J.S., Piasecki M., Sipila S., Salpakoski A., Butler-Browne G., Pääsuke M., et al. Handgrip Strength Cannot Be Assumed a Proxy for Overall Muscle Strength. J. Am. Med. Dir. Assoc. 2018;19:703–709. doi: 10.1016/j.jamda.2018.04.019. PubMed DOI
Rodacki A.L.F., Moreira N.B., Pitta A., Wolf R., Filho J.M., de Rodacki C.L.N., Pereira G. Is handgrip strength a useful measure to evaluate lower limb strength and functional performance in older women? Clin. Interv. Aging. 2020:1045–1056. doi: 10.2147/CIA.S253262. PubMed DOI PMC
Simonsen E.B. Contributions to the understanding of gait control. Dan. Med. J. 2014;15:1045–1056. doi: 10.2147/CIA.S253262. PubMed DOI
Besier T.F., Fredericson M., Gold G.E., Beaupré G.S., Delp S.L. Knee muscle forces during walking and running in patellofemoral pain patients and pain-free controls. J. Biomech. 2009;42:898–905. doi: 10.1016/j.jbiomech.2009.01.032. PubMed DOI PMC
Wretenberg P., Arborelius U.P. Power and work produced in different leg muscle groups when rising from a chair. Eur. J. Appl. Physiol. Occup. Physiol. 1994;68:413–417. doi: 10.1007/BF00843738. PubMed DOI
Fusco O., Ferrini A., Santoro M., Lo Monaco M.R., Gambassi G., Cesari M. Physical function and perceived quality of life in older persons. Aging Clin. Exp. Res. 2012;24:68–73. doi: 10.1007/BF03325356. PubMed DOI
Hazra N.C., Rudisill C., Gulliford M.C. Determinants of health care costs in the senior elderly: Age, comorbidity, impairment, or proximity to death? Eur. J. Health Econ. 2018;19:831–842. doi: 10.1007/s10198-017-0926-2. PubMed DOI PMC
Guralnik J.M., Alecxih L., Branch L.G., Wiener J.M. Medical and long-term care costs when older persons become more dependent. Am. J. Public Health. 2002;92:1244–1245. doi: 10.2105/AJPH.92.8.1244. PubMed DOI PMC
Semmler J.G., Enoka R.M. Biomechanics in Sport: Performance Enhancement and Injury Prevention. Wiley; Hoboken, NJ, USA: 2008. Neural Contributions to Changes in Muscle Strength. DOI
Manini T.M. Energy expenditure and aging. Ageing Res. Rev. 2010;9:1–11. doi: 10.1016/j.arr.2009.08.002. PubMed DOI PMC
Geisler C., Braun W., Pourhassan M., Schweitzer L., Glüer C.C., Bosy-Westphal A., Müller M.J. Age-dependent changes in resting energy expenditure (REE): Insights from detailed body composition analysis in normal and overweight healthy caucasians. Nutrients. 2016;8:322. doi: 10.3390/nu8060322. PubMed DOI PMC
Denys K., Cankurtaran M., Janssens W., Petrovic M. Metabolic syndrome in the elderly: An overview of the evidence. Acta Clin. Belg. 2009;64:23–34. doi: 10.1179/acb.2009.006. PubMed DOI
Sinclair A., Viljoen A. The metabolic syndrome in older persons. Clin. Geriatr. Med. 2010;26:261–274. doi: 10.1016/j.cger.2010.02.011. PubMed DOI
Saad M.A.N., Cardoso G.P., de Martins W.A., Velarde L.G.C., Cruz Filho R.A. Prevalence of Metabolic Syndrome in Elderly and Agreement among Four Diagnostic Criteria. Arq. Bras. Cardiol. 2014;102:263–269. doi: 10.5935/abc.20140013. PubMed DOI PMC
Izquierdo M. Vivifrail: Multicomponent Program of Physical Exercise. [(accessed on 8 July 2020)]; Available online: Vivifrail.com.
Hajek A., Bock J.O., Saum K.U., Matschinger H., Brenner H., Holleczek B., Haefeli W.E., Heider D., König H.H. Frailty and healthcare costs-longitudinal results of a prospective cohort study. Age Ageing. 2018;47:233–241. doi: 10.1093/ageing/afx157. PubMed DOI
García-Nogueras I., Aranda-Reneo I., Peña-Longobardo L.M., Oliva-Moreno J., Abizanda P. Use of health resources and healthcare costs associated with frailty: The FRADEA study. J. Nutr. Health Aging. 2017;21:207–214. doi: 10.1007/s12603-016-0727-9. PubMed DOI
Peña-Longobardo L.M., Oliva-Moreno J., Zozaya N., Aranda-Reneo I., Trapero-Bertran M., Laosa O., Sinclair A., Rodríguez-Mañas L. Economic evaluation of a multimodal intervention in pre-frail and frail older people with diabetes mellitus: The MID-FRAIL project. Expert Rev. Pharm. Outcomes Res. 2021;21:111–118. doi: 10.1080/14737167.2020.1766970. PubMed DOI
Jin H.Y., Liu X., Xue Q.L., Chen S., Wu C. The Association between Frailty and Healthcare Expenditure among Chinese Older Adults. J. Am. Med. Dir. Assoc. 2020;21:780–785. doi: 10.1016/j.jamda.2020.03.008. PubMed DOI
Antunes A.C., Araújo D.A., Veríssimo M.T., Amaral T.F. Sarcopenia and hospitalisation costs in older adults: A cross-sectional study. Nutr. Diet. 2017;74:46–50. doi: 10.1111/1747-0080.12287. PubMed DOI