Role of SNAREs in Neurodegenerative Diseases

. 2021 Apr 23 ; 10 (5) : . [epub] 20210423

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid33922505

Neurodegenerative diseases are pathologies of the central and peripheral nervous systems characterized by loss of brain functions and problems in movement which occur due to the slow and progressive degeneration of cellular elements. Several neurodegenerative diseases are known such as Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis and many studies on the molecular mechanisms underlying these pathologies have been conducted. Altered functions of some key proteins and the presence of intraneuronal aggregates have been identified as responsible for the development of the diseases. Interestingly, the formation of the SNARE complex has been discovered to be fundamental for vesicle fusion, vesicle recycling and neurotransmitter release. Indeed, inhibition of the formation of the SNARE complex, defects in the SNARE-dependent exocytosis and altered regulation of SNARE-mediated vesicle fusion have been associated with neurodegeneration. In this review, the biological aspects of neurodegenerative diseases and the role of SNARE proteins in relation to the onset of these pathologies are described.

Zobrazit více v PubMed

Morrison B.M., Shu I.-W., Wilcox A.L., Gordon J.W., Morrison J.H. Early and Selective Pathology of Light Chain Neurofilament in the Spinal Cord and Sciatic Nerve of G86R Mutant Superoxide Dismutase Transgenic Mice. Exp. Neurol. 2000;165:207–220. doi: 10.1006/exnr.2000.7457. PubMed DOI

Dekkers M.P., Nikoletopoulou V., Barde Y.A. Cell biology in neuroscience: Death of developing neurons: New insights and implications for connectivity. J. Cell Biol. 2013;203:385–393. doi: 10.1083/jcb.201306136. PubMed DOI PMC

Przedborski S., Vila M., Jackson-Lewis V. Neurodegeneration: What is it and where are we? J. Clin. Investig. 2003;111:3–10. doi: 10.1172/JCI200317522. PubMed DOI PMC

Conneally P.M. Huntington disease: Genetics and epidemiology. Am. J. Hum. Genet. 1984;36:506–526. PubMed PMC

Selvaraj K., Manickam N., Kumaran E., Thangadurai K., Elumalai G., Sekar A., Radhakrishnan R.K., Kandasamy M. Deterioration of neuroregenerative plasticity in association with testicular atrophy and dysregulation of the hypothalamic-pituitary-gonadal (HPG) axis in Huntington’s disease: A putative role of the huntingtin gene in steroidogenesis. J. Steroid Biochem. Mol. Biol. 2020;197:105526. doi: 10.1016/j.jsbmb.2019.105526. PubMed DOI

Ghasemi N., Razavi S., Nikzad E. Multiple Sclerosis: Pathogenesis, Symptoms, Diagnoses and Cell-Based Therapy. Cell J. 2016;19:1–10. PubMed PMC

Zhang Y., Xie X., Hu J., Afreen K.S., Zhang C.-L., Zhuge Q., Yang J. Prospects of Directly Reprogrammed Adult Human Neurons for Neurodegenerative Disease Modeling and Drug Discovery: IN vs. iPSCs Models. Front. Neurosci. 2020;14:546484. doi: 10.3389/fnins.2020.546484. PubMed DOI PMC

Ramroop H., Cruz R. StatPearls. StatPearls Publishing; Treasure Island, FL, USA: 2021. Electrodiagnostic Evaluation of Motor Neuron Disease. PubMed

Bell S.M., Burgess T., Lee J., Blackburn D.J., Allen S.P., Mortiboys H. Peripheral Glycolysis in Neurodegenerative Diseases. Int. J. Mol. Sci. 2020;21:8924. doi: 10.3390/ijms21238924. PubMed DOI PMC

Dugger B.N., Dickson D.W. Pathology of Neurodegenerative Diseases. Cold Spring Harb. Perspect. Biol. 2017;9:a028035. doi: 10.1101/cshperspect.a028035. PubMed DOI PMC

Davies C.A., Mann D.M., Sumpter P.Q., Yates P.O. A quantitative morphometric analysis of the neuronal and synaptic content of the frontal and temporal cortex in patients with Alzheimer’s disease. J. Neurol. Sci. 1987;78:151–164. doi: 10.1016/0022-510X(87)90057-8. PubMed DOI

Guégan C., Przedborski S. Programmed cell death in amyotrophic lateral sclerosis. J. Clin. Investig. 2003;111:153–161. doi: 10.1172/JCI200317610. PubMed DOI PMC

Venderova K., Park D.S. Programmed cell death in Parkinson’s disease. Cold Spring Harb. Perspect. Med. 2012;2:a009365. doi: 10.1101/cshperspect.a009365. PubMed DOI PMC

Zhang X., Shi J., Tian J., Robinson A.C., Davidson Y.S., Mann D.M. Expression of one important chaperone protein, heat shock protein 27, in neurodegenerative diseases. Alzheimer’s Res. Ther. 2014;6:78. doi: 10.1186/s13195-014-0078-x. PubMed DOI PMC

Perez-Nievas B.G., Stein T.D., Tai H.-C., Dols-Icardo O., Scotton T.C., Barroeta-Espar I., Fernandez-Carballo L., De Munain E.L., Perez J., Marquie M., et al. Dissecting phenotypic traits linked to human resilience to Alzheimer’s pathology. Brain. 2013;136:2510–2526. doi: 10.1093/brain/awt171. PubMed DOI PMC

Barroeta-Espar I., Weinstock L.D., Perez-Nievas B.G., Meltzer A.C., Siao Tick Chong M., Amaral A.C., Murray M.E., Moulder K.L., Morris J.C., Cairns N.J., et al. Distinct cytokine profiles in human brains resilient to Alzheimer’s pathology. Neurobiol. Dis. 2019;121:327–337. doi: 10.1016/j.nbd.2018.10.009. PubMed DOI PMC

Mathys H., Davila-Velderrain J., Peng Z., Gao F., Mohammadi S., Young J.Z., Menon M., He L., Abdurrob F., Jiang X., et al. Single-cell transcriptomic analysis of Alzheimer’s disease. Nature. 2019;570:332–337. doi: 10.1038/s41586-019-1195-2. PubMed DOI PMC

Hansen D.V., Hanson J.E., Sheng M. Microglia in Alzheimer’s disease. J. Cell Biol. 2018;217:459–472. doi: 10.1083/jcb.201709069. PubMed DOI PMC

Bartels T., De Schepper S., Hong S. Microglia modulate neurodegeneration in Alzheimer’s and Parkinson’s diseases. Science. 2020;370:66–69. doi: 10.1126/science.abb8587. PubMed DOI

Yuan P., Condello C., Keene C.D., Wang Y., Bird T.D., Paul S.M., Luo W., Colonna M., Baddeley D., Grutzendler J. TREM2 Haplodeficiency in Mice and Humans Impairs the Microglia Barrier Function Leading to Decreased Amyloid Compaction and Severe Axonal Dystrophy. Neuron. 2016;90:724–739. doi: 10.1016/j.neuron.2016.05.003. PubMed DOI PMC

Hong Y., Zhao T., Li X.-J., Li S. Mutant Huntingtin Impairs BDNF Release from Astrocytes by Disrupting Conversion of Rab3a-GTP into Rab3a-GDP. J. Neurosci. 2016;36:8790–8801. doi: 10.1523/JNEUROSCI.0168-16.2016. PubMed DOI PMC

Han J., Pluhackova K., Böckmann R.A. The Multifaceted Role of SNARE Proteins in Membrane Fusion. Front. Physiol. 2017;8:5. doi: 10.3389/fphys.2017.00005. PubMed DOI PMC

Holz R.W., Zimmerberg J. Dynamic Relationship of the SNARE Complex with a Membrane. Biophys. J. 2019;117:627–630. doi: 10.1016/j.bpj.2019.07.010. PubMed DOI PMC

Rothman J.E., Krishnakumar S.S., Grushin K., Pincet F. Hypothesis—Buttressed rings assemble, clamp, and release SNAREpins for synaptic transmission. FEBS Lett. 2017;591:3459–3480. doi: 10.1002/1873-3468.12874. PubMed DOI PMC

Südhof T.C., Rothman J.E. Membrane Fusion: Grappling with SNARE and SM Proteins. Science. 2009;323:474–477. doi: 10.1126/science.1161748. PubMed DOI PMC

Verhage M., Sørensen J.B. SNAREopathies: Diversity in Mechanisms and Symptoms. Neuron. 2020;107:22–37. doi: 10.1016/j.neuron.2020.05.036. PubMed DOI

Bowman P.R.T., Smith G.L., Gould G.W. Cardiac SNARE Expression in Health and Disease. Front. Endocrinol. 2019;10:881. doi: 10.3389/fendo.2019.00881. PubMed DOI PMC

Hong W. SNAREs and traffic. Biochim. Biophys. Acta (BBA)-Bioenerg. 2005;1744:120–144. doi: 10.1016/j.bbamcr.2005.03.014. PubMed DOI

Urbina F.L., Gupton S.L. SNARE-Mediated Exocytosis in Neuronal Development. Front. Mol. Neurosci. 2020;13:133. doi: 10.3389/fnmol.2020.00133. PubMed DOI PMC

Liu Y., Li H., Sugiura Y., Han W., Gallardo G., Khvotchev M., Zhang Y., Kavalali E.T., Südhof T.C., Lin W. Ubiquitin-Synaptobrevin Fusion Protein Causes Degeneration of Presynaptic Motor Terminals in Mice. J. Neurosci. 2015;35:11514–11531. doi: 10.1523/JNEUROSCI.5288-14.2015. PubMed DOI PMC

Baumert M., Maycox P.R., Navone F., De Camilli P., Jahn R. Synaptobrevin: An integral membrane protein of 18,000 daltons present in small synaptic vesicles of rat brain. EMBO J. 1989;8:379–384. doi: 10.1002/j.1460-2075.1989.tb03388.x. PubMed DOI PMC

Elferink L., Trimble W.S., Scheller R.H. Two vesicle-associated membrane protein genes are differentially expressed in the rat central nervous system. J. Biol. Chem. 1989;264:11061–11064. doi: 10.1016/S0021-9258(18)60426-0. PubMed DOI

Archer B.T., III, Ozçelik T., Jahn R., Francke U., Südhof T.C. Structures and chromosomal localizations of two human genes encoding synaptobrevins 1. J. Biol. Chem. 1990;265:17267–17273. doi: 10.1016/S0021-9258(17)44898-8. PubMed DOI

Deák F., Shin O.-H., Kavalali E.T., Südhof T.C. Structural Determinants of Synaptobrevin 2 Function in Synaptic Vesicle Fusion. J. Neurosci. 2006;26:6668–6676. doi: 10.1523/JNEUROSCI.5272-05.2006. PubMed DOI PMC

Sampo B., Kaech S., Kunz S., Banker G. Two Distinct Mechanisms Target Membrane Proteins to the Axonal Surface. Neuron. 2003;37:611–624. doi: 10.1016/S0896-6273(03)00058-8. PubMed DOI

Zhang Z., Wang N., Sun T., Xu J., Chiang H.-C., Shin W., Wu L.-G. The SNARE Proteins SNAP25 and Synaptobrevin Are Involved in Endocytosis at Hippocampal Synapses. J. Neurosci. 2013;33:9169–9175. doi: 10.1523/JNEUROSCI.0301-13.2013. PubMed DOI PMC

Xu J., Brewer K.D., Perez-Castillejos R., Rizo J. Subtle Interplay between synaptotagmin and complexin binding to the SNARE complex. J. Mol. Biol. 2013;425:3461–3475. doi: 10.1016/j.jmb.2013.07.001. PubMed DOI PMC

Haberman A., Williamson W.R., Epstein D., Wang D., Rina S., Meinertzhagen I.A., Hiesinger P.R. The synaptic vesicle SNARE neuronal Synaptobrevin promotes endolysosomal degradation and prevents neurodegeneration. J. Cell Biol. 2012;196:261–276. doi: 10.1083/jcb.201108088. PubMed DOI PMC

Cornille F., Deloye F., Fournié-Zaluski M.-C., Roques B.P., Poulain B. Inhibition of Neurotransmitter Release by Synthetic Proline-rich Peptides Shows That the N-terminal Domain of Vesicle-associated Membrane Protein/Synaptobrevin Is Critical for Neuro-exocytosis. J. Biol. Chem. 1995;270:16826–16832. doi: 10.1074/jbc.270.28.16826. PubMed DOI

Pham E., Crews L., Ubhi K., Hansen L., Adame A., Cartier A., Salmon D., Galasko D., Michael S., Savas J.N., et al. Progressive accumulation of amyloid-beta oligomers in Alzheimer’s disease and in amyloid precursor protein transgenic mice is accompanied by selective alterations in synaptic scaffold proteins. FEBS J. 2010;277:3051–3067. doi: 10.1111/j.1742-4658.2010.07719.x. PubMed DOI PMC

Mingazov E.R., Ugrumov M.V. Gene expression of proteins of the vesicle cycle in the striatum and motor cortex under functional failure of nigrostriatal system. Dokl. Biochem. Biophys. 2016;470:313–315. doi: 10.1134/S160767291605001X. PubMed DOI

Hernandez-Zimbron L.F., Rivas-Arancibia S. Syntaxin 5 Overexpression and beta-Amyloid 1-42 Accumulation in Endoplasmic Reticulum of Hippocampal Cells in Rat Brain Induced by Ozone Exposure. Biomed. Res. Int. 2016;2016:2125643. doi: 10.1155/2016/2125643. PubMed DOI PMC

McLelland G.-L., Lee S.A., McBride H.M., Fon E.A. Syntaxin-17 delivers PINK1/parkin-dependent mitochondrial vesicles to the endolysosomal system. J. Cell Biol. 2016;214:275–291. doi: 10.1083/jcb.201603105. PubMed DOI PMC

Suga K., Saito A., Mishima T., Akagawa K. ER and Golgi stresses increase ER-Golgi SNARE Syntaxin5: Implications for organelle stress and betaAPP processing. Neurosci. Lett. 2015;604:30–35. doi: 10.1016/j.neulet.2015.07.017. PubMed DOI

Bustos V., Pulina M.V., Bispo A., Lam A., Flajolet M., Gorelick F.S., Greengard P. Phosphorylated Presenilin 1 decreases beta-amyloid by facilitating autophagosome-lysosome fusion. Proc. Natl. Acad. Sci. USA. 2017;114:7148–7153. doi: 10.1073/pnas.1705240114. PubMed DOI PMC

Thayanidhi N., Helm J.R., Nycz D.C., Bentley M., Liang Y., Hay J.C. Alpha-synuclein delays endoplasmic reticulum (ER)-to-Golgi transport in mammalian cells by antagonizing ER/Golgi SNAREs. Mol. Biol. Cell. 2010;21:1850–1863. doi: 10.1091/mbc.e09-09-0801. PubMed DOI PMC

Almandoz-Gil L., Persson E., Lindström V., Ingelsson M., Erlandsson A., Bergstrom J. In Situ Proximity Ligation Assay Reveals Co-Localization of Alpha-Synuclein and SNARE Proteins in Murine Primary Neurons. Front. Neurol. 2018;9:180. doi: 10.3389/fneur.2018.00180. PubMed DOI PMC

Darios F., Ruiperez V., Lopez I., Villanueva J., Gutierrez L.M., Davletov B. Alpha-synuclein sequesters arachidonic acid to modulate SNARE-mediated exocytosis. EMBO Rep. 2010;11:528–533. doi: 10.1038/embor.2010.66. PubMed DOI PMC

Law C., Profes M.S., Levesque M., Kaltschmidt J.A., Verhage M., Kania A. Normal Molecular Specification and Neurodegenerative Disease-Like Death of Spinal Neurons Lacking the SNARE-Associated Synaptic Protein Munc18. J. Neurosci. 2016;36:561–576. doi: 10.1523/JNEUROSCI.1964-15.2016. PubMed DOI PMC

Santos T.C., Wierda K., Broeke J.H., Toonen R.F., Verhage M. Early Golgi Abnormalities and Neurodegeneration upon Loss of Presynaptic Proteins Munc18-1, Syntaxin-1, or SNAP. J. Neurosci. 2017;37:4525–4539. doi: 10.1523/JNEUROSCI.3352-16.2017. PubMed DOI PMC

Yang Y., Kim J., Kim H.Y., Ryoo N., Lee S., Kim Y., Rhim H., Shin Y.K. Amyloid-beta Oligomers May Impair SNARE-Mediated Exocytosis by Direct Binding to Syntaxin 1a. Cell Rep. 2015;12:1244–1251. doi: 10.1016/j.celrep.2015.07.044. PubMed DOI PMC

Smith S.K., Anderson H., Yu G., Robertson A.G., Allen S.J., Tyler S.J., Naylor R.L., Mason G., Wilcock G.W., Roche P., et al. Identification of syntaxin 1A as a novel binding protein for presenilin. Mol. Brain Res. 2000;78:100–107. doi: 10.1016/S0169-328X(00)00079-6. PubMed DOI

Burré J., Sharma M., Südhof T.C. α-Synuclein assembles into higher-order multimers upon membrane binding to promote SNARE complex formation. Proc. Natl. Acad. Sci. USA. 2014;111:E4274–E4283. doi: 10.1073/pnas.1416598111. PubMed DOI PMC

Garcia-Reitböck P., Anichtchik O., Bellucci A., Iovino M., Ballini C., Fineberg E., Ghetti B., Della Corte L., Spano P., Tofaris G.K., et al. SNARE protein redistribution and synaptic failure in a transgenic mouse model of Parkinson’s disease. Brain. 2010;133:2032–2044. doi: 10.1093/brain/awq132. PubMed DOI PMC

Agliardi C., Meloni M., Guerini F.R., Zanzottera M., Bolognesi E., Baglio F., Clerici M. Oligomeric alpha-Syn and SNARE complex proteins in peripheral extracellular vesicles of neural origin are biomarkers for Parkinson’s disease. Neurobiol. Dis. 2021;148:105185. doi: 10.1016/j.nbd.2020.105185. PubMed DOI

Suga K., Tomiyama T., Mori H., Akagawa K. Syntaxin 5 interacts with presenilin holoproteins, but not with their N- or C-terminal fragments, and affects β-amyloid peptide production. Biochem. J. 2004;381:619–628. doi: 10.1042/BJ20040618. PubMed DOI PMC

Rendón W.O., Martínez-Alonso E., Tomás M., Martínez-Martínez N., Martínez-Menárguez J.A. Golgi fragmentation is Rab and SNARE dependent in cellular models of Parkinson’s disease. Histochem. Cell Biol. 2012;139:671–684. doi: 10.1007/s00418-012-1059-4. PubMed DOI

Tomas M., Martinez-Alonso E., Martinez-Martinez N., Cara-Esteban M., Martinez-Menarguez J.A. Fragmentation of the Golgi complex of dopaminergic neurons in human substantia nigra: New cytopathological findings in Parkinson’s disease. Histol. Histopathol. 2020:18270. doi: 10.14670/HH-18-270. PubMed DOI

Beilina A., Bonet-Ponce L., Kumaran R., Kordich J.J., Ishida M., Mamais A., Kaganovich A., Saez-Atienzar S., Gershlick D.C., Roosen D.A., et al. The Parkinson’s Disease Protein LRRK2 Interacts with the GARP Complex to Promote Retrograde Transport to the trans-Golgi Network. Cell Rep. 2020;31:107614. doi: 10.1016/j.celrep.2020.107614. PubMed DOI PMC

Zhang H., Initiative T.A.D.N., Therriault J., Kang M.S., Ng K.P., Pascoal T.A., Rosa-Neto P., Gauthier S. Cerebrospinal fluid synaptosomal-associated protein 25 is a key player in synaptic degeneration in mild cognitive impairment and Alzheimer’s disease. Alzheimer’s Res. Ther. 2018;10:80. doi: 10.1186/s13195-018-0407-6. PubMed DOI PMC

Agliardi C., Guerini F.R., Zanzottera M., Bianchi A., Nemni R., Clerici M. SNAP-25 in Serum Is Carried by Exosomes of Neuronal Origin and Is a Potential Biomarker of Alzheimer’s Disease. Mol. Neurobiol. 2019;56:5792–5798. doi: 10.1007/s12035-019-1501-x. PubMed DOI

Yun H.J., Park J., Ho D.H., Kim H., Kim C.-H., Oh H., Ga I., Seo H., Chang S., Son I., et al. LRRK2 phosphorylates Snapin and inhibits interaction of Snapin with SNAP-25. Exp. Mol. Med. 2013;45:e36. doi: 10.1038/emm.2013.68. PubMed DOI PMC

Kawamata H., Ng S.K., Diaz N., Burstein S., Morel L., Osgood A., Sider B., Higashimori H., Haydon P.G., Manfredi G., et al. Abnormal intracellular calcium signaling and SNARE-dependent exocytosis contributes to SOD1G93A astrocyte-mediated toxicity in amyotrophic lateral sclerosis. J. Neurosci. 2014;34:2331–2348. doi: 10.1523/JNEUROSCI.2689-13.2014. PubMed DOI PMC

Choi B.K., Choi M.G., Kim J.Y., Yang Y., Lai Y., Kweon D.H., Lee N.K., Shin Y.K. Large α-synuclein oligomers inhibit neuronal SNARE-mediated vesicle docking. Proc. Natl. Acad. Sci. USA. 2013;110:4087–4092. doi: 10.1073/pnas.1218424110. PubMed DOI PMC

Choi M.-G., Kim M.J., Kim D.-G., Yu R., Jang Y.-N., Oh W.-J. Sequestration of synaptic proteins by alpha-synuclein aggregates leading to neurotoxicity is inhibited by small peptide. PLoS ONE. 2018;13:e0195339. doi: 10.1371/journal.pone.0195339. PubMed DOI PMC

Lou X., Kim J., Hawk B.J., Shin Y.-K. α-Synuclein may cross-bridge v-SNARE and acidic phospholipids to facilitate SNARE-dependent vesicle docking. Biochem. J. 2017;474:2039–2049. doi: 10.1042/BCJ20170200. PubMed DOI PMC

Sun J., Wang L., Bao H., Premi S., Das U., Chapman E.R., Roy S. Functional cooperation of α-synuclein and VAMP2 in synaptic vesicle recycling. Proc. Natl. Acad. Sci. USA. 2019;116:11113–11115. doi: 10.1073/pnas.1903049116. PubMed DOI PMC

Lai Y., Kim S., Varkey J., Lou X., Song J.K., Diao J., Langen R., Shin Y.-K. Nonaggregated α-Synuclein Influences SNARE-Dependent Vesicle Docking via Membrane Binding. Biochemistry. 2014;53:3889–3896. doi: 10.1021/bi5002536. PubMed DOI PMC

Brown E.E., Blauwendraat C., Trinh J., Rizig M., Nalls M.A., Leveille E., Ruskey J.A., Jonvik H., Tan M.M., Bandres-Ciga S., et al. Analysis of DNM3 and VAMP4 as genetic modifiers of LRRK2 Parkinson’s disease. Neurobiol. Aging. 2021;97:148.e17–148.e24. doi: 10.1016/j.neurobiolaging.2020.07.002. PubMed DOI PMC

Pilliod J., Desjardins A., Pernègre C., Jamann H., Larochelle C., Fon E.A., Leclerc N. Clearance of intracellular tau protein from neuronal cells via VAMP8-induced secretion. J. Biol. Chem. 2020;295:17827–17841. doi: 10.1074/jbc.RA120.013553. PubMed DOI PMC

Emmanouilidou E., Minakaki G., Keramioti M.V., Xylaki M., Balafas E., Chrysanthou-Piterou M., Kloukina I., Vekrellis K. GABA transmission via ATP-dependent K+channels regulates α-synuclein secretion in mouse striatum. Brain. 2016;139:871–890. doi: 10.1093/brain/awv403. PubMed DOI

Benskey M.J., Perez R.G., Manfredsson F.P. The contribution of alpha synuclein to neuronal survival and function—Implications for Parkinson’s disease. J. Neurochem. 2016;137:331–359. doi: 10.1111/jnc.13570. PubMed DOI PMC

Fan L., Mao C., Hu X., Zhang S., Yang Z., Hu Z., Sun H., Fan Y., Dong Y., Yang J., et al. New Insights Into the Pathogenesis of Alzheimer’s Disease. Front. Neurol. 2019;10:1312. doi: 10.3389/fneur.2019.01312. PubMed DOI PMC

Breijyeh Z., Karaman R. Comprehensive Review on Alzheimer’s Disease: Causes and Treatment. Molecules. 2020;25:5789. doi: 10.3390/molecules25245789. PubMed DOI PMC

Colnaghi L., Rondelli D., Muzi-Falconi M., Sertic S. Tau and DNA Damage in Neurodegeneration. Brain Sci. 2020;10:946. doi: 10.3390/brainsci10120946. PubMed DOI PMC

Guerini F.R., Farina E., Costa A.S., Baglio F., Saibene F.L., Margaritella N., Calabrese E., Zanzottera M., Bolognesi E., Nemni R., et al. ApoE and SNAP-25 Polymorphisms Predict the Outcome of Multidimensional Stimulation Therapy Rehabilitation in Alzheimer’s Disease. Neurorehabil. Neural Repair. 2016;30:883–893. doi: 10.1177/1545968316642523. PubMed DOI

Antonin W., Dulubova I., Araç D., Pabst S., Plitzner J., Rizo J., Jahn R. The N-terminal Domains of Syntaxin 7 and vti1b Form Three-helix Bundles That Differ in Their Ability to Regulate SNARE Complex Assembly. J. Biol. Chem. 2002;277:36449–36456. doi: 10.1074/jbc.M204369200. PubMed DOI

Behrendorff N., Dolai S., Hong W., Gaisano H.Y., Thorn P. Vesicle-associated Membrane Protein 8 (VAMP8) Is a SNARE (Soluble N-Ethylmaleimide-sensitive Factor Attachment Protein Receptor) Selectively Required for Sequential Granule-to-granule Fusion. J. Biol. Chem. 2011;286:29627–29634. doi: 10.1074/jbc.M111.265199. PubMed DOI PMC

Miyazaki I., Asanuma M. Neuron-Astrocyte Interactions in Parkinson’s Disease. Cells. 2020;9:2623. doi: 10.3390/cells9122623. PubMed DOI PMC

Brooks D.J. Imaging Familial and Sporadic Neurodegenerative Disorders Associated with Parkinsonism. Neurotherapeutics. 2021:1–19. doi: 10.1007/s13311-020-00994-4. PubMed DOI PMC

Polymeropoulos M.H., Lavedan C., Leroy E., Ide S.E., Dehejia A., Dutra A., Pike B., Root H., Rubenstein J., Boyer R., et al. Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science. 1997;276:2045–2047. doi: 10.1126/science.276.5321.2045. PubMed DOI

Krüger R., Kuhn W., Müller T., Woitalla D., Graeber M., Kösel S., Przuntek H., Epplen J.T., Schöls L., Riess O. Ala30Pro mutation in the gene encoding alpha-synuclein in Parkinson’s disease. Nat. Genet. 1998;18:106–108. doi: 10.1038/ng0298-106. PubMed DOI

Zarranz J.J., Alegre J., Gómez-Esteban J.C., Lezcano E., Ros R., Ampuero I., Vidal L., Hoenicka J., Rodriguez O., Atarés B., et al. The new mutation, E46K, of α-synuclein causes parkinson and Lewy body dementia. Ann. Neurol. 2003;55:164–173. doi: 10.1002/ana.10795. PubMed DOI

Kiely A.P., Asi Y.T., Kara E., Limousin P., Ling H., Lewis P., Proukakis C., Quinn N., Lees A.J., Hardy J., et al. α-Synucleinopathy associated with G51D SNCA mutation: A link between Parkinson’s disease and multiple system atrophy? Acta Neuropathol. 2013;125:753–769. doi: 10.1007/s00401-013-1096-7. PubMed DOI PMC

Proukakis C., Dudzik C.G., Brier T., MacKay D.S., Cooper J.M., Millhauser G.L., Houlden H., Schapira A.H. A novel α-synuclein missense mutation in Parkinson disease. Neurology. 2013;80:1062–1064. doi: 10.1212/WNL.0b013e31828727ba. PubMed DOI PMC

Proukakis C., Houlden H., Schapira A.H. Somatic alpha-synuclein mutations in Parkinson’s disease: Hypothesis and preliminary data. Mov. Disord. 2013;28:705–712. doi: 10.1002/mds.25502. PubMed DOI PMC

Singleton A.B., Farrer M., Johnson J., Singleton A., Hague S., Kachergus J., Hulihan M., Peuralinna T., Dutra A., Nussbaum R., et al. alpha-Synuclein locus triplication causes Parkinson’s disease. Science. 2003;302:841. doi: 10.1126/science.1090278. PubMed DOI

Ibáñez P., Bonnet A.M., Débarges B., Lohmann E., Tison F., Pollak P., Agid Y., Dürr A., Brice A. Causal relation between alpha-synuclein gene duplication and familial Parkinson’s disease. Lancet. 2004;364:1169–1171. doi: 10.1016/S0140-6736(04)17104-3. PubMed DOI

Juhász G. A mitochondrial-derived vesicle HOPS to endolysosomes using Syntaxin. J. Cell Biol. 2016;214:241–243. doi: 10.1083/jcb.201607024. PubMed DOI PMC

Rouaud T., Corbille A.G., Leclair-Visonneau L., de Guilhem de Lataillade A., Lionnet A., Preterre C., Damier P., Derkinderen P. Pathophysiology of Parkinson’s disease: Mitochondria, alpha-synuclein and much more. Rev. Neurol. 2021;177:260–271. doi: 10.1016/j.neurol.2020.07.016. PubMed DOI

Gómez-Benito M., Granado N., García-Sanz P., Michel A., Dumoulin M., Moratalla R. Modeling Parkinson’s Disease With the Alpha-Synuclein Protein. Front. Pharmacol. 2020;11:356. doi: 10.3389/fphar.2020.00356. PubMed DOI PMC

Zhao Y., Yang G. Potential of extracellular vesicles in the Parkinson’s disease—Pathological mediators and biomarkers. Neurochem. Int. 2021;144:104974. doi: 10.1016/j.neuint.2021.104974. PubMed DOI

Burré J., Sharma M., Tsetsenis T., Buchman V., Etherton M.R., Südhof T.C. Alpha-synuclein promotes SNARE-complex assembly in vivo and in vitro. Science. 2010;329:1663–1667. doi: 10.1126/science.1195227. PubMed DOI PMC

Hasegawa H., Yang Z., Oltedal L., Davanger S., Hay J.C. Intramolecular protein-protein and protein-lipid interactions control the conformation and subcellular targeting of neuronal Ykt. J. Cell Sci. 2004;117:4495–4508. doi: 10.1242/jcs.01314. PubMed DOI

Hasegawa H., Zinsser S., Rhee Y., Vik-Mo E.O., Davanger S., Hay J.C. Mammalian Ykt6 Is a Neuronal SNARE Targeted to a Specialized Compartment by its Profilin-like Amino Terminal Domain. Mol. Biol. Cell. 2003;14:698–720. doi: 10.1091/mbc.e02-09-0556. PubMed DOI PMC

Belluzzi E., Gonnelli A., Cirnaru M.-D., Marte A., Plotegher N., Russo I., Civiero L., Cogo S., Carrion M.P., Franchin C., et al. LRRK2 phosphorylates pre-synaptic N-ethylmaleimide sensitive fusion (NSF) protein enhancing its ATPase activity and SNARE complex disassembling rate. Mol. Neurodegener. 2016;11:1. doi: 10.1186/s13024-015-0066-z. PubMed DOI PMC

Jeong G.R., Lee B.D. Pathological Functions of LRRK2 in Parkinson’s Disease. Cells. 2020;9:2565. doi: 10.3390/cells9122565. PubMed DOI PMC

Kitada T., Asakawa S., Hattori N., Matsumine H., Yamamura Y., Minoshima S., Yokochi M., Mizuno Y., Shimizu N. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nat. Cell Biol. 1998;392:605–608. doi: 10.1038/33416. PubMed DOI

Valente E.M., Abou-Sleiman P.M., Caputo V., Muqit M.M., Harvey K., Gispert S., Ali Z., Del Turco D., Bentivoglio A.R., Healy D.G., et al. Hereditary early-onset Parkinson’s disease caused by mutations in PINK. Science. 2004;304:1158–1160. doi: 10.1126/science.1096284. PubMed DOI

Valente E.M., Salvi S., Ialongo T., Marongiu R., Elia A.E., Caputo V., Romito L., Albanese A., Dallapiccola B., Bentivoglio A.R. PINK1 mutations are associated with sporadic early-onset parkinsonism. Ann. Neurol. 2004;56:336–341. doi: 10.1002/ana.20256. PubMed DOI

Itakura E., Kishi-Itakura C., Mizushima N. The Hairpin-type Tail-Anchored SNARE Syntaxin 17 Targets to Autophagosomes for Fusion with Endosomes/Lysosomes. Cell. 2012;151:1256–1269. doi: 10.1016/j.cell.2012.11.001. PubMed DOI

Hamasaki M., Furuta N., Matsuda A., Nezu A., Yamamoto A., Fujita N., Oomori H., Noda T., Haraguchi T., Hiraoka Y., et al. Autophagosomes form at ER–mitochondria contact sites. Nat. Cell Biol. 2013;495:389–393. doi: 10.1038/nature11910. PubMed DOI

Arasaki K., Shimizu H., Mogari H., Nishida N., Hirota N., Furuno A., Kudo Y., Baba M., Baba N., Cheng J., et al. A Role for the Ancient SNARE Syntaxin 17 in Regulating Mitochondrial Division. Dev. Cell. 2015;32:304–317. doi: 10.1016/j.devcel.2014.12.011. PubMed DOI

Strong M.J., Donison N.S., Volkening K. Alterations in Tau Metabolism in ALS and ALS-FTSD. Front. Neurol. 2020;11:598907. doi: 10.3389/fneur.2020.598907. PubMed DOI PMC

Yousefian-Jazi A., Seol Y., Kim J., Ryu H.L., Lee J., Ryu H. Pathogenic Genome Signatures That Damage Motor Neurons in Amyotrophic Lateral Sclerosis. Cells. 2020;9:2687. doi: 10.3390/cells9122687. PubMed DOI PMC

Redler R.L., Dokholyan N.V. The Complex Molecular Biology of Amyotrophic Lateral Sclerosis (ALS) Prog. Mol. Biol. Transl. Sci. 2012;107:215–262. doi: 10.1016/b978-0-12-385883-2.00002-3. PubMed DOI PMC

Iacoangeli A., Initiative A.D.N., Al Khleifat A., Jones A.R., Sproviero W., Shatunov A., Opie-Martin S., Morrison K.E., Shaw P.J., Shaw C.E., et al. C9orf72 intermediate expansions of 24–30 repeats are associated with ALS. Acta Neuropathol. Commun. 2019;7:1–7. doi: 10.1186/s40478-019-0724-4. PubMed DOI PMC

Shatunov A., Al-Chalabi A. The genetic architecture of ALS. Neurobiol. Dis. 2021;147:105156. doi: 10.1016/j.nbd.2020.105156. PubMed DOI

Mejzini R., Flynn L.L., Pitout I.L., Fletcher S., Wilton S.D., Akkari P.A. ALS Genetics, Mechanisms, and Therapeutics: Where Are We Now? Front. Neurosci. 2019;13:1310. doi: 10.3389/fnins.2019.01310. PubMed DOI PMC

Philips T., Rothstein J. Glial cells in amyotrophic lateral sclerosis. Exp. Neurol. 2014;262:111–120. doi: 10.1016/j.expneurol.2014.05.015. PubMed DOI PMC

Danbolt N.C. Glutamate uptake. Prog. Neurobiol. 2001;65:1–105. doi: 10.1016/s0301-0082(00)00067-8. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace